CS 310: Priority Queues and Binary Heaps

Chris Kauffman

Week 14-2
Logistics

The end is Nigh

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon 11/30</td>
<td>Balanced Trees</td>
</tr>
<tr>
<td>Wed 12/2</td>
<td>Priority Queues</td>
</tr>
<tr>
<td>Mon 12/7</td>
<td>Heap Sort, Evals</td>
</tr>
<tr>
<td>Wed 12/9</td>
<td>Java Jeopardy</td>
</tr>
<tr>
<td>Fri 12/11</td>
<td>Code Fest (!?)</td>
</tr>
<tr>
<td>Sat 12/12</td>
<td>HW 4 Due</td>
</tr>
<tr>
<td>Mon 12/14</td>
<td>Final Exam</td>
</tr>
<tr>
<td></td>
<td>Sec 1: 10:30am</td>
</tr>
<tr>
<td></td>
<td>Sec 3: 1:30pm</td>
</tr>
</tbody>
</table>

HW 4
- Overview today
- Due in 10 days

Reading: Weiss
- 21: Priority Queue/Binary Heap
- 6.9: Priority Queue Interface

Goals Today
- Priority queues
- Binary Heaps
TripleStore database: 3 columns Entity, Relation, Property
Each "row" is a Record, is unique
Basic add() and remove() functionality
Support for query() including wild cards
All operations are logarithmic
 \(N \): number of records in the TripleStore
 add() is \(O(\log N) \) (add single records)
 query() is \(O(\log N + K) \), \(K \) is number of matches
 remove() is \(O(K \times \log N) \), \(K \) number of items to remove

Use three trees sorted in different ways
ERP, RPE, PER, corresponding Comparators
In query(), select one tree to enable fast lookup
Use java TreeSet<Record>
Explore TreeSet.tailSet(x) which gives a sorted subset of tree in \(O(\log N) \) time and provides an iterator
// No wild fields
Record r = Record.makeRecord("Alf","EATS","cat")

// No wild fields
Record q = Record.makeQuery("*", "Alf","EATS","cat")

// Property wild in both, same query
Record q1 = Record.makeQuery("*", "Alf","EATS","*")
Record q2 = Record.makeQuery("??", "Alf","EATS","??")
TripleStore: Which Tree for Query?

\[f = \text{fixed string} \]
\[* = \text{wild card} \]

<table>
<thead>
<tr>
<th>E</th>
<th>R</th>
<th>P</th>
<th>Tree</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>*</td>
<td>ERP</td>
<td>Entity/Relation fixed, scan through Property</td>
</tr>
<tr>
<td>f</td>
<td>*</td>
<td>*</td>
<td>ERP</td>
<td>Entity fixed, scan through Relation/Property</td>
</tr>
<tr>
<td>f</td>
<td>*</td>
<td>f</td>
<td>PER</td>
<td>Property/Entity fixed, scan through Relations</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>f</td>
<td>PER</td>
<td>Property fixed, scan through Entities/Relations</td>
</tr>
</tbody>
</table>

How many rows total?
Priority Queues

Queue
What operations does a queue support?

Priority: Number representing importance

- Convention lower is better priority
 Bring back life form. Priority One. All other priorities rescinded.
- Symmetric code if higher is better

Priority Queue (PQ): Supports 3 operations

- void insert(T x, int p): Insert x with priority p
- T findMin(): Return the object with the best priority
- void deleteMin(): Remove the object with the best priority
Priority

Explicit Priority

insert(T x, int p)
 ▶ Priority is explicitly int p
 ▶ Separate from data

Implicit Priority

insert(Comparable<T> x)
 ▶ x "knows" its own priority
 ▶ Comparisons dictated by x.compareTo(y)

Implicit is simpler for discussion: only one thing (x) to draw

Explicit usually uses a wrapper node of sorts

class PQNode<T> extends Comparable<PQNode>{
 int priority; T data;
 public int compareTo(PQNode that){
 return this.priority - that.priority;
 }
}

Exercise: Design a PQ

Discuss
- How would you design PriorityQueue class?
- What underlying data structures would you use?
- Discuss with a neighbor
- Give rough idea of implementation
- Make it as efficient as possible in Big-O sense

Must Implement
- Constructor
- void insert(T x): Insert x, knows its own priority
- T findMin(): Return the object with the best priority
- void deleteMin(): Remove the the object with the best priority
Binary Heap: Sort of Sorted

- Most common way to build a PQ is using a new-ish data structure, the Binary Heap.
- Looks similar to a Binary Search Tree but maintains a different property

BST Property
A Node must be bigger than its left children and smaller than its right children

Binary Min-Heap Property
A Node must be smaller than its children
Heap and Not Heap

Which of these is a min-heap and which is not?

(a)

(b)

Which of these is a min-heap and which is not?
Trees and Heaps in Arrays

- Mostly we have used trees of linked Nodes
- Can also put trees/heaps in an array

Root is at 1 (discuss root at 0 later)
- left(i) = 2*i
- right(i) = 2*i + 1
Balanced v. Unbalanced in Arrays

Find the array layout of these two trees

- Root is at 1
- left(i) = 2*i
- right(i) = 2*i + 1

Q: How big of array is required?
Balanced v. Unbalanced in Arrays

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48</td>
<td>17</td>
<td>89</td>
<td>3</td>
<td>25</td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17</td>
<td>3</td>
<td>48</td>
<td>25</td>
<td>89</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complete Trees

- Only "missing" nodes in their bottom row (level set)
- Nodes in bottom row are as far left as possible

Not Complete (Why?)

Complete trees don’t waste space in arrays: no gaps
Hard for general BSTs, easy for binary heaps...
Trees/Heaps in Array: Keep them Complete

- Storing in arrays: can cost space overhead
- If the tree is **complete** or nearly so, little wasted space

BSTs in arrays

- Hard to keep tree complete
- BST + balancing property makes it hard
- Rotations may not be constant time anymore
- Trees not usually laid out in arrays: linked nodes much more common

Binary Heaps in arrays

- **Very easy** to keep tree complete
- Heap Property is more loose, easier to maintain
- No rotations, no worries..
- Binary heaps almost always laid out in arrays
PQ Ops with Binary Heaps

- Use an internal T array[] of queue contents
- Maintain min-heap order in array

Define

Tree-like ops for array[]

- root() => 1
- left(i) => i*2
- right(i) => i*2 + 1
- parent(i) => i / 2

T findMin()

Super easy

return array[root()];

insert(T x)

Ensure heap is a complete tree
- Insert at next array[size]
- Increment size
- Percolate new element up

deleteMin()

Ensure heap is a complete tree
- Decrement size
- Replace root with last data
- Percolate root down
Demos of Binary Heaps

Not allowed on exams, but good for studying

Min Heap from David Galles @ Univ SanFran
- Visualize both heap and array version
- All ops supported

Max Heap from Steven Halim
- Good visuals
- No array
- Slow to load
PQ/Binary Heap Code

BinaryHeapPQ.java

- Code distribution today contains working heap
- `percolateUp()` and `percolateDown()` do most of the work
- Uses "root at index 1" convention

Text Book Binary Heap

- Weiss uses a different approach in percolate up/down
- Move a "hole" around rather than swapping
- Probably saves 1 comparison per loop iteration
- Have a look in `weiss/util/PriorityQueue.java`
Complexity of Binary Heap PQ methods?

T findMin();
void insert(T x); // x knows its priority
void deleteMin();

Give the complexity and justify for each
Height Again...

Efficiency of Binary Heap PQs

- `findMin()` clearly $O(1)$
- `deleteMin()` worst case height
- `insert(x)` worst case height

Height of a Complete Binary Tree wrt number of nodes N?
Look it up for next time

Reading

- 21: Priority Queue/Binary Heap
- 6.9: Priority Queue Interface