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Object extraction from binary images -
connected components

• Definition:  Given a pixel (i,j) its 
4-neighbors are the points (i’,j’) 
such that |i-i’| + |j-j’| = 1
– the 4-neighbors are (i±i, j) and 

(i,j±1)
• Definition: Given a pixel (i,j) its 8-

neighbors are the points (i’,j’) 
such that max(|i-i’|,|j-j’|) = 1
– the 8- neighbors are (i, j±1), 

(i±1, j) and (i±1, j±1)
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Adjacency

• Definition:  Given two disjoint sets of pixels, A and 
B, A is 4-(8) adjacent to B is there is a pixel in A 
that is a 4-(8) neighbor of a pixel in B
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Connected components

• Definition: A 4-(8)path from pixel (i0,j0) to (in,jn) 
is a sequence of pixels (i0,j0) (i1,j1) (i2,j2) , ... (in,jn) 
such that (ik, jk) is a 4-(8) neighbor of (ik+1, jk+1), 
for k = 0, ..., n-1

(i0,j0)

(in, jn)

(i0,j0)

(in, jn)

Every 4-path is an 8-path!
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Connected components
• Definition: Given a binary image, B, the set of all 

1’s is called the foreground and is denoted by S
• Definition: Given a pixel p in S, p is 4-(8) 

connected to q in S if there is a path from p to q 
consisting only of points from S.

• The relation “is-connected-to” is an equivalence 
relation
– Reflexive - p is connected to itself by a path of length 0
– Symmetric - if p is connected to q, then q is connected to 

p by the reverse path
– Transitive - if p is connected to q and q is connected to r, 

then p is connected to r by concatenation of the paths 
from p to q and q to r
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Connected components
• Since the “is-connected-to” relation is an 

equivalence relation, it partitions the set S into a 
set of equivalence classes or components
– these are called connected components

• Definition:  SS is the complement of S - it is the 
set of all pixels in B whose value is 0
–– SS can also be partitioned into a set of 

connected components
– Regard the image as being surrounded by a 

frame of 0’s
– The component(s) of SS that are adjacent to this 

frame is called the background of B.
– All other components of SS are called holes
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Examples - Black = 1, Green = 0

How many 4- (8) components of S?
What is the background?
Which are the 4- (8) holes?
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Background and foreground connectivity

• Use opposite connectivity for the foreground and 
the background
– 8-foreground, 4-background: 4 single pixel 

objects and no holes
– 4-background, 8-foreground: one 4 pixel object 

containing a 1 pixel hole
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Boundaries

• The boundary of S is the set of all pixels of S 
that have 4-neighbors in S.S. The boundary set is 
denoted as S’. 

• The interior is the set of pixels of S that are not 
in its boundary: S-S’

• Definition: Region T surrounds region R (or R is 
inside T) if any 4-path from any point of R to the 
background intersects T

• Theorem:  If R and T are two adjacent 
components, then either R surrounds T or T 
surrounds R.
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Component labeling

• Given:  Binary image B
• Produce: An image in which all of the pixels in each 

connected component are given a unique label.
• Solution 1:  Recursive, depth first labeling

– Scan the binary image from top to bottom, left 
to right until encountering a 1 (0).

– Change that pixel to the next unused 
component label

– Recursively visit all (8,4) neighbors of this pixel 
that are 1’s (0’s) and mark them with the new 
label
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Example
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Disadvantages of recursive algorithm

• Speed
– requires number of iterations proportional to 

the largest diameter of any connected 
component in the image

• Topology
– not clear how to determine which components 

of 0’s are holes in which components of 1’s 
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Solution 2 - row scanning up and down

• Start at the top row of the image
– partition that row into runs of 0’s and 1’s
– each run of 0’s is part of the background, and is given the 

special background label
– each run of 1’s is given a unique component label

• For all subsequent rows
– partition into runs
– if a run of 1’s (0’s) has no run of 1’s(0’s) directly above it, 

then it is potentially a new component and is given a new 
label

– if a run of 1’s (0’s) overlaps one or more runs on the 
previous row give it the minimum label of those runs

• Let a  be that minimal label and let {ci} be the labels of 
all other adjacent runs in previous row.  Relabel all runs 
on previous row having labels in {ci} with a
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Local relabeling

• What is the point of the last step?
– We want the following invariant condition to 

hold after each row of the image is processed 
on the downward scan: The label assigned to 
the runs in the last row processed in any 
connected component is the minimum label of 
any run belonging to that component in the 
previous rows.

– Note that this only applies to the connectivity 
of pixels in that part of B already processed.  
There may be subsequent merging of 
components in later rows
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Example
a a B b BBBB a a B b/a BBBB

a a a a B c c c

a a B a BBBB
a a a a B c/ac/ac/a
B a a a a a C a

a a B a BBBB
a a a a B a a a
B a a a a a C a
a a a a D a a a

a a B a BBBB
a a a a B a a a
B a a a a a C a
a a a a D/B a a a
a a a a B B B B

If we did not change the c’s to a’s, then the rightmost a will be labeled as a c and
our invariant condition will fail.
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Upward scan

• A bottom to top scan will assign a unique label to 
each component
– we can also compute simple properties of the 

components during this scan
• Start at the bottom row

– create a table entry for each unique component 
label, plus one entry for the background if 
there are no background runs on the last row

– Mark each component of 1’s as being “inside” 
the background
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Properties

• Our goal is to recognize each connected 
component as one of a set of known objects
– letters of the alphabet
– good potatoes versus bad potatoes

• We need to associate measurements, or 
properties, with each connected component that 
we can compare against expected properties of 
different object types.
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Properties

• Area
• Perimeter
• Compactness:  P2/A

– smallest for a circle: 4π2r2/πr2 = 4π
– higher for elongated objects

• Properties of holes
– number of holes
– their sizes, compactness, etc.
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How do we compute the perimeter of a connected component?

1. Count the number of pixels in 
the component adjacent to 
0’s
– perimeter of black square 

would be 1
– but perimeter of gray 

square, which has 4x the 
area, would be 4

– but perimeter should go 
up as sqrt of area

2. Count the number of 0’s 
adjacent to the component
– works for the black 

and gray squares, but 
fails for the red 
dumbbell
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How do we compute the perimeter of a connected component?

3) Count the number of sides of pixels 
in the component adjacent to 0’s
– these are the cracks between 

the pixels
– clockwise traversal of these 

cracks is called a crack code
– perimeter of black is 4, gray 

is 8 and red is 8
• What effect does rotation have on 

the value of a perimeter of the 
digitization of a simple shape?
– rotation can lead to large 

changes in the perimeter and 
the area!
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Perimeter computation (cont.)

• We can give different weights to boundary pixels 
– 1 – vertical and horizontal pairs
– 21/2  – diagonal pairs

• The boundary can be approximated by a polygon line (or 
splines) and its length could be used

• It matters most for small (low resolution objects)
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Bounding Box and Extremal Points

Topmost left Topmost right

Leftmost top

Leftmost bottom

Rightmost top

Rightmost bottom

Bottommost left Bottommost right
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Other features

• Convex hull:
– Create a monotone polygon from the boundary 

(leftmost and rightmost points in each row)
– Connect the extremal points by removing all 

concavities (can be done by examining triples of 
boundary points)

• Minimal bounding box from the convex hull
• Deficits of convexity
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A better (and universal) set of features

• An “ideal” set of features should be independent 
of
– the position of the connected component
– the orientation of the connected component
– the size of the connected component

• ignoring the fact that as we “zoom in” on a 
shape we tend to see more detail

• These problems are solved by features called 
moments
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Central moments

• Let S be a  connected component in a binary image
– generally, S can be any subset of pixels, but for 

our application the subsets of interest are the 
connected components

• The (j,k)’th moment of S is defined to be
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Central moments

• M00 = the area of the connected component

• The center of gravity of S can be expressed as
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Central moments

• Using the center of gravity, we can define the 
central (j,k)’th moment of S as

• If the component S is translated, this means that 
we have added some numbers (a,b) to the 
coordinates of each pixel in S
– for example, if a = 0 and b = -1, then we have 

shifted the component up one pixel

kj
jk yyxx )()( −−=∑µ
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Central moments

• Central moments are not affected by translations 
of S.  Let S’={(x’, y’):x’=x+a, y’=y+b, (x,y) in S}
– The center of gravity  of S’ is the c.o.g. of S 

shifted by (a,b)

– The central moments of S’ are the same as 
those of S
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Central moments

• The standard deviations of the x and y coordinates of S can 
also be obtained from central moments:

• We can then create a set of normalized coordinates of S 
that we can use to generate moments unchanged by 
translation and scale changes
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Normalized central moments

• The means of these new variables are 0, and their standard 
deviations are 1.  If we define the normalized moments; mjk
as follows

• then these moments are not changed by any scaling or 
translation of S

• Let S* = {(x*,y*): x* = ax + b, y* = ay + c, (x,y) in S}
– if b and c are 0, then we have scaled S by a
– if a is 0, then we have translated S by (b,c)
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Normalized central moments

• Details of the proof are simple.
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Shortcomings of our machine vision system

• Object detection
– thresholding will not extract intact objects in complex 

images
• shading variations on object surfaces
• texture

– advanced segmentation methods
• edge detection - locate boundaries between objects 

and background, between objects and objects
• region analysis - find homogeneous regions; small 

combinations might correspond to objects.
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Shortcomings of our machine vision system

• Occlusion
– What if one object is partially hidden by another?

• properties of the partially obscured, or occluded, object 
will not match the properties of the class model

– Correlation - directly compare image of the “ideal” objects 
against real images
• in correct overlap position, matching score will be high

– Represent objects as collection of local features such as 
corners of a rectangular shape
• locate the local features in the image
• find combinations of local features that are configured 

consistently with objects
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Shortcomings of our machine vision system

• Recognition of three dimensional objects
– the shape of the image of a three dimensional 

object depends on the viewpoint from which it 
is seen

• Model a three dimensional object as a large 
collection  of view-dependent models

• Model the three dimensional geometry of the 
object and mathematically relate it to its possible 
images
– mathematical models of image geometry
– mathematical models for recognizing three 

dimensional structures from two dimensional 
images
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Shortcomings of our machine vision system

• Articulated objects
– pliers
– derricks

• Deformable objects
– faces
– jello

• Amorphous objects
– fire
– water
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Agenda• Advanced segmentation methods
– edge detection
– region recovery

• Occlusion in 2-D
– correlation
– clustering

• Articulations in 2-D
• Three dimensional object recognition

– modeling 3-D shape
– recognizing 3-D objects from 2-D images
– recognizing 3-D objects from 3-D images

• stereo
• structured light range sensors


