CS 310: Prelude

Chris Kauffman

Week 1-1
Trading resumes on NYSE after nearly 4-hour outage, CNN 7/8/2015

Pricing Problem Suspends Nasdaq for Three Hours, NYT 8/22/2013
Make Some Money

You get hired by an investment firm (cha-ching). First task: analyze historical stock performances to locate good times to buy and sell.

- Buy low and Sell high
- Or don’t play at all
Many Options

Don’t play: 0 gain
The Best Buy

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Jul-2013</td>
<td>886</td>
<td>0</td>
</tr>
<tr>
<td>2-Jul-2013</td>
<td>890</td>
<td>4</td>
</tr>
<tr>
<td>3-Jul-2013</td>
<td>880</td>
<td>-10</td>
</tr>
<tr>
<td>5-Jul-2013</td>
<td>890</td>
<td>10</td>
</tr>
<tr>
<td>8-Jul-2013</td>
<td>899</td>
<td>9</td>
</tr>
<tr>
<td>9-Jul-2013</td>
<td>911</td>
<td>12</td>
</tr>
<tr>
<td>10-Jul-2013</td>
<td>903</td>
<td>-8</td>
</tr>
<tr>
<td>11-Jul-2013</td>
<td>913</td>
<td>10</td>
</tr>
<tr>
<td>12-Jul-2013</td>
<td>920</td>
<td>7</td>
</tr>
<tr>
<td>15-Jul-2013</td>
<td>924</td>
<td>4</td>
</tr>
<tr>
<td>16-Jul-2013</td>
<td>927</td>
<td>3</td>
</tr>
<tr>
<td>17-Jul-2013</td>
<td>921</td>
<td>-6</td>
</tr>
<tr>
<td>18-Jul-2013</td>
<td>919</td>
<td>-2</td>
</tr>
<tr>
<td>19-Jul-2013</td>
<td>887</td>
<td>-32</td>
</tr>
<tr>
<td>22-Jul-2013</td>
<td>902</td>
<td>15</td>
</tr>
<tr>
<td>23-Jul-2013</td>
<td>911</td>
<td>9</td>
</tr>
<tr>
<td>24-Jul-2013</td>
<td>907</td>
<td>-3</td>
</tr>
<tr>
<td>25-Jul-2013</td>
<td>894</td>
<td>-13</td>
</tr>
<tr>
<td>26-Jul-2013</td>
<td>887</td>
<td>-7</td>
</tr>
<tr>
<td>29-Jul-2013</td>
<td>885</td>
<td>-2</td>
</tr>
<tr>
<td>30-Jul-2013</td>
<td>885</td>
<td>1</td>
</tr>
<tr>
<td>31-Jul-2013</td>
<td>893</td>
<td>8</td>
</tr>
<tr>
<td>1-Aug-2013</td>
<td>895</td>
<td>2</td>
</tr>
<tr>
<td>2-Aug-2013</td>
<td>903</td>
<td>8</td>
</tr>
<tr>
<td>5-Aug-2013</td>
<td>905</td>
<td>2</td>
</tr>
<tr>
<td>6-Aug-2013</td>
<td>905</td>
<td>-1</td>
</tr>
<tr>
<td>7-Aug-2013</td>
<td>895</td>
<td>-10</td>
</tr>
<tr>
<td>8-Aug-2013</td>
<td>895</td>
<td>0</td>
</tr>
</tbody>
</table>

Graph 1:
- Title: Chart A
- Description: Graph showing data trends over a period.

Graph 2:
- Title: Chart B
- Description: Bar chart illustrating different values over the same period.
How Would you find Best Increase?

<table>
<thead>
<tr>
<th>i</th>
<th>price</th>
<th>delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>886</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>890</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>880</td>
<td>-10</td>
</tr>
<tr>
<td>4</td>
<td>890</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>899</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>911</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>903</td>
<td>-8</td>
</tr>
<tr>
<td>8</td>
<td>913</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>920</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>924</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>927</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>921</td>
<td>-6</td>
</tr>
<tr>
<td>13</td>
<td>919</td>
<td>-2</td>
</tr>
<tr>
<td>14</td>
<td>887</td>
<td>-32</td>
</tr>
<tr>
<td>15</td>
<td>902</td>
<td>15</td>
</tr>
</tbody>
</table>

How is payoff computed for start=5 and end=12?
For start=7 and end=10?

Several names for the Problem

▶ Maximum contiguous subsequence sum (text)
▶ Maximum Subarray (wikip)
▶ Find start and end time with largest payoff out of all possible

Find a Solution

▶ Input is the array delta[]
▶ Output: (start, end, payoff) such that payoff is as large as possible
▶ Can optionally not invest for no payoff; return (-1,-1,0)
Algorithm 1: Brute Force

maxSubsequenceCube(int A[]){
 bestPayoff = 0
 bestStart = -1
 bestEnd = -1
 for start=0 to A.length-1 {
 for end=start to A.length-1 {
 currentPayoff = 0
 for i=start to end {
 currentPayoff += A[i]
 }
 if(currentPayoff > bestPayoff){
 bestPayoff = currentPayoff
 bestStart = start
 bestEnd = end
 }
 }
 }
 return bestPayoff, bestStart, bestEnd
}

▷ A[] contains deltas
▷ Try every possible start and end (outer loops)
▷ Calculate increase from start to end
▷ Track the best seen
▷ Complexity?
▷ Anything better
Algorithm 2: Skip the inner loop

```java
maxSubsequenceQuad(int A[]){
    bestPayoff = 0
    bestStart = -1
    bestEnd = -1
    for start=0 to A.length-1 {
        currentPayoff = 0
        for end=start to A.length-1 {
            currentPayoff += A[end]
            if(current > best){
                bestPayoff = currentPayoff
                bestStart = start
                bestEnd = end
            }
        }
    }
    return bestPayoff, bestStart, bestEnd
}
```

- Try every start and end
- Don’t recalculate currentPayoff in a loop
- ’Remember’ last currentPayoff as end changes
Algorithm 2 Alternative: Convert to global Prices

maxSubsequenceQuad(int A[]){
 B = new array size A.length
 B[0] = A[0]
 for i=1 to B.length-1

 best = 0
 bestStart = -1
 bestEnd = -1
 for start=0 to A.length-1 {
 for end=start to A.length-1 {
 current = B[end] - B[start]
 if(current > best){
 best = current
 bestStart = start
 bestEnd = end
 }
 }
 }
 return best, bestStart, bestEnd
}
Anything Better?

- maxSubsequenceCube(): most straightforward enumeration of all possible solutions
- maxSubsequenceQuad(): used a trick to speed up enumeration

Increasing speed now calls for some deeper insight
A Helpful Property

Proposition: The shortest maximum subsequence beginning at start and finishing at end contains no point mid between them with a lower value than start.

Proof by Contradiction:

- Suppose shortest max subsequence exists, looks like picture.
- x must be lower than end, o/w could form a shorter maximum subsequence start to x
- But if mid is lower then start, sequence mid to end has a larger increase than start to end.

Consequence: If mid drops below start, reset start to mid
Create a faster algorithm based on this property.
Algorithm 3: Scan

```java
maxSubsequenceLinear(int A[]){
    best = 0
    current = 0
    bestStart = -1
    bestEnd = -1
    start = 0
    for end=0 to A.length-1 {
        current += A[end]
        if(current > best){
            best = current
            bestStart = start
            bestEnd = end
        }
        else if(current < 0){
            start = end+1;
            current = 0;
        }
    }
    return best,bestStart,bestEnd;
}
```

- A[] contains deltas
- When sum current falls below zero, move start to end and reset
- Single pass over entire array
Max Subsequence Algorithms Synopsis

Comparisons

- `maxSubsequenceCube()`: triply nested loops over entire array, \(O(N^3) \)
- `maxSubsequenceQuad()`: doubly nested loops over entire array, \(O(N^2) \)
- `maxSubsequenceLinear()`: single loop over entire array, \(O(N) \)

Intuition: for large arrays, `maxSubsequenceLinear()` will produce answers faster

Demonstration

This happens in practice, see `MaxSumTestBetter.java` for implementations with timing.
Course Synopsis

- Look at problems
- Identify solutions
- Evaluate solution for its "goodness"
 - What metrics of goodness exist for code?
 - Which metrics are most important
- Most solutions will involve an algorithm and a data structure
 - What’s an algorithm
 - What’s a data structure
Syllabus and Schedule

Both linked on Piazza, tons of info on

- Grading
- Assignment submission
- Policies (late work, etc.)
- Schedule of events

Highlights to follow...
Preconditions

This is a 3rd programming class.

- CS 211 Prereq
- Know Java
- You have easy access to a computer with java

Not sure if you’re ready?

- Review first chapters of Weiss for Java refresher, should mostly be stuff you already know
- Inspect past CS 211 projects: could you solve them in given times?

https://cs.gmu.edu/~kauffman/cs211/p3.html (7 days)
https://cs.gmu.edu/~kauffman/cs211/p6.html (10-14 days)
https://cs.gmu.edu/~kauffman/cs211/p7.html (5 days)
Cheating

Don’t cheat

- Easy to catch
- Pain for you
- Pain for me (makes me ornery)
- If you don’t get caught, you’ll still suck at programming

Cooperation is not automatically cheating.

- Examples
Hot Seats

- Each session, first few rows are hot seats
- First come, first serve (adjust if needed)
- Just try: answer questions, give feedback
- Don’t want/need participation, sit elsewhere
- Up to 3% overall bonus
 - Luke and Leia have 20 part pts, max in class, 3% bonus each
 - Han and Chewie have 10 part pts, 1.5% bonus each
 - Greedo has 0 part pts, 0.0% bonus
- Scoring described in Syllabus
- Participation is only opportunity for extra credit
- May be a few other opportunities for participation
Weiss is pretty good

- I’ll assume you’re reading it
- Likely want to get the text source code
- On 2-hour reserve in Johnson Center Library, tell them the course number
We’re on Piazza

Should all have received an invitation to join the Piazza class (piazza.com)

- Discussion
- Announcements
- Schedule

Blackboard only for

- Assignment submission
- Grades

95% of the time you should post, not email

Mail me for

- Personal appointments
- Unresolvable grading disputes
Your Teaching Team and Office Hours

See Piazza Staff Section

- Kauffman Plans Office Hours Tue 3-5pm (OK?)
- Remaining course staff will have office hours posted on Piazza by week’s end

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chris Kauffman</td>
<td>kauffman@cs.gmu.edu</td>
<td>Prof</td>
</tr>
<tr>
<td>Dave Nordstrom</td>
<td>dnordstr@cs.gmu.edu</td>
<td>Prof</td>
</tr>
<tr>
<td>Richard Carver</td>
<td>rcarver@cs.gmu.edu</td>
<td>Prof</td>
</tr>
<tr>
<td>Yujing Chen</td>
<td>ychen37@gmu.edu</td>
<td>GTA</td>
</tr>
<tr>
<td>Guilin Liu</td>
<td>gliu2@gmu.edu</td>
<td>GTA</td>
</tr>
<tr>
<td>Hui Zheng</td>
<td>hzheng5@gmu.edu</td>
<td>GTA</td>
</tr>
<tr>
<td>Veda Bhamidipati</td>
<td>vbhamid2@gmu.edu</td>
<td>GTA</td>
</tr>
<tr>
<td>Claire Cecil</td>
<td>ccecil2@masonlive.gmu.edu</td>
<td>UTA</td>
</tr>
<tr>
<td>Daniel Lacher</td>
<td>dlacher@masonlive.gmu.edu</td>
<td>UTA</td>
</tr>
</tbody>
</table>
Tools

The official java tools of the course are

- **jdk 1.8**, official build and run tools from Oracle
- **DrJava**, a simple, superior java IDE (if you’re into IDEs)

Minor support given for (though not official)

- **jGrasp**, a decent IDE with drawing capabilities, used for some in-class examples

Special Note:

- *I do not know how to use eclipse*
- *I will not be learning how this semester.*
- *If I can help it I will never learn eclipse.*
- *TAs may be able to help you but are not required to do so.*
- *In class I will use jGrasp, Emacs, and command line.*
- *If you have questions on those I’m happy to help.*
Special Note on DrJava

We’ve made some improvements at GMU

- Better test result printing
- Fixed debugger activation bug
- Unofficial, trying to get into main distrib
- **Strongly** encourage DrJava users to grab this version
- Download here: https://cs.gmu.edu/~kauffman/drjava/
Slides

- Will try to make slides available before class
- Slides always available sometime after class
- Slides are not much good without accompanying conversation
- Code examples posted after class
- Link to slide page: Pizza/Resources
Programming Assignments

4 of them during the semester

- 35% of you grade
- Medium-large implementations using data structures
- Grading in two parts
 - Automated junit test cases
 - Manual GTA inspection for quality
- Submit to blackboard, 11:59 p.m. ????
 - What day should programming assignments be due?
A Study
The students in the first experiment who were asked to multitask [during lecture] averaged 11 per cent lower on their quiz.
The students in the second experiment who were surrounded by laptops scored 17 per cent lower.

Laptop use lowers student grades, experiment shows, The Canadian Press, 8-14-2013
Effective Procrastination

- Adam Grant: Can Slowing Down Help You Be More Creative?
 - Start something early (Milestones)
 - Then take a break
 - Then finish strong (Deadline)
- Tim Urban: What Happens In The Brain Of An Extreme Procrastinator?

Early

This is a perfect time to get some work done.

Nope!

Later...

AAAAAAAAAAHHH
HHHHHHHHHHHH
HHHHHHHHHHHHHH

This is a perfect time to get some work done.

Nope!

This is a perfect time to get some work done.

Nope!
Logistics

At Home

- Read Weiss Ch 1-4: Java Review
- Read Weiss Ch 5: Big-O
- Get your java environment set up

Goals Today

- More Course Mechanics
- Basic understanding of Big O and friends
- This Chapter 5 material