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Abstract— The localization capability is central to basic naviga-
tion tasks and motivates development of various visual navigation
systems. In this paper we describe a two stage approach for local-
ization in indoor environments. In the first stage, the environment
is partitioned into several locations, each characterized by a set
of scale-invariant keypoints and their associated descriptors. In
the second stage the keypoints of the query view are integrated
probabilistically yielding an estimate of most likely location.

The novelty of our approach is in the selection of discriminative
features, best suited for characterizing individual locations. We
demonstrate that high location recognition rate is maintained
with only 10% of the originally detected features, yielding a
substantial speedup in recognition and capability of handling
larger environments. The ambiguities due to the self-similarity
and dynamic changes in the environment are resolved by exploit-
ing spatial relationships between locations captured by Hidden
Markov Model.

I. INTRODUCTION

The problem of localization is of interest in several applica-
tions including augmentation of human navigation capabilities
and mobile robot localization. Two main variations of the
localization problem have long been established in the robotics
community and are known as global localization (also known
as robot kidnapping problem) and pose maintenance. In this
paper we will focus on the global localization aspect and
demonstrate how to solve it by means of location recognition.

A. Related Work

Due to the different nature of the location recognition task
compared to object recognition , several representations of
locations were proposed in the past. Previously proposed
approaches frequently used local image features and their
descriptors for location representation, which were invariant
to affine transformations or rotationts [1], [2] or local Fourier
transforms of salient image regions [3]. Due to the locality
of these image features, the recognition can naturally handle
large amounts of clutter and occlusions. The sparser set of
descriptors can be obtained by principal component analysis or
various clustering techniques. Several instances of pose main-
tenance and acquisition of metric environment models have
been successfully solved in smaller scale environments [4],
[5]. The applicability of these methods to large dynamically
changing environment poses additional challenges and calls
for alternative models.

B. Approach Overview

We propose to tackle the location recognition and localiza-
tion problem by using a model of the environment represented
by a set of locations and spatial relationships between them.
Each location is represented by a set of views and their
associated local scale invariant features. We present a novel
technique for identifying most discriminative features for
individual locations reducing the feature database to 10% of
its original size, without forgoing the recognition accuracy.
An associated likelihood model characterizing each location
is then used in the Hidden Markov Model framework which
enables us to resolve misclassification due to the self-similarity
and dynamic changes in the environment. Once the most likely
location is determined we can compute the relative pose of the
camera, with respect to the reference view. We will report on
the localization experiments in indoor environment with 18
locations.

II. LOCATION REPRESENTATION

As a starting point of our method, we use the environment
model obtained in the exploration stage. Given a temporally
sub-sampled sequence acquired during the exploration, the
sequence is partitioned into N = 18 different locations. The
locations in our model correspond to hallways, sections of
corridors and meeting rooms approached at different headings.
The initial model was obtained by a mobile robot, which was
guided through the environment. The number of views per
location vary between 5 to 20 depending on the appearance
variation within the location. The transitions between the
locations occur either at places where navigation decisions
have to be made or when the appearance of the environment
changes suddenly. The images were taken approximately every
2-3 meters. The representative views of some locations in
Figure 1 demonstrate the variability of our dataset. More
details about the model acquisition stage can be found in [6].

Individual locations are represented by scale-invariant
(SIFT) keypoints described in [1]. The SIFT features repre-
sent distinguishable image locations, which are stable across
variations in scale. Each feature is endowed with a 128 dimen-
sional descriptor, which captures the orientation information
of local image region centered at each keypoint, is rotationally
invariant and has been shown to be robust with respect to large
variations in viewpoint and scale.



Fig. 1. Examples of representative views of 6 out of 18 locations.

Figure 2 shows the features detected in one of the represen-
tative views of Location 1. The number of features detected
in each image varies from hundreds to thousands. Despite the
large overlap between consecutive views, only a small number
of features detected in consecutive views are matched. Some
features have better capability to handle variations in scale
and viewpoint and match stably in several different views
of the same location. Selecting such features can keep the
environment model more compact and save the computational
cost for future localization. This observation brings to forefront

Location 1

Fig. 2. 700 SIFT features detected in the representative view of Location 1.

the issue of feature selection in the model acquisition stage.

A. Feature Selection

Previously proposed techniques for reducing the feature
pool include k-means clustering, greedy techniques or boosting
[71, [8], [9], [10]. Questions focusing on the model com-
pactness [11] as well as trade-off between the complexity
of features and the complexity of classifiers were explored
in [12]. In [11] authors estimate the posterior of each feature

with respect to each object and the Shannon entropy is
used to select the discriminative regions. Our method for
feature selection is similar to the method proposed by [11]
but with a different selection criterion. Suppose location L;
has N, training images with total K; of detected features
G; = {9} }x=1...k,. To obtain the information content of each
feature g with respect to location identification, we need
to estimate the posterior probability P(L;|gi),l = 1---N.
The posterior probability at feature g, is estimated using only
features g; inside a Parzen window of a local neighborhood
Z = {gj| ll9i — gjll < €,j = 1---z}, where € determines
the size of the window. We weight the contribution of specific
feature gé in Z (labeled by location L;), which should increase
the posterior estimate P(L;|gj,), by a Gaussian kernel function
N(p,0) in order to favor the features with smaller distance to
the feature g, with 4 = g} and o = ¢/2.5. Then the posterior
probability at feature g! is estimated as
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After the posterior probabilities of all features are obtained,
we could proceed by calculating the information entropy of
each feature and use it in the selection process. In our data set,
however, each location has different number of training images
and the number of features detected in each image varies
largely as it can be seen in Figure 2c. If one location [ has few
features detected and the Parzen window size is not accurate,
even though a good feature gf6 has a large posterior probability
P(Ly|g}), it may also have a large posterior probability with
respect to another class P(Ly,|gt), because location m has
large number of detected features. The posterior probability
estimates will hence be biased and the entropy will not
successfully capture the right information content.

Due to this reason we use directly the estimate of P(L;|gl)
in each image for ranking the features based on their dis-
crimination capability. The number of features we keep is
specified as a percentage 7 of detected features. For a training
image from location L; with M, features detected, only top
max(M;n, No) features are selected based on their posterior
P(Ly|gi) ranking. Ny is the minimal number of features
selected to avoid discarding too many features from the images
of locations with few detected features. Because we select
the features based on the rank of their posterior, the feature
with high rank of posterior with respect to location L; may
also have large posterior with respect to another location
L;. That feature can be shared by several locations and can
distinguish them from others. At the same time it can introduce
ambiguities in discriminating locations. Currently, instead of
fully exploiting the shared features, we properly account for
their contribution in the feature matching stage.

In our data set, there are 296 training images for 18 locations
with 112,705 detected features. We chose = 10% and Ny =
50 to select features from each image. Each feature has the
location (z,y), a scale s, an orientation and a 128 dimensional
descriptor. Figure 3 shows the total number of detected SIFT
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Fig. 3. a) The total of 480 features detected in one of the representative
views of the location and b) 50 informative features selected by our method.

Location 1

Location 3

Location 10

Fig. 4. The top 16 features selected for three of the locations.

features and the informative features selected in the image
by our method. The features belonging to posters have good
discrimination capability. Figure 4 shows the top 16 selected
features for different locations. Each feature is cropped from
the training image centered at (z,y) with radius r = 6 X s,
where s is the scale of the SIFT feature. The patches are
normalized to 64 x 64.

Note that the selected features often have large scale and
capture the global information about individual locations. For
example for Location 1, which has large depth variation some
the selected discriminative features are centered in the middle
of the corridor and entail the entire view of the corridor. This
also demonstrates that the suitable choice of the representation
for a location varies largely and for certain locations the global
descriptors are indeed highly discriminative. Figure 5 shows
some examples of discarded features. For example features
belonging to the ceiling lights are discarded except when the
feature contains multiple lights.

III. REDUCED FEATURE SET MATCHING

In order to demonstrate the feature selection process is
effective, we compare the performance of location recogni-
tion using the reduced feature set, with the standard voting
approach which uses all features. In this experiment the i-th
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Fig. 5. The features discarded in the selection.

sequence (# of frames) | original set | reduced set
No.1 (296) 100.0% 98.0%
No.2 (134) 82.1% 79.9%
No.3 (130) 83.1% 73.9%
TABLE I

RECOGNITION PERFORMANCE IN TERM OF PERCENTAGE OF CORRECT
LOCALIZATION USING VOTING SCHEME.

location is represented by a number of representative views
{I}} and their associated original and reduced SIFT feature
sets {gr(1})} and {gr(I})}. For a new query image @ and
its associated features {g,?}, a set of matches between ) and

each model view IJ@ is determined by matching each feature

in { gg} against the model database features and choosing the

nearest neighbor based on the Euclidean distance between two
descriptors. As suggested in [1] only the point matches whose
nearest neighbor is at least 0.6 times closer than the second
nearest neighbor are considered. The model view Ij’: with the
highest number of matched keypoints with () is considered to
be the correct result. To evaluate the proposed feature selection
mechanism we compare the recognition performance using
the model database of all detected features {gi(I})} and the
reduced feature set {g(/;)}.

Table I shows the recognition rates for the training sequence
and two test sequences using the original and reduced feature
set, respectively. The results are reported on the training
sequence of 296 images from which the model views and
features were selected and two test sequences of 134 and 130
images. The two test sequences, taken at different days and
times of day, exhibit larger deviation from the path traversed
during the training and several locations underwent dynamic
changes which changed their appearance. In few instances the
reduced features yields correct recognition, while the wrong
decision was made using the original feature set (see Figure 6).
Relatively poor performance on the test sequences was due to
several changes in the environment between the training and
testing stage as demonstrated in Figure 8. Most SIFT features
belong to objects some of which are not inherent to particular
locations. In the next section we describe how to replace the
voting scheme by a simple probabilistic model and propose
how to resolve the remaining issues by explicitly modeling
spatial neighborhood relationships between individual loca-
tions.



Fig. 6. Selected features yield better matches than original feature set. a)
the misclassification using original set b) correct recognition with one false
match using the reduced set.

IV. PROBABILISTIC LOCATION RECOGNITION

The results of voting approach described in the previous
section demonstrate that the feature selection is very effec-
tive. The misclassified locations are often due to the self-
similarity of the environment (e.g. similarity of the appearance
of corridors or hallways belonging to different locations),
large changes in the pose between the query view and model
views or dynamic environment changes. The classification
performance can be improved by either exploiting more elab-
orate recognition scheme or additional information about the
environment which would help to reduce the ambiguities due
to the self-similarity of the environment. In the following
section we demonstrate how to improve the classification
by formulating the location recognition probabilistically and
by exploiting the spatial relationships between the locations
modeled by Hidden Markov Model.

The probabilistic formulation of the classification prediction
entails computation of the posterior probability P(L;|{ ng}) of
each location given the selected features from the query view.
Such computation requires likelihood model for the matched
features, which explicitly accounts for the quality of individual
matches and hence is expected to be superior to the simple
voting approach. The likelihood model can then be naturally
used in the Hidden Markov Model (HMM) to achieve more
reliable and robust system.

When local descriptors are used as observations, several
models of class posteriors have been proposed in the context of
probabilistic approaches to object recognition [13], [14]. The
proposed likelihood models account for the feature density and
spatial relationships between features and have been shown
to improve overall recognition rate. Those approaches use
very complex parametric model and need large number of
training examples to learn its parameters. Furthermore the
location recognition problem is notably simpler then the object
recognition problem due to the background clutter not being

so prominent !. We propose a non-parametric method to
estimate the P(Ll|{g,§2}) from training data directly without
modeling the decision function. The essential features of this
probabilistic method, which we describe next, is the selection
of relevant features in the matching stage and integration of
the evidence they provide for individual locations through a
strangeness measure. As the result of the feature selection
stage the features from the representative views of location
i are joined to form a model of that location denoted by
G; = {g.}. Given the query image @ with detected features
{gg} in order to determine most probable location, we need
to compute the posterior probabilities P(L;|Q) = P(L;|{ ng})
for! =1--- N. Similarly as in the model building stage, many
features in {g,?} are not informative and have no evidence
for classification label. They may confuse the prediction if
such features are considered during prediction, especially
when cluttered background is present. We need to select
good and relevant features from {g,?} for estimation of the
posterior. The selection criterion not only gives the number
of matched features, but also yields the confidence of the
match. The procedure is based on the hypothesis test. Given
a set of features in the query image {g,?}, we first define the
so called strangeness parameter «i, which characterizes the
discrimination capability of k-th feature, with respect to i-th
location

ming ca. (98 = 951)

min, 1. (192 — 9,1
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0‘2 is the ratio of minimal intra-distance within the class
and minimal inter-distance to features from other classes. If
oz}lC is greater than 1, the feature ng is not contributing to
classification of () as label L;. The smaller the oz}lc is, the more
discriminative is the feature for the purpose of classifying @
as i-th location. If g7 = argming;ec; ( |g,§2 —g;l|) is a shared
feature among a set of locations .S, the strangeness is very
close to 1. Since we want the shared features to be considered,
in the selection stage the strangeness of the shared feature g,?
with putative label [ is re-computed as follows

L minge, (162 - gl)
ol = — 5 . 3)
mlngj¢él/\gj¢éies(||gk: _gJH)

Hence in the case of shared features we do not consider the
inter-distance from the features in shared locations ¢ € .S in
this special case. The shared features can help to distinguish
the location subset S from other locations but are useless for
discriminating the locations in subset S. The computation of
a-values has the same computational complexity as the nearest
neighbor ratio computation in the standard voting scheme.
For the computation of the likelihood P({g,?}|Ll) we select
only top R features from the query image, ranked by their
strangeness, under current hypothesis test. Note that don’t
consider the features who have strangeness measure O‘i > 1.

I'The probabilistic models used in the object recognition, must also account
for the fact that large number of detected features comes from background
and not the object.



Sequence Maximal Likelihood HMM
(# of frames)
No.1(296) 99.0% 100.0%
No.2(134) 85.8% 95.5%
No.3(130) 80.8% 95.4%
TABLE II

RECOGNITION PERFORMANCE IN TERMS OF PERCENTAGE OF CORRECT
LOCALIZATIONS BASED ON «-VALUES.

The likelihood of feature g,? has the putative label L; is
defined as
12

P(g%|Ly) %). )

Since we do not know how many features belong to location
L; among top R features, we need to integrate the evidence
over all possible hypotheses. A hypothesis in our case indicates
that a subset h; # () of top R features is classified as
location L;. Assuming the selected features are independent,
we can now compute the probability of a single hypothesis h;
conditioned on location L;

m L) H( — P(a

P(hj|L) HP

Index m ranges over features which belong to location [ with

certain probability, n ranges over features which do not belong
to location L;, where m + n = R is the number of selected
features, i.e. the length of a hypothesis. Then the probability
P(L”{g,?}) can be computed as

= Pag|L) = exp(-

L)) ()

g7 L) ZHP (a1 L) H( — P(cd|Ly)).  (6)
It can be snnphﬁed to
R NE
PNy =1- J[0—emn(-55). @
k=1

In our experiments we use o = 1/3. Assuming the location
prior is uniform and R = 10, we tested the training and two
test sequences again using the above maximum likelihood
criterion. The recognition rates are shown in Table II. The
performance is very close to the one using the original training
feature set while reducing the matching computational cost
by about 90%. If we consider the informative factor of each
training feature and can reliably estimate their likelihood, we
can estimate the posterior by

P(Lil{gP}) oc P(L)(1 = [[ (1 = P(gilLo)eap(-555)), @)

o
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where g; = argmingjegl(ﬂg,? — gj||) is the feature from
location [ matched with g,?. In our method, the minimal num-
ber of features selected Ny in each representative view is an
important parameter to make the feature selection reliable. We
vary Ny from 20 to 70 and test the recognition performance
again. The recognition rates will be almost constant after [Ny is

greater than 60, which means using more features helps little
in increasing the performance.

A. Exploiting Neighborhood Relationships

We propose further to deal with the dynamic changes in
the environment by incorporating additional knowledge about
neighborhood relationships between individual locations. The
rationale behind this choice is, that despite the presence of
ambiguities in recognition of individual views the temporal
context should be instrumental in resolving them. The tempo-
ral context is determined by spatial relationships between in-
dividual locations and is modeled by a Hidden Markov Model
(HMM). In this model the states correspond to individual loca-
tions and the transition function determines the probability of
transition from one state to another. We have already explored
the use of this representation using original feature set and
slightly different likelihood function [6]. Since the locations
cannot be observed directly, each location is characterized by
the location observation likelihood P(o¢|L; = L;),l=1---N
at time ¢ during the exploration. The most likely location is at
each instance of time obtained by maximizing the conditional
probability P(L; = L;|o1.+) of being at time ¢ and location
L; given the available observations up to time t. The location
likelihood can be estimated recursively using the following
formula

P(Lt = Ll|01:t) X P(0t|Lt = Ll|01:t71) ®

where P(o;|L; = L;) is the observation likelihood, character-
izing how likely is the observation o; at time ¢ to come from
location L;. The conditional probability P(o¢|L; = L;) that
cglery image (J; at time ¢ characterized by an observation
'} comes from the location [ is simply the likelihood

= L;)P(L,

({g,C *} Ly = L;) introduced in Equation IV
P(o|Ly = Ly) o 1 — ,}1(1 - ea:p(—g» (10)

The second term of equation (9) can be further decomposed to
explicitly incorporate the location neighborhood relationships

N
= ZA(M)P

where N is the total number of locations and A is a N x N
matrix, where A(i,j) = P(L; = L;|Ly = Lj) is the
probability of two locations being adjacent. In the presence
of a transition between two locations the corresponding entry
of A was assigned a unit value and in the final stage all the
rows of the matrix were normalized.

The results of location recognition employing this model are
in Figure 7. For each frame of two test sequences, Figure 7
shows the location label which had the highest probability. The
recognition rate with HMM for sequence 1 was 95.5% and for
sequence 2 it was 95.4%. While in both cases some images
were misclassified the overall recognition rates are a great
improvement compared to the rates of single view location
recognition. The dynamic changes, which make the single

P(Ly = Lj|o1:4—1) (Li—1 = Ljlo14-1), (11)
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Fig. 7. Classification results with for Test Sequence 1 and Sequence 2
with (bottom row) and without (top row) considering the spatial relationships
modeled by HMM. The black circles correspond to the location labels assigned
to individual frames of the video sequence.

b) Li5 test

Fig. 8. Appearance changes of location 15 between training and testing.
There is no chair and the door is closed in the training view. The posters on
the board are different between training and testing.

a) L5 training

view recognition fail are resolved successfully using HMM
model. Figure 8 shows the example of dynamic changes. De-
spite some classification errors in test sequences, the order of
visited locations was correctly determined. For test sequence
2, where we exhibited some intentional deviations between
the path taken during training and testing, the classification
of frames 69-70 as location 14 is incorrect (Figure 7d) .
The effect of HMM model can be examined by making
all the probabilities in the transition matrix A uniform and
essentially neglecting the knowledge of location neighborhood
relationships. For comparison this is depicted in Figure 7a
and 7b. Once the most likely location has been determined,
we can estimate the relative pose of the camera with respect
to the most likely representative view. This can be done by
exploiting geometric relationship between two views captured
by epipolar geometry. The detailed description of this stage in
the context of the proposed application can be found in our
earlier work [6].

V. SUMMARY AND CONCLUSIONS

We have demonstrated an approach for location recogni-
tion in indoor office like environments. The model of the
environment is partitioned to individual locations and neigh-
borhood relationships between them in the exploration stage.
The individual locations were represented by SIFT features
and location recognition was approached by feature matching
between query and model views. We have presented a novel
feature selection strategy, which exploited local information
content and discriminability of the individual features and
their associated descriptors. We have shown that by reducing
the feature pool to 10% of the original size, we can achieve
comparable performance to methods which use the original
feature set. Further improvements were demonstrated by in-
terpreting the quality of the features matches probabilistically
and by endowing the environment with the HMM structure
which exploits spatial relationships between locations. We are
currently evaluating the effectiveness of the feature selection
strategy in the context of other object and category recognition
data sets.
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