

Connected components

- Definition: Given a binary image, B, the set of all 1's is called the foreground and is denoted by S
- Definition: Given a pixel p in S, p is 4-(8) connected to q in S if there is a path from p to q consisting only of points from S.
- The relation "is-connected-to" is an equivalence relation
- Reflexive p is connected to itself by a path of length 0
 Symmetric if p is connected to q, then q is connected to
- p by the reverse path
- Transitive if p is connected to q and q is connected to r, then p is connected to r by concatenation of the paths from p to q and q to r

CS482, Jana Kosecka

Connected components

- Since the "is-connected-to" relation is an equivalence relation, it partitions the set S into a set of equivalence classes or components
 - these are called connected components
- Definition: S is the complement of S it is the set of all pixels in B whose value is 0 $\,$
 - S can also be partitioned into a set of connected components
 - Regard the image as being surrounded by a frame of 0's
 - The component(s) of S that are adjacent to this frame is called the background of B.
 - All other components of S are called holes

CS482, Jana Kosecka

Boundaries

- The *boundary* of S is the set of all pixels of S that have 4-neighbors in **S**. The boundary set is denoted as S'.
- The *interior* is the set of pixels of S that are not in its boundary: S-S'
- Definition: Region T surrounds region R (or R is inside T) if any 4-path from any point of R to the background intersects T
- Theorem: If R and T are two adjacent components, then either R surrounds T or T surrounds R.

CS482, Jana Kosecka

Component labeling

- Given: Binary image B
- Produce: An image in which all of the pixels in each connected component are given a unique label.
- Solution 1: Recursive, depth first labeling
 Scan the binary image from top to bottom, left to right until encountering a 1 (0).
 - Change that pixel to the next unused component label
 - Recursively visit all (8,4) neighbors of this pixel that are 1's (0's) and mark them with the new label

C5482, Jana Kosecka

Example	
C5482, Jana Koseck	a

C5482, Jana Kosecka

Solution 2 - row scanning up and down

• Start at the top row of the image

- partition that row into runs of 0's and 1's
- each run of 0's is part of the background, and is given the special background label
- each run of 1's is given a unique component label
- For all subsequent rows
 - partition into runs
 - if a run of 1's (0's) has no run of 1's(0's) directly above it, then it is potentially a new component and is given a new label
 - if a run of 1's (0's) overlaps one or more runs on the previous row give it the minimum label of those runs
 - Let a be that minimal label and let {c} be the labels of all other adjacent runs in previous row. Relabel all runs on previous row having labels in {c} with a C5482, Jana Kosecka

Local relabeling

- What is the point of the last step?
 - We want the following invariant condition to hold after each row of the image is processed on the downward scan: The label assigned to the runs in the last row processed in any connected component is the **minimum** label of any run belonging to that component in the previous rows.
 - Note that this only applies to the connectivity of pixels in that part of B already processed. There may be subsequent merging of components in later rows CS482. Jum Kasecka

											~	an	٩	IC.											
								a	а	В	b	В	В	В	В	[а	а	В	b/a	В	В	В	В	
																[a	a	a	a	В	с	с	с	
																	_								
																	_								
																l									
a	a	В	a	В	В	В	В	a	а	В	а	В	В	В	В	[а	a	В	а	В	В	В	В	
a	a	a	a	В	c/a	ic/	ic/a	a	а	a	a	В	a	а	а	ĺ	a	a	a	а	В	a	a	а	
В	a	а	a	а	а	С	a	В	a	а	а	а	а	С	а	ĺ	В	a	а	а	а	а	С	а	
								a	а	a	a	D	a	a	a		a	a	a	a	D/B	a	a	а	
																ļ	a	a	a	a	В	В	В	В	
																					L.				c and

- Our goal is to recognize each connected component as one of a set of known objects
 - letters of the alphabet
 - good potatoes versus bad potatoes
- We need to associate measurements, or properties, with each connected component that we can compare against expected properties of different object types.

CS482, Jana Kosecka

Properties

- Area
- Perimeter
- Compactness: P²/A
 - smallest for a circle: $4\pi^2 r^2 / \pi r^2 = 4\pi$
 - higher for elongated objects
- Properties of holes
 - number of holes
 - their sizes, compactness, etc.

C5482, Jana Kosecka

1. Count the number of pixels in	
the component adjacent to	
0's	
 perimeter of black square 	
would be 1	
 but perimeter of gray 	
square, which has 4x the	
area, would be 4	
 but perimeter should go 	
up as sqrt of area	
Count the number of 0's	
adjacent to the component	
 works for the black 	
and gray squares, but	
fails for the red	
dumbbell	

CS482, Jana Kosecka

3) Count the number of sides of pixels in the component adjacent to 0's - these are the **cracks** between the pixels clockwise traversal of these cracks is called a crack code perimeter of black is 4, gray is 8 and red is 8 What effect does rotation have on the value of a perimeter of the digitization of a simple shape? - rotation can lead to large changes in the perimeter and the area! C5482, Jana Kosecka

How do we compute the perimeter of a connected component?

					1		
Ц						0	
Н	_	_					
Η							
Н	_			1	\mathbf{P}	-	_
Η							
			\sim				
Н	_						

Other features

- Convex hull:
 - Create a monotone polygon from the boundary (leftmost and rightmost points in each row)
 - Connect the extremal points by removing all concavities (can be done by examining triples of boundary points)
- Minimal bounding box from the convex hull
- · Deficits of convexity

C5482, Jana Kosecka

- A better (and universal) set of features
- An "ideal" set of features should be independent of
 - the position of the connected component
 - the orientation of the connected component
 - the size of the connected component
 - ignoring the fact that as we "zoom in" on a shape we tend to see more detail
- These problems are solved by features called moments

C5482, Jana Kosecka

CS482, Jana Kosecka

Central moments
•
$$M_{00}$$
 = the area of the connected component
 $M_{00}(S) = \sum_{(x,y)\in S} x^0 y^0 = \sum_{(x,y)\in S} 1 = |S|$
• The center of gravity of S can be expressed as
 $\overline{x} = \frac{M_{10}(S)}{M_{00}(S)} = \frac{\sum x}{|S|}$
 $\overline{y} = \frac{M_{01}(S)}{M_{00}(S)} = \frac{\sum y}{|S|}$

CS482, Jana Kosecka

7

CS482, Jana Kosecka

Shortcomings of our machine vision system

Occlusion

- What if one object is partially hidden by another?
 properties of the partially obscured, or occluded, object will not match the properties of the class model
- Correlation directly compare image of the "ideal" objects against real images
- in correct overlap position, matching score will be high
 Represent objects as collection of local features such as
 - corners of a rectangular shape
 - locate the local features in the image
 - \cdot find combinations of local features that are configured consistently with objects

CS482, Jana Kosecka

Shortcomings of our machine vision system

- Recognition of three dimensional objects - the shape of the image of a three dimensional object depends on the viewpoint from which it is seen
- Model a three dimensional object as a large collection of view-dependent models
- Model the three dimensional geometry of the object and mathematically relate it to its possible images
 - mathematical models of image geometry
 - mathematical models for recognizing three dimensional structures from two dimensional images
 C5482, Jana Kosecka

	Shortcomings of our machine vision system
•	Articulated objects - pliers
•	- derricks Deformable objects - faces
	- jello Amorphous objects
	- fire - water

CS482, Jana Kosecka

Advanced segmentation methods Agenda

- edge detection
 region recovery
- Occlusion in 2-D
- correlation
- clustering
- Articulations in 2-D
- Three dimensional object recognition
- modeling 3-D shape
- recognizing 3-D objects from 2-D images
- recognizing 3-D objects from 3-D images
 - stereo
 - structured light range sensors

CS482, Jana Kosecka