Image Features
Jana Kosecka, GMU

Edges

Edge Model (1D)

* An ideal edge can be modeled as an step

Ai

0ifx<0
Aif x<0

G(x) ={

1-D edge detection

Ai

Derivative - ideal peak

In reality - image edges are not sharp and regions around
edges have noise

Edges

* They happen at places where the image
values exhibit sharp variation

Gray value
column | column
| Edge I Edge
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Digital Approximation

&) _ S - f(3)

dx Ax—0 Ax
df(x) _ fx+D)—f(x=1)
dx 2
== Convolve with: n
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Simple way to compute derivatives

+ How to compute derivatives in discrete images
+  Approximate it with differences

Dgl = 1I(z,y) —I(x—1,y)
Ayl =I(z,y) — I(z,y — 1)
Corresponds to convolution with a filter (mask) [ 1, -1]
+  Alternatively we can use [-1, 1]
+ Inorder to obtain value at the center pixel convolve with [1, 0, -1]
+  Another option Robert's mask

01 10
-10 0-1

Computing Derivatives in 2D

+ commonly used in feature extraction stage

+ Computing derivatives of continuous functions - well
established

+ Think of an image as function I(z,y)

- Computing derivative of 2D function (‘2[ ?

o5’ 0y

+ Derivative - gradient - 2D vector with components

of partial derivatives v =[JL,5]]

* Magnitude  ar=,/(91)2 + (L)

+ Orientation 0=tan*1(§§,g{/)

Edge Detection (2D)
Y
X

I(x) x I(x.y)
dI(x) VI(x,y)=[0I(x,y)/ox oI(x,y)/oy]f =

dx [Ix(X:Y) Iy(X:Y)]t
LD Th Il =T 2p) + L) Th

tan 6 = I,(x.y)/ I(x.y)
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Edge Detection (2D)

Vertical Edges:

Convolve with: -n

Horizontal Edges:

Convolve with:
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Noise cleaning and Edge Detection

Taking differences - increases noise

I(xy) - E(x.y)
.| Noise | |Edge | =
Filter Detection
Combine Linear Filters
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Noise Smoothing & Edge Detection

(=2}

Convolve with: -1 0 1 _FE_
-1 1 vé)

-1 1 ©

0

[}

Z

Vertical Edge Detection

This mask is called the (vertical) Prewitt Edge Detector
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Noise Smoothing & Edge Detection

Convolve with:

<
9
=
Q
Q
D
B A I | S
Q
0 0 0 =k
w
1) 1|1 =
<
o
N
Noise Smoothing %

This mask is called the (horizontal) Prewitt Edge Detector
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Sobel Edge Detector

Convolve with: -1 0 1
-2 2
-1 1

Gives more weight

and 1 -2 1 to the 4-neighbors
0 0 0
1 2 1
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Smoothing and derivatives

Derivatives emphasize hoise - smoothing images
before computing derivatives

+ Instead of smoothing with box filter - averages
everything equally - used Gaussian

Another motivation for Gaussian - serves as
interpolating function to compensate for discrete

sampling effects

Computing Derivatives - Theory

+ commonly used in feature extraction stage

+ Computing derivatives of continuous functions - well
established

+ continuous function related to discrete by sampling

+ If Nyquist condition is met the continuous signal
can be reconstructed exactly by conv. (ideal sync)

f(x) = flzl *h(z), z€ER h(z) = Sin(m’/T). zER
/T
Strategy
. . el A imation with

1. reconstruct continuous function J / "PMEZSSSJSQ "

2. take a derivative ’

3. sample the result ) )
1 = , x =
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Computing derivatives
D{f(2)} = D{f[=] » h(x)}
D{f(z)} = fla] * D{h(x)}
S{f'(2)} = S{flal«D{h(x)}} = fla)+S{W (2)} = flal«k[a]  sampling

hix) W

differentiation

Infinite extent




Computing Derivatives

+ Images should be smoothed prior computing
derivatives

Convolution with a smoothing filter, followed by
derivative filter

Can be accomplished in one step, convolution with
the derivative of the smoothing filter

k=3
Pl =fld s gl = Y flalg'le ~ H)
=%

2 2

—z z -z

z) = €202, (2) = ——————€202
9(@) V2o 9@ a2\ 270

Gaussian derivatives

* recipe for computing derivatives in x and y
- if using derivatives of Gaussians

+ smooth iny and compute derivative in x
* smooth in x and compute derivative iny

w

v
Llz,yl =I[z,yl« gzl « gyl = Y. Y Ik gz —Klgly — 1.
Sty R

NIg
Ng

$ 3
Iyle,y] = Iz, gl glal « ' Iyl = D> > Ik Ugle — klg'ly — 1]
k= y

S5

I="%

+ This all can be realized by 1-D convolutions
Gaussian is a separable filter

1
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Computing derivatives

— 01 9OI —_ —1¢91 oI
VI =[%,%] 0 =tan"(§L )
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Formal Design of an
Optimal Edge Detector

+ Edge detection involves 3 steps:
- Noise smoothing
- Edge enhancement
- Edge localization

+ J. Canny formalized these steps to design
an optimal edge detector
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Canny Edge Detector

+ Experiments consistently show that it
performs very well

* Probably, the most used by C.V.
practitioners
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Canny Edge Detector

+ Uses a mathematical model of the edge and
the noise

+ Formalizes a performance criteria
+ Synthesizes the best filter
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Performance Criteria (1)

+ Good detection

- The filter must have a stronger response
at the edge location (x=0) than to noise

A PN

s
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Performance Criteria (2)

+ Good Localization

- The filter response must be maximum
very close to x=0

v

—_— —

X=0
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Performance Criteria (3)

- Low False Positives

- There should be only one maximum in a
reasonable neighborhood of x=0

]

large
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Canny Edge Detector

+ Canny found a linear, continuous filter that

maximized the three given criteria.

+ There is no close-form solution for the

optimal filter.

- However, it looks VERY SIMILAR to the

derivative of a Gaussian.
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Algorithm CANNY_ENHANCER

The input is image I G is a zero mean Gaussian
filter (std = o)

1. J=I% G (smoothing)
2. For each pixel (i,j): (edge enhancement)
- Compute the image gradient
» VI(i§) = (3.0.9).3,3.9))
- Estimate edge strength
> eij) = (TG0 I2.90)72
- Estimate edge orientation
» (i) = arctan(J,(i.§)/3,(i.j))
The output are images E, and E,
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CANNY_ENHANCER

Edge strength - gradient magnitude
+ The output image E has the magnitudes of
the smoothed gradient.

- Sigma determines the amount of
smoothing.
* E, has large values at edges

m=p  Edge ENHANCER
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How do we "detect” edges?

+ E, has large values at edges:
- Find local maxima

APy o
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- .. but it also may have wide ridges around

the local maxima (large values around the

edges)

W MiTh
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NONMAX_SUPRESSION

Edge orientation

The inputs are E, & E, (outputs of CANNY_ENHANCER)
Consider 4 directions D={ 0,45,90,135} wrt x

For each pixel (i,j) do:
1. Find the direction deD s.t. d= E,(i,j) (normal to the edge)
2. If{Ei.])is smaller than at least one of its neigh. along d}

I\(i.§)=0
Otherwise, I\(i,j)= E4(i.j)
The output is the thinned edge image I
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Graphical Interpretation
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Thresholding

+ Edges are found by thresholding the
output of NONMAX_SUPRESSION

+ If the threshold is too high:
- Very few (none) edges
+ High MISDETECTIONS, many gaps
+ If the threshold is too low:

- Too many (all pixels) edges
- High FALSE POSITIVES, many extra edges
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SOLUTION:
Hysteresis Thresholding
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Strong edges reinforce adjacent weak
edges

HYSTERESIS_THRESH

Inputs:
= I (output of NONMAX_SUPRESSION),
N
E, (output of CANNY_ENHANCER),

- thresholds L and H.

For all pixels in I and scanning in a fixed order:
1. Locate the next unvisited pixel s.t. I (i,j)>H
2. Starting from Iy(i,j), follow the chains of connected local
maxima, in both directions perpendicular to the edge normal,
as long as LpL.
- Mark all visited points, and save the location of the contour
points.

Output: aset of lists describing the contours.
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Hysteresis Thresholding
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Canny Edge detector - Threshold
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Other Edge Detectors

(2nd order derivative filters)

First-order derivative filters (1D)

* Sharp changes in gray level of the input
image correspond to “peaks” of the first-
derivative of the input signal.

Fe) F 09

-y
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Second-order derivative filters (1D) NOTE:

+ Peaks of the first-derivative of the input
signal, correspond to “zero-crossings” of
the second-derivative of the input signal.

+ F"(x)=0 is not enoughl!
- F'(x) = ¢ has F"(x) = O, but there is no edge
+ The second-derivative must change sign, -- i.e.
from (+) to (-) or from (-) to (+)
+ The sign transition depends on the infensity

F(x) . "
F'(x) Fea change of the image - i.e. from dark to bright or
vice versa.
x f
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Edge Detection (2D) Notes about the Laplacian:
Y . vz .
oo V2I(x,y) is a SCALAR
1b 2D X - T Can be found using a SINGLE mask
- 1 Orientation information is lost
I(x) x I(xy) + V2I(xy) is the sum of SECOND-order derivatives
- But taking derivatives increases noise
VI(xy)| =(T, 2(x.y) + L2(x,y))“2> Th - Very noise sensitivel
dI{x) > Th IVIG] =(L2x) Y (xy)) + It is always combined with a smoothing operation:
dx tan 6 = L(x,y)/ I(xy)
M =0 2 - _ I(X,y) O(x
P VEL(y) L (xy) + T (xy)<0 - smooth—| Laplacian | 2%
Laplacian
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LOG Filter

» First smooth (Gaussian filter),

+ Then, find zero-crossings (Laplacian filter):
- O(x.y) = V3(I(xy) * 6(x.y))

+ Using linearity:
- O(x)y) = V26(x.y) * I(x.y)

- This filter is called: “Laplacian of the Gaussian"
(LOG)
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1D Gaussian
_a
2
g(x)=e ?
1 _a ¥ e
2 2
g'(x)=——=2xe * =——e?*°
20 o
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First Derivative of a Gaussian

1 Y]
g'(X)=——7=2xe " =——e?*°

As a mask, it is also computing a difference (derivative)
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Second Derivative of a Gaussian

2

2 X

" X 1 - o_z
g'xX)=(F-—)e?
o o

“Mexican Hat" s
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