Binary Image Analysis
Jana Kosecka
http://cs.gmu.edu/~kosecka/cs482.html
cs482, Jana Kosecka

Object extraction from binary images connected components

- Definition: Given a pixel (i, j) its 4-neighbors are the points $\left(i^{\prime}, j^{\prime}\right)$ such that $\left|i-i i^{\prime}\right|+\left|j-j j^{\prime}\right|=1$
- the 4-neighbors are ($i \pm i, j$) and ($\mathrm{i}, \mathrm{j} \pm 1$)
- Definition: Given a pixel (i, j) its 8 neighbors are the points (i^{\prime}, j^{\prime}) such that max $\left(\left|i-i^{\prime}\right|,\left|j-j^{\prime}\right|\right)=1$
- the 8 - neighbors are ($i, j \pm 1$),
 ($i \pm 1, j$) and ($i \pm 1, j \pm 1$)

Adjacency

- Definition: Given two disjoint sets of pixels, A and B, A is 4-(8) adjacent to B is there is a pixel in A that is a 4-(8) neighbor of a pixel in B

Connected components

- Definition: A 4-(8)path from pixel $\left(i_{0}, j_{0}\right)$ to $\left(i_{n}, j_{n}\right)$ is a sequence of pixels $\left(i_{0}, j_{0}\right)\left(i_{1}, j_{1}\right)\left(i_{2}, j_{2}\right), \ldots\left(i_{n}, j_{n}\right)$ such that (i_{k}, j_{k}) is a 4-(8) neighbor of (i_{k+1}, j_{k+1}), for $k=0, \ldots, n-1$
$\left(\mathrm{i}_{0}, \mathrm{j}_{0}\right)$$\left(\mathrm{i}_{0}, \mathrm{j}_{0}\right) \square$

Every 4-path is an 8-path!
CS482, Jana Kosecka

Connected components

- Definition: Given a binary image, B, the set of all 1 's is called the foreground and is denoted by S
- Definition: Given a pixel p in S, p is 4-(8) connected to q in S if there is a path from p to q consisting only of points from S.
- The relation "is-connected-to" is an equivalence relation
- Reflexive - p is connected to itself by a path of length 0
- Symmetric - if p is connected to q, then q is connected to p by the reverse path
- Transitive - if p is connected to q and q is connected to r, then p is connected to r by concatenation of the paths from p to q and q to r

CS482, Jana Kosecka

Connected components

- Since the "is-connected-to" relation is an equivalence relation, it partitions the set S into a set of equivalence classes or components
- these are called connected components
- Definition: S is the complement of S - it is the set of all pixels in B whose value is 0
- S can also be partitioned into a set of connected components
- Regard the image as being surrounded by a frame of O's
- The component(s) of S that are adjacent to this frame is called the background of B.
- All other components of S are called holes

CS482, Jana Kosecka

Examples - Black $=1$, Green $=0$
Background and foreground connectivity

- 4-background, 8-foreground: one 4 pixel object

How many 4- (8) components of S?
What is the background?
Which are the 4-(8) holes?

- Use opposite connectivity for the foreground and the background
- 8-foreground, 4-background: 4 single pixel objects and no holes containing a 1 pixel hole

CS482, Jana Kosecka

Boundaries

- The boundary of S is the set of all pixels of S that have 4-neighbors in S. The boundary set is denoted as S'.
- The interior is the set of pixels of S that are not in its boundary: S-S'
- Definition: Region T surrounds region R (or R is inside T) if any 4-path from any point of R to the background intersects T
- Theorem: If R and T are two adjacent components, then either R surrounds T or T surrounds R .

Component labeling

- Given: Binary image B
- Produce: An image in which all of the pixels in each connected component are given a unique label.
- Solution 1: Recursive, depth first labeling
- Scan the binary image from top to bottom, left to right until encountering a 1 (0).
- Change that pixel to the next unused component label
- Recursively visit all $(8,4)$ neighbors of this pixel that are 1's (0's) and mark them with the new label

Disadvantages of recursive algorithm

- Speed
- requires number of iterations proportional to the largest diameter of any connected component in the image
- Topology
- not clear how to determine which components of O's are holes in which components of 1's

Solution 2 - row scanning up and down

- Start at the top row of the image
- partition that row into runs of O's and 1's
- each run of 0's is part of the background, and is given the special background label
- each run of 1's is given a unique component label
- For all subsequent rows
- partition into runs
- if a run of 1's (0's) has no run of 1's(0's) directly above it, then it is potentially a new component and is given a new label
- if a run of 1's (0's) overlaps one or more runs on the previous row give it the minimum label of those runs
- Let a be that minimal label and let $\left\{c_{i}\right\}$ be the labels of all other adjacent runs in previous row. Relabel all runs on previous row having labels in $\left\{c_{i}\right\}$ with a CS482, Jana Kosecka

Local relabeling

- What is the point of the last step?
- We want the following invariant condition to hold after each row of the image is processed on the downward scan: The label assigned to the runs in the last row processed in any connected component is the minimum label of any run belonging to that component in the previous rows.
- Note that this only applies to the connectivity of pixels in that part of B already processed. There may be subsequent merging of components in later rows
cS482, Jana Kosecka

- A bottom to top scan will assign a unique label to each component
- we can also compute simple properties of the components during this scan
- Start at the bottom row
- create a table entry for each unique component label, plus one entry for the background if there are no background runs on the last row
- Mark each component of 1's as being "inside" the background

Upward scan

CS482, Jana Kosecka

Properties

- Our goal is to recognize each connected component as one of a set of known objects
- letters of the alphabet
- good potatoes versus bad potatoes
- We need to associate measurements, or properties, with each connected component that we can compare against expected properties of different object types.

How do we compute the perimeter of a connected component?
How do we compute the perimeter of a connected component?

1. Count the number of pixels in
the component adjacent to
O's
perimeter of black square
would be 1

- but perimeter of gray square, which has $4 x$ the area, would be 4
- but perimeter should go up as sqrt of area

2. Count the number of 0 's
adjacent to the component

- works for the black and gray squares, but fails for the red dumbbell

Properties

- Area
- Perimeter
- Compactness: P2/A
- smallest for a circle: $4 \pi^{2} r^{2} / \pi r^{2}=4 \pi$
- higher for elongated objects
- Properties of holes
- number of holes
- their sizes, compactness, etc.

Perimeter computation (cont.)

- We can give different weights to boundary pixels
- 1 -vertical and horizontal pairs
- $2^{1 / 2}$-diagonal pairs
- The boundary can be approximated by a polygon line (or splines) and its length could be used
- It matters most for small (low resolution objects)

Other features

- Convex hull:
- Create a monotone polygon from the boundary (leftmost and rightmost points in each row)
- Connect the extremal points by removing all concavities (can be done by examining triples of boundary points)
- Minimal bounding box from the convex hull
- Deficits of convexity

A better (and universal) set of features

- An "ideal" set of features should be independent of
- the position of the connected component
- the orientation of the connected component
- the size of the connected component
- ignoring the fact that as we "zoom in" on a shape we tend to see more detail
- These problems are solved by features called moments

Central moments

- Let S be a connected component in a binary image - generally, S can be any subset of pixels, but for our application the subsets of interest are the connected components
- The $(\mathrm{j}, \mathrm{k})^{\prime}$ th moment of S is defined to be

$$
M_{j k}(S)=\sum_{(x, y) \in S} x^{j} y^{k}
$$

Central moments

- $M_{00}=$ the area of the connected component

$$
M_{00}(S)=\sum_{(x, y) \in S} x^{0} y^{0}=\sum_{(x, y) \in S} 1=|S|
$$

- The center of gravity of S can be expressed as

$$
\begin{aligned}
& \bar{x}=\frac{M_{10}(S)}{M_{00}(S)}=\frac{\sum x}{|S|} \\
& \bar{y}=\frac{M_{01}(S)}{M_{00}(S)}=\frac{\sum y}{|S|}
\end{aligned}
$$

CS482, Jana Kosecka

Central moments

- Using the center of gravity, we can define the central (j, k)'th moment of S as

$$
\mu_{j k}=\sum(x-\bar{x})^{j}(y-\bar{y})^{k}
$$

- If the component S is translated, this means that we have added some numbers (a, b) to the coordinates of each pixel in S
- for example, if $a=0$ and $b=-1$, then we have shifted the component up one pixel

Central moments

- Central moments are not affected by translations of S. Let $S^{\prime}=\left\{\left(x^{\prime}, y^{\prime}\right): x^{\prime}=x+a, y^{\prime}=y+b,(x, y)\right.$ in $\left.S\right\}$
- The center of gravity of S^{\prime} is the c.o.g. of S shifted by (a, b)

$$
\bar{x}\left(S^{\prime}\right)=\frac{\sum x^{\prime}}{\left|S^{\prime}\right|}=\frac{\sum(x+a)}{|S|}=\frac{\sum x}{|S|}+\frac{\sum a}{|S|}=\bar{x}+a
$$

- The central moments of S^{\prime} are the same as those of S

$$
\begin{aligned}
& \mu_{j k}\left(S^{\prime}\right)=\sum\left(x^{\prime}-\bar{x}\left(S^{\prime}\right)\right)^{j}\left(y^{\prime}-\bar{y}\left(S^{\prime}\right)\right)^{k} \\
& =\sum(x+a-[\bar{x}(S)+a])^{j}(y+b-[\bar{y}(S)+b])^{k} \\
& =\sum(x-\bar{x})^{j}(y-\bar{y})^{k}=\mu_{j k}(S)
\end{aligned}
$$

CS482, Jana Kosecka

Central moments

- The standard deviations of the x and y coordinates of S can also be obtained from central moments:

$$
\begin{aligned}
& \sigma_{x}=\sqrt{\frac{\mu_{20}}{|S|}} \\
& \sigma_{y}=\sqrt{\frac{\mu_{02}}{|S|}}
\end{aligned}
$$

- We can then create a set of normalized coordinates of S that we can use to generate moments unchanged by translation and scale changes

$$
\tilde{x}=\frac{x-\bar{x}}{\sigma_{x}} \quad \tilde{y}=\frac{y-\bar{y}}{\sigma_{y}}
$$

Normalized central moments

- The means of these new variables are 0 , and their standard deviations are 1. If we define the normalized moments; $m_{j k}$ as follows

$$
m_{j k}=\frac{\sum \tilde{\sim}^{j} \tilde{y}^{k}}{M_{00}}
$$

then these moments are not changed by any scaling or translation of S

- Let $S^{\star}=\left\{\left(x^{\star}, y^{\star}\right): x^{\star}=a x+b, y^{\star}=a y+c,(x, y)\right.$ in $\left.S\right\}$
- if b and c are 0 , then we have scaled S by a
- if a is 0 , then we have translated S by (b, c)

Normalized central moments

$$
\begin{aligned}
& m_{j k}\left(S^{*}\right)=\frac{\sum\left(\frac{x^{*}-\overline{x\left(S^{*}\right)}}{\sigma_{x}\left(S^{*}\right)}\right)^{j}\left(\frac{y^{*}-\overline{y\left(S^{*}\right)}}{\sigma_{y}\left(S^{*}\right)}\right)^{k}}{|S|} \\
& =\frac{\sum\left(\frac{a^{j}(x-\bar{x}(S))^{j}}{a^{j} \sigma_{x}^{j}(S)}\right)\left(\frac{a^{k}(y-\bar{y}(S))^{k}}{a^{k} \sigma_{y}^{k}(S)}\right)}{|S|} \\
& =m_{j k}(S)
\end{aligned}
$$

- Details of the proof are simple.

Shortcomings of our machine vision system

- Object detection
- thresholding will not extract intact objects in complex images
- shading variations on object surfaces
- texture
- advanced segmentation methods
- edge detection - locate boundaries between objects and background, between objects and objects
- region analysis - find homogeneous regions; small combinations might correspond to objects.

Shortcomings of our machine vision system

Occlusion

- What if one object is partially hidden by another?
- properties of the partially obscured, or occluded, object will not match the properties of the class model
- Correlation-directly compare image of the "ideal" objects against real images
- in correct overlap position, matching score will be high
- Represent objects as collection of local features such as corners of a rectangular shape
- locate the local features in the image
- find combinations of local features that are configured consistently with objects

CS482, Jana Kosecka

Shortcomings of our machine vision system

- Recognition of three dimensional objects
- the shape of the image of a three dimensional object depends on the viewpoint from which it is seen
- Model a three dimensional object as a large collection of view-dependent models
- Model the three dimensional geometry of the object and mathematically relate it to its possible images
- mathematical models of image geometry
- mathematical models for recognizing three dimensional structures from two dimensional images

CS482, Jana Kosecka

Shortcomings of our machine vision system

- Articulated objects
- pliers
- derricks
- Deformable objects
- faces
- jello
- Amorphous objects
- fire
- water

Advanced segmentation methods
Agenda

- edge detection
- region recovery
- Occlusion in 2-D
- correlation
- clustering
- Articulations in 2-D
- Three dimensional object recognition
- modeling 3-D shape
- recognizing 3-D objects from 2-D images
- recognizing 3-D objects from 3-D images
- stereo
- structured light range sensors

