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Abstract— We propose a novel approach for multi-view object
detection in 3D scenes reconstructed from RGB-D sensor. We
utilize shape based representation using local shape context
descriptors along with the voting strategy which is supported by
unsupervised object proposals generated from 3D point cloud
data. Our algorithm starts with a single-view object detection
where object proposals generated in 3D space and combined
with object specific hypotheses generated by the voting strategy.
To tackle the multi-view setting the data association between
multiple views enabled view registration and 3D object propos-
als. The evidence from multiple views is combined in simple
bayesian setting. The approach is evaluated on the WRGB-D
Object datasets [1], [2] containing several classes of objects
in a table top setting. We evaluated our approach against
the other state-of-the-art methods and demonstrated superior
performance to the state-of-the-art on the same dataset.

I. INTRODUCTION

Object detection is a key ingredient of scene understanding
which is leveraged by other high-level service robotics tasks,
such as fetch and delivery of objects, object manipulation
and object search. While this problem is widely studied with
image only sensing modality, it has been demonstrated that
the availability of the depth information can be effectively
utilized to improve performance and the robustness of the
existing systems [2], [3]. The majority of the existing ap-
proaches use the traditional object detection and recognition
pipelines in the RGB-D setting treating the depth as an
additional channel. These include sliding window based
detectors [4], [5], [1] or methods based on local feature
descriptors [6], [7], [8], [9], [10]. The local descriptors,
which capture the local appearance or geometry statistics
of the objects are effective for situations with large amounts
of clutter and occlusion. In the proposed approach we utilize
local shape based descriptors extracted from image contours
and implicit shape models to generate the object hypotheses.
In the testing, the shape descriptors are extracted along depth
discontinuities which often coincide with the object bound-
aries. The voting stage is further supported by generation
of unsupervised object proposals, which are generated by
mean-shift clustering in 3D.
In the single-view object detection many of the misses
or false positives are often caused by occlusion or view-
dependent ambiguities which can be often resolved in a
multi-view detection settings. Towards this end we propose
to integrate the single view detections in the sequential
setting. Exploiting the fact that the views are registered
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Fig. 1: Brief overview of our approach. Our first step is the
extraction of the shape contexts (top left), followed by the
generation of the object proposals (top right). The hypotheses
created by our detectors (shown in green bounding boxes)
along with the votes and the proposals (shown in magenta
bounding boxes) are illustrated in the bottom left image. For
clarity, only the soda can detector is shown. Finally, after the
integration of all detectors and the multi-view information,
we get our final output (bottom right). The green bounding
boxes indicate correct detections and the yellow indicate
background.

together (poses of the cameras are known), we use the
projections of generated 3D object proposals and object
category hypotheses to the next view and combine it with the
single-view hypotheses to generate new predictions. Using
this simple data association method between the frames, the
class distribution is updated using a Bayesian update. In
summary:

• We show that unsupervised 3D object proposals support
the implicit shape models favorably, reducing the num-
ber of false positives in single-view object detection.
Experimental results corroborates this observation.

• We further show that the performance of object detec-
tion can be significantly improved by integrating the
evidence from multiple views

We validate our approach on the WRGB-D benchmark
dataset [1], [2] and experimentally achieve superior perfor-
mance.
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Fig. 2: Outline of our approach. Given the image frame I and the depth map D as input we first obtain the set of object
proposals O and apply the class-specific object detectors for all object categories [C1, ..., CN ]. For each category C we
obtain a set of hypotheses H where [H1, ...,HN ] is the set of all hypotheses from all object detectors. The hypotheses
scores are then normalized and associated with the object proposals to get the multi-class prediction O′ on the frame. Each
proposal in O′ now holds a probability distribution over the object categories. We then associate the proposals with the
object tracks T in the scene, and update the objects probability distribution using the history of observations in the tracks.

II. RELATED WORK

The problem of object detection and categorization has
been studied extensively both in RGB and RGB-D settings.
Here we briefly review the closest works to ours with respect
to object proposals, local shape descriptors, voting and multi-
view detection techniques. In an attempt to reduce the search
space of the traditional sliding window techniques such as
[11], [12], some recent works have concentrated in gener-
ating category-independent object proposals. These methods
usually start with bottom-up segmentation generating regions
which are likely belong to objects. Pre-trained classifiers are
then evaluated for these regions [13] or various matching and
clustering techniques are used to extract object models in an
unsupervised or weakly supervised manner [14]. In the table-
top RGB-D settings, Mishra et al. [15] uses object boundaries
to guide the detection of fixation points that denote the
presence of objects, while Karpathy et al. [16] performs
object discovery by ranking 3D mesh segments based on
objectness scores. Firman et al. [17] initially removes the
large planar regions in the image, groups pixels in the image
and 3D space, and then uses correlation clustering to discover
objects across different scenes. Triebel et al. [18] applies
graph-based clustering in geometric space and models the
interactions of the clusters through a CRF framework in
order to assign object labels. In our work, we exploit the
availability of 3D data and generate object proposals by
mean-shift clustering of 3D points and project them to the
respective views.
Object representations which use local features are one
of the most popular approaches in object detection and
recognition, due to their capability to deal with textured
household objects. Works of Collet et al. [6] and Tang et
al. [7] take advantage of SIFT’s discriminative nature and
use it to create 3D object representations during training. A
disadvantage of these descriptors is that they usually perform
poorly in the presence of non-textured objects. Since we
are interested in detecting both textured and non-textured

objects, we take advantage of objects’ shape properties as
encoded by the Shape Context [19] descriptor. A Shape
Context is defined as the concatenation of histograms of
quantized edge orientations around a reference point. Two
examples of Shape Contexts usage are Wang et al. [20] for
the detection of the pedestrians, cars, and bikes, and Teo et
al. [21] for estimating the pose of objects in cluttered RGB-
D settings. Given local features representations, one of the
common strategies for detection and localization of objects
in images is provided by Implicit Shape models [22] and
variations of these [20], [23], [24]. In these models local
features are augmented their coordinates relative to the center
of the object. During testing, matched codebook entries cast
probabilistic votes which lead to the formation of object
hypotheses. An issue with these works is that they have
to repeat the voting at several scales. We exploit the depth
information to avoid the voting at several scales and use
the object proposals to remove unwanted votes that generate
false positives.

In robotic settings, where the sensor has a capability
of moving, it is particularly attractive to consider multi-
view detection. Thomas et al. [25] learns a separate Implicit
shape model for each viewpoint which are connected with
correspondences so as to transfer information between the
views during detection. Similarly, Sun et al. [26] learns
a probabilistic model that establishes correspondences of
parts across a discretized set of viewpoints, for the goal
of 3D object categorization. Herbst et al. [27] creates 3D
reconstructions of scenes and discovers objects based on
appearance and 3D alignment-based matching from different
views. Pillai et al. [28] uses monocular SLAM on an RGB
video to reconstruct the scene which is then segmented
into smaller 3D point clouds. The projection of the 3D
point clouds on the video frames creates multi-view object
proposals. The single frame predictions are then aggregated
across the frames to produce their results. A problem with
this approach is that to get accurate object proposals the
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monocular SLAM has to run for a significant amount of
time on the video. In contrast, in our work we use depth
to generate object proposals in each frame and refine our
predictions online using sequential Bayesian update. Multi-
view object detection has also been used for other tasks such
as 3D scene labelling by Lai et al. [29], [2]. The goal of
labelling each 3D point in a scene is achieved by integrating
the class probabilities found by view-based detectors for each
corresponding pixel through an MRF framework.

III. APPROACH

We start first by excluding large planar surfaces from
RGB-D data, followed by 3D point clustering to generate
object proposals. We then sequentially apply class-specific
object detectors in order to generate a set of hypotheses
for each object category. The object models are trained
by collecting a set of local shape descriptors from the
training set images in uncluttered background. In the test
stage the object proposals guide the sampling of shape
descriptors and accepting the object’s hypotheses generated
by voting. The hypotheses scores are normalized across all
object categories to get class probability distribution and
are associated with the object proposals. To incorporate
multi-view information, for the next RGB-D frame previous
hypotheses are projected to the next frame and new
observations are used to update the distribution. Figure 2
shows an overview of our approach. We discuss in more
detail the object proposals generation in Section III-A,
the single-view object detection in Section III-B, and the
multi-view object detection in Section III-C.

A. Object Proposals Generation

In the table-top scenes, like the ones in WRGB-D Objects
Dataset [1], [2], small objects lie on top of the planar
surfaces. In order to identify these smaller objects, we use the
methods described in [30] to fit large planar surfaces aligned
with dominant orientations to 3D point clouds. The large
horizontal surfaces with normals oriented towards the gravity
direction are classified as the support surfaces and 3D points
belonging to any large surfaces (including support surfaces)
are not considered in the proposal generation stage. The
remaining 3D points are clustered using mean-shift clustering
[31], generating compact clusters of 3D points. Figure 3
shows examples of clusters in different colors in the image.

The clustering requires only a radius parameter that de-
fines the maximum euclidean distance between points to
be included in the neighbourhood. We change the radius
parameter for different RGB-D frames based on the median
depth value of the support surfaces. We then project the
clustered 3D points on the image space and divide them
to connected components to ensure continuity. We reject
some connected components that are too small and also
eliminate connected components that are further away from
the support surface by utilizing the distance of the centroid
of a connected component in 3D from the support surfaces.
The remaining connected components form our valid object

Fig. 3: Examples of our object proposals generation output.
The right column shows the segmentation masks of the
proposals for each frame shown on the left column.

proposals O = {o1, ..., oK} for a particular image. Each
object proposal ok = {pck,mk} is characterized by its 3D
point cloud pck and its segmentation mask mk in image
space.

B. Single-View Object Detection

In the training stage we collect a set of shape contexts
[20] for each object category from class-specific training
images (see Figure 5). The training images contain a single
instance of our object in a clear background along with the
segmentation mask. Descriptors are extracted on sampled
2D edge points. We utilize edges from both RGB as well
as depth channel. Depth edges are found using Canny edge
detector and are complemented using the boundaries found
by gPb detector [32] in the RGB image. Although there are
more recent edge detectors available [33], they are trained on
more generic scenes and as a result they are more sensitive
to texture.

We extract the shape contexts on our combined edge map
found from the RGB-D image. Training images are filtered
with the ground truth segmentation mask to ensure that only
edge points that belong to the object are used. The shape
context descriptor is defined by the following parameters: nθ,
nφ, and nr. Here, nθ is the number of orientations that the
edge map is divided, nφ is the number of angular bins, and
nr is the number of radial bins. For each edge orientation, a
histogram of nφ × nr dimensions is computed, producing a
total dimensionality of nθ×nφ×nr for each shape context.
In our case we used nθ = 4, nφ = 12, and nr = 3, resulting
in a 144 dimensional descriptor. In addition, r̂ is a vector
defining the extend of the radial bins in image space. We
refer to this parameter as the radius of shape context. An
example of shape context applied on a training image can be
seen in Figure 4a. Objects sizes vary in training images and
the shape context descriptor’s radius parameter needs to be
conformed to this size variance. We tackle this size variance
by determining the appropriate radius of the descriptor for
each object on an independent validation set.
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(a) (b) (c)

Fig. 4: Shape Context radius scaling. In the first row (a)
shows a shape context applied on a training image, (b) shows
a shape context with the same radius as (a) applied on a test
image, and (c) shows a shape context with a scaled radius
applied on the same location on the test image in (b). The
second row illustrates the corresponding histograms for a
single edge orientation. Note that the histogram in (c) is
more similar to the histogram in (a) than the one in (b),
which increases the likelihood of matching during detection.
Figure is best viewed in color.

Fig. 5: The first row presents an example of our RGB-D
test input, where the second row presents an example of an
object training image with its provided segmentation mask.

Each feature fi = (d̂i, q̂i) of a 2D point i in the image
space is defined by the shape context vector d̂i and the
2D vector q̂i that denotes the relative position of point i
towards the center of the object. The set of features F =
{f1, f2, ..., fn} extracted from training images of a particular
object category represents the implicit shape model for the
current object class.

Sampling for local descriptors during testing: Test
images contain multiple-object instances besides background
(see Figure 5) unlike training images that each consists of a
single object of interest. Instead of dense sampling of edge
points from the entire image (Figure 6a), we utilize the set
O = {o1, ..., oK} of generated object proposals described
in Section III-A of the test image to guide the descriptor
sampling. Each object proposal comes with a segmentation
mask in the image. We define the set of segmentation masks
for the object proposals to be the set {m1, ...,mK}. We
synthesize the sampling area M simply by taking the union

of all segmentation masks of object proposals:

M =

K⋃
k=1

mk (1)

Area M in Figure 6b is the union of all coloured segmen-
tation masks and this area is then used to filter the edge
map from which we will extract our descriptors (Figure
6c). This does not only reduce the amount of descriptors
but also removes edge points corresponding to background,
which would otherwise serve as noise in the calculation
of the shape contexts. Finally, we uniformly sample from
the remaining edge points. We follow the same edge-map
generation strategy as in our training step.

Objects in test images can have large scale variation
compared to training images, which could lead to very
different shape context representations. We avoid this by
scaling the radius of the shape context using Equation 2,
where r̂t is the radius used in training, zt is the median
depth of the object in the training images, z is the sampled
depth from the test image, and r̂ is the scaled radius:

r̂ =
r̂tzt
z

(2)

Figure 4 illustrates an example where the scaling of the shape
context radius helps the detection of a soda can.

Hypotheses Generation: Each descriptor extracted from
the test image at location l is compared to all shape context
vectors {d̂i} from the training set F using the χ2 distance
and the K best matches are chosen. For each match, the
relative position towards the center of the object in the
training image q̂i is used to cast a vote on the test image
making a prediction about the object’s center (see Figure 6d).
Each vote is weighted using the matching score, accumulated
at each location and are smoothed with a Gaussian kernel to
create the heat map shown in Figure 6e. To adjust the scale
difference that might occur, we scale q̂i using Equation 3:

q̂ =
q̂iz

zl
(3)

where z is the median depth of the training image where fi
was extracted from, zl is the sampled depth from location
l, and q̂ is the scaled relative position vector. We show the
new vectors in Figure 6f. We prune the votes for which their
location li and li + q̂i lie on different object proposals:

votei =

{
1 li ∈ mk1, li + q̂i ∈ mk2, k1 = k2
0 otherwise

(4)

where votei is a variable indicating the validity of each
vote. We consider a vote’s position to be valid when it is
towards the object center. Figure 6g shows the overlap of
the votes with the proposal masks, Figure 6h presents the
votes that survive the pruning, and Figure 6i illustrates the
updated heat map. Local maxima in the updated heat map
give the locations of the hypotheses with a certain score.
We finally form the set of hypotheses H = {h1, h2, ..., hJ}.
Each hypothesis consists of hj = (xj , sj , vj). Here xj is the
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(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 6: Class specific object detection example where the object of interest is the cereal box. (a) depicts the initial sampling
points from the test image which is then filtered (c) using the segmentation masks of the object proposals (b). We show the
RGB image instead of the edge map for clarity. Votes cast after matching are shown in (d) and the resulting heat map is
illustrated in (e). In (f) we scale the relative position of each vote qi in order to adjust for the depth difference from the
training images. (g) shows the overlay of the votes with the object proposals which we use to prune votes following equation
4. The remaining votes and their resulting heat map are depicted in (h) and (i) respectively. Notice the difference between
the heat maps of (e) and (i). In (i) the object of interest is better localized with fewer wrong local minimums overall in the
map. Finally, (j), (k), and (l) present the generated hypotheses, the verification of the hypotheses using the object proposals,
and the remaining hypothesis respectively. The hypotheses are shown in green bounding boxes, and the object proposals in
magenta. Figure is best viewed in color.

location of the hypothesis, sj is the score, and vj is the list
of votes that contributed to the hypothesis. Figure 6j presents
the formed hypotheses.

Verification using object proposals.: Given the set of
hypotheses we want to keep those that most likely enclose
an object. For each hypothesis we find the closest object
proposal based on the overlapping area between the bounding
box of the hypothesis BBh and the bounding box of the
object proposal BBo. The overlap is calculated as the in-
tersection over union: IOU = area(BBh∩BBo)

area(BBh∪BBo)
. Hypotheses

with IOU < 0.5 with their closest object proposal and with
very small score are pruned. Figure 6k shows the hypotheses
overlaid on the object proposals, while Figure 6l depicts the
surviving hypothesis after verification.

Score normalization and multi-class prediction: Given
the hypotheses generated from each class-specific object
detector, we combine their responses to get a multi-class
prediction over the objects in each frame. The score of each
hypothesis depends on the number and the quality of its
votes and depends on the size of the object. Each object

model produces a different range of scores since each object
category varies in size. In order to normalize the scores
across all object categories, we get a distribution of the
number of edge points for each category from the training
images and normalize the scores as follows:

sncj =
scj − µc

σc
(5)

where scj is the score of the j hypothesis for category
c, and µc and σc are the mean and standard deviation
respectively of the aforementioned distribution for category
c. We then associate all hypotheses from all detectors with
their closest object proposal in order to get a score for
each proposal for each category. The proposal’s label is
determined by the category who has the highest normalized
score. Proposals that are not associated with any hypotheses
are labelled as background. For a single frame, each object
proposal’s ok = {pck,mk, wk, yk} definition is now aug-
mented with wk which is the normalized score distribution
over the object categories, and yk which is the predicted
category label. The evaluation of this single view strategy
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is described in the experiments section, where we compare
against sliding window techniques [7] and show superior
performance.

C. Multi-view Object Detection

In the robotic setting we often have multiple viewpoints
available as the robots move around. Our multi-view object
detection approach consists of a data association step, where
we link object proposals along the frame sequence into
tracks, and a prediction refinement step where we update
the probability distribution over the classes for each object
proposal using Bayesian update rule. Given a sequence of
N -frames in a video sequence, there are |T | object-tracks
each representing an object in the entire sequence.

We follow a greedy approach to create tracks of object
proposals across the video sequence. We assume the first
frame of the sequence to be the reference frame, and initialize
a new track for each of its object proposals. When a new
frame is observed, the 3D centroid of each object proposal
is transformed to the new frame and associated with the
closest 3D centroid in the reference frame. We do not accept
associations when the distance between the 3D centroids is
more than a small threshold. If an object proposal cannot be
associated with any proposal in the reference frame, then a
new track is initialized. Each track t will consist of a set
of object proposals from different frames over the whole
sequence.

Class distribution update: For each proposal o in a
single-view frame, we normalize its score distribution to
get the probability distribution p(y). y is a random variable
corresponding to proposal o defined over the category labels.
We keep a probability distribution p(Ct) for each track t,
where Ct is a random variable associated with track t and it
is defined over the object category labels. We begin with a
uniform distribution for p(Ct), and when a new proposal is
associated to the track, we update p(Ct) given the history of
the predictions of the proposals {y1, y2, ..., yn} using Bayes
rule:

p(Ct|y1:n) =
p(yn|Ct, y1:n−1)p(Ct|y1:n−1)

p(yn|y1:n−1)

=
p(yn|Ct)p(Ct|y1:n−1)

p(yn|y1:n−1)

(6)

where y1:n is a short-hand notation for {y1, y2, ..., yn}.
We use the first order Markov assumption and assume
that p(yn|Ct, y1:n−1) = p(yn|Ct). In other words, we are
computing the label Ct of the track t given the history
of the detections up to the current frame. For the term
p(yn|Ct) we use the probability distribution p(y) of the as-
sociated proposal computed in the single-view frame n, and
p(yn|y1:n−1) =

∑
Ct

p(yn|Ct)p(Ct|y1:n−1) is the normalizing

factor. We decide on the track category label that maximizes
the posterior probability distribution p(Ct), and assign this
label to all relevant views of the track.

Fig. 7: Precision-recall curves for class-specific object detec-
tion obtained on the WRGB-D v1 scenes Dataset [1].

IV. EXPERIMENTS

We evaluate our approach on the WRGB-D Object and
Scenes Datasets: v1 [1] and v2 [2]. The WRGB-D v1 is
divided in two parts. The first contains cropped images of
300 instances of objects of 51 categories, and the second
is comprised of eight video scene sequences that contain
some of these object instances seen from various viewpoints
and with a considerable amount of occlusion. Recently,
the second version of this dataset (v2) [2] was released
containing fourteen larger video scenes, which offer more
variability on the amount of viewpoints. We use the cropped
images for our training, and evaluate on the video scenes.

We perform three experiments. Class-specific object de-
tection is evaluated on scenes from v1, while single-view
multi-class, and multi-view object detection are evaluated on
v2 scenes. In all experiments we subsample the videos and
run the detection on every 5th frame. In the experiment on
the v1 scenes the objects of interest are bowl, cap, cereal
box, coffee mug, soda can, and flashlight. In v2 scenes we
use the same set of objects except flashlight since it is not
present. The evaluation is being done at the bounding box
level and more specifically we count as a true positive a
bounding box with an Intersection over Union (IOU) larger
than 0.5 with the ground truth.

Class-specific object detection: We evaluate each object
detector individually on the v1 scenes and calculate their
Average Precision (AP) as described in [35] at the level of
object categories. We compare to two other methods which
consist of sliding window detectors, and present superior
performance in almost all categories. Figure 7 presents
the precision-recall curves for each object category, while
Table I shows the average precision comparison with the
other methods. On average we achieve 9.5% increase in
performance when compared to the Tang et al. [7] methods.

Single-view multi-class detection: Here we evaluate
our multi-class predictions on individual frames. Using the
hypotheses generated from the class-specific detectors we
decide on a class label for each of our object proposals. We
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Bowl Cap Cereal Box Coffee Mug Soda Can Flashlight Average
Tang et al. [34](HOG) 51.6 33.3 21.4 54.1 71.0 32.1 43.9
Tang et al. [34](HH) 71.6 71.4 50.0 61.8 60.6 44.4 60.0

Ours 75.1 74.5 61.2 62.8 69.5 73.6 69.5

TABLE I: Illustration of class-specific object detection results obtained on the WRGB-D v1 scenes Dataset [1]. Comparison
of Average Precision (%) for each object category and the average over all classes. HH is the combination of HOG and
HONV, the feature that is introduced in [34].

Fig. 8: A qualitative comparison between single-view and multi-view detections. The top row shows single-view detections
while the bottom row shows multi-view detections for the same frames. The green bounding boxes signify correct detections,
the yellow signify correctly identified background, the cyan signify missed detections, and the red signify false detections.
Notice that in the single-view examples we have missing and false detections which are recovered and fixed respectively
in the multi-view approach. For example, in the single-view detection of the first column, the bowl is missed, the cap is
mislabelled, and two background hypotheses are labelled as objects. These incorrect detections are resolved in the multi-view
detection. Figure is best viewed in color.

Bowl Cap Cereal Box Coffee Mug Soda Can Background Average
Single-View

Pillai et al. [28] 88.6/71.6 85.2/62.0 83.8/75.4 70.8/50.8 78.3/42.0 95.0/90.0 81.5/59.4
Ours 70.7/56.8 87.2/49.0 84.6/83.3 83.7/34.3 85.6/55.6 89.0/98.1 83.5/62.8

Multi-View
Pillai et al. [28] 88.7/70.2 89.4/72.0 95.6/84.3 80.1/64.1 89.1/75.6 96.6/96.8 89.8/72.0

Ours 92.7/89.8 96.9/81.0 87.4/97.8 88.4/87.0 86.7/84.2 97.3/98.0 91.6/89.6

TABLE II: Precision/recall (%) results for single-view multi-class and multi-view detections run on the WRGB-D v2 [2]
scene dataset. We compare against [28] who does not exploit the depth channel and uses object proposals generated from
a reconstructed scene rather than a single frame. We show superior average results in both single-view and multi-view
detections.

used an empirical threshold to discard low scoring predic-
tions and report precision/recall for each object category in
rows 2, 3, and 4 of Table II. We compare our results to the
state-of-the-art Pillai et al. [28] and achieve higher average
performance, with an increase of 2% in precision and 3.4%
in recall. Examples of single-view multi-class detections are
illustrated in Figure 8.

Multi-view Object Detection: Finally, we investigate the
performance of the multi-view object detection approach on
the WRGB-D v2 scenes dataset [2]. In order to perform the

data association step, we use the ground truth poses provided
by the dataset. In an on-line settings this can be done by
estimating the relative poses between the views using one of
the state-of-the-art methods. The consistency of our object
proposals from frame-to-frame allows for the creation of long
tracks throughout the scene. We consider a track to be valid
if it is present at least in 60% of the total number of frames
in each scene.

Using the probability distribution over the categories
for each proposal obtained from our single-view multi-
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class detection, we refine our predictions through sequential
Bayesian estimation as discussed in section III-C. We com-
pare our results to the state-of-the-art Pillai et al. [28] which
in contrast to our work, simply aggregates the detector’s
responses over multiple frames to make a prediction. We
present superior results in rows 5, 6, and 7 of Table II in
almost all object categories and overall, with an increase of
1.8% in precision, and 17.6% in recall. We also notice a
high increase in performance compared to the single-view
detections. Missing detections in the single-view approach
can be recovered from the history of previous observations,
and similarly false detections get discarder. Figure 8 qualita-
tively compares single-view with multi-view detections and
illustrates the strength of the latter over the former.

V. CONCLUSIONS
We have demonstrated a novel approach for multi-view

object detection in RGB-D table-top settings. Our approach
adopts a shape-based representation with a voting strategy to
generate object hypotheses. We showed that in a single-view
object detection many of the false-positive hypotheses by can
be reduced by 3D object proposals generated from 3D point
clouds using mean-shift clustering. We also demonstrated
that the evidence from multiple views can further improve the
object detection’s performance. Our method achieves state-
of-the-art performance in multi-view object detection on the
WRGB-D scenes datasets. In the future we plan to take
advantage of our multi-view detection strategy and 3D object
proposals to facilitate the task of 3D point labelling of re-
constructed scenes. In addition, more extensive experiments
with a larger number of object categories in complex scenes
will be conducted.
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