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Image Features
Jana Kosecka, GMU

Edges
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Edge Model (1D)

• An ideal edge can be modeled as an step





≤
<

=
0 if  
0 if  0

)(
xA
x

xG

AA

2/19/2005 Octavia I. Camps 3

1-D edge detection

AA

Derivative Derivative –– ideal peak ideal peak 

In reality In reality –– image edges are not sharp and regions around image edges are not sharp and regions around 
edges have noise edges have noise 
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Edges

• They happen at places where the image 
values exhibit sharp variation

Gray valueGray value

columncolumncolumncolumn

EdgeEdge EdgeEdge
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Digital Approximation
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--11 00 11Convolve with:Convolve with:
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Simple way to compute derivatives
• How to compute derivatives in discrete images 
• Approximate it with differences

• Corresponds to convolution with a filter (mask) [ 1, -1]

• Alternatively we can use [-1, 1]

• In order to obtain value at the center pixel convolve with [1, 0, -1]

• Another option Robert’s mask 
0  1           1   0 

-1  0           0 -1
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Computing Derivatives in 2D
• commonly used in feature extraction stage
• Computing derivatives of continuous functions – well

established
• Think of an image as function
• Computing derivative of 2D function

• Derivative – gradient – 2D vector with components 
of partial derivatives

• Magnitude 

• Orientation  
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Edge Detection (2D)

1D1D 2D2D

I(x)I(x) I(x,y)I(x,y)

dI(xdI(x))
dxdx

∇∇I(x,y)=[I(x,y)=[∂∂I(x,y)/I(x,y)/∂∂x x ∂∂I(x,y)/I(x,y)/∂∂y]y]t t ==
[I[Ixx(x,y) (x,y) IIyy(x,y)](x,y)]tt

dI(xdI(x))
dxdx

> > ThTh ||∇∇I(x,y)| =(II(x,y)| =(Ix x 
22(x,y) + I(x,y) + Iyy

22(x,y))(x,y))1/2 1/2 > > ThTh

xx

yy

tan tan θθ = I= Ixx(x,y)/ (x,y)/ IIyy(x,y(x,y) ) 

F(x)F(x)

xx
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Edge Detection (2D)

--11 00 11Convolve with:Convolve with:

Vertical Edges:Vertical Edges:

Horizontal Edges:Horizontal Edges:

Convolve with:Convolve with:

--11

00

11
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Noise cleaning and Edge Detection

NoiseNoise
FilterFilter

EdgeEdge
DetectionDetection

I(x,y)I(x,y)

Combine Linear FiltersCombine Linear Filters

E(x,y)E(x,y)

Taking differences Taking differences –– increases noiseincreases noise
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Noise Smoothing & Edge Detection

Convolve with:Convolve with: --11 00 11

--11 00 11

--11 00 11

Vertical Edge DetectionVertical Edge Detection
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This mask is called the (vertical) Prewitt Edge DetectorThis mask is called the (vertical) Prewitt Edge Detector
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Noise Smoothing & Edge Detection

Convolve with:Convolve with: --11 --11 --11

00 00 00

11 11 11
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This mask is called the (horizontal) Prewitt Edge DetectorThis mask is called the (horizontal) Prewitt Edge Detector
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Sobel Edge Detector

Convolve with:Convolve with: --11 00 11

--22 00 22

--11 00 11

andand --11 --22 --11

00 00 00

11 22 11

Gives more weightGives more weight
to the 4to the 4--neighborsneighbors
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Smoothing and derivatives

• Derivatives emphasize noise – smoothing images
before computing derivatives

• Instead of smoothing with box filter – averages
everything equally – used Gaussian

• Another motivation for Gaussian – serves as 
interpolating function to compensate for discrete 
sampling effects 
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Computing Derivatives - Theory

Strategy 

1. reconstruct continuous function 
2. take a derivative 
3. sample the result

• commonly used in feature extraction stage
• Computing derivatives of continuous functions – well

established
• continuous function related to discrete by sampling
• If Nyquist condition is met the continuous signal 

can be reconstructed exactly by conv.  (ideal sync)
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Computing derivatives 

differentiation

sampling

Infinite extent

Approximation with 
Gaussian
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Computing Derivatives
• Images should be smoothed prior computing 

derivatives 
• Convolution with a smoothing filter, followed by 

derivative filter
• Can be accomplished in one step, convolution with 

the derivative of the smoothing filter
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Gaussian derivatives
• recipe for computing derivatives in x and y
• if using derivatives of Gaussians  

• smooth in y and compute derivative in x
• smooth in x and compute derivative in y

• This all can be realized by 1-D convolutions 
• Gaussian is a separable filter
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Computing derivatives
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Formal Design of an
Optimal Edge Detector

• Edge detection involves 3 steps:
– Noise smoothing
– Edge enhancement
– Edge localization

• J. Canny formalized these steps to design 
an optimal edge detector
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Canny Edge Detector

• Experiments consistently show that it 
performs very well 

• Probably, the most used by C.V. 
practitioners
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Canny Edge Detector

• Uses a mathematical model of the edge and 
the noise

• Formalizes a performance criteria
• Synthesizes the best filter 
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Performance Criteria (1)

• Good detection
– The filter must have a stronger response 

at the edge location (x=0) than to noise
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Performance Criteria (2)

• Good Localization
– The filter response must be maximum 

very close to x=0

X=0X=0
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Performance Criteria (3)

• Low False Positives
– There should be only one maximum in a 

reasonable neighborhood of x=0

largelarge
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Canny Edge Detector

• Canny found a linear, continuous filter that 
maximized the three given criteria.

• There is no close-form solution for the 
optimal filter.

• However, it looks VERY SIMILAR to the 
derivative of a Gaussian.
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Algorithm CANNY_ENHANCER

• The input is image I; G is a zero mean Gaussian 
filter (std = σ)

1. J = I * G (smoothing)
2. For each pixel (i,j): (edge enhancement)

– Compute the image gradient 
» ∇J(i,j) = (Jx(i,j),Jy(i,j))’

– Estimate edge strength 
» es(i,j) = (Jx

2(i,j)+ Jy
2(i,j))1/2

– Estimate edge orientation 
» eo(i,j) = arctan(Jx(i,j)/Jy(i,j))

• The output are images Es and Eo
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CANNY_ENHANCER

• The output image Es has the magnitudes of 
the smoothed gradient.

• Sigma determines the amount of 
smoothing.

• Es has large values at edges

Edge Edge ENHANCERENHANCER

Edge strength Edge strength –– gradient magnitudegradient magnitude
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How do we “detect” edges?

• Es has large values at edges:
– Find local maxima

ThTh
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• … but it also may have wide ridges around 
the local maxima (large values around the 
edges)

ThTh
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NONMAX_SUPRESSION

• The inputs are Es & Eo (outputs of CANNY_ENHANCER)

• Consider 4 directions D={ 0,45,90,135} wrt x

• For each pixel (i,j) do:
1. Find the direction d∈D s.t. d≅ Eo(i,j) (normal to the edge)

2. If {Es(i,j) is smaller than at least one of its neigh. along d}
• IN(i,j)=0
• Otherwise, IN(i,j)= Es(i,j)

• The output is the thinned edge image IN

Edge orientationEdge orientation
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Graphical Interpretation

xx xx
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Thresholding

• Edges are found by thresholding the 
output of NONMAX_SUPRESSION

• If the threshold is too high:
– Very few (none) edges 

• High MISDETECTIONS, many gaps
• If the threshold is too low:

– Too many (all pixels) edges
• High FALSE POSITIVES, many extra edges
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SOLUTION:
Hysteresis Thresholding

Es(i,j)> HEs(i,j)> H

Es(i,j)<HEs(i,j)<H
Es(i,j)>LEs(i,j)>L

Es(i,j)<LEs(i,j)<LEs(i,j)>LEs(i,j)>L

Strong edges reinforce adjacent weak 
edges
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HYSTERESIS_THRESH

Inputs: 
– IN (output of  NONMAX_SUPRESSION), 

– Eo (output of CANNY_ENHANCER),

– thresholds L and H.

• For all pixels in IN and scanning in a fixed order:
1. Locate the next unvisited pixel s.t. IN(i,j)>H
2. Starting from IN(i,j), follow the chains of connected local 

maxima, in both directions perpendicular to the edge normal, 
as long as IN>L. 

– Mark all visited points, and save the location of the contour 
points. 

Output:  a set of lists describing the contours.
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Hysteresis Thresholding

Es(i,j)> HEs(i,j)> HEs(i,j)>LEs(i,j)>L
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Canny Edge detector - Threshold

Other Edge Detectors

(2nd order derivative filters)
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First-order derivative filters (1D)

• Sharp changes in gray level of the input 
image correspond to “peaks” of the first-
derivative of the input signal.

F(x)F(x) F ’(x)F ’(x)

xx
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Second-order derivative filters (1D)

• Peaks of the first-derivative of the input 
signal, correspond to “zero-crossings” of 
the second-derivative of the input signal.

F(x)F(x) F ’(x)F ’(x)

xx

F’’(x)F’’(x)
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NOTE:

• F’’(x)=0  is not enough!
– F’(x) = c has F’’(x) = 0, but there is no edge

• The second-derivative must change sign, -- i.e. 
from (+) to (-) or from (-) to (+)

• The sign transition depends on the intensity 
change of the image – i.e. from dark to bright or 
vice versa.
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Edge Detection (2D)

1D1D 2D2D

I(x)I(x) I(x,y)I(x,y)

dd22I(x)I(x)
dxdx22

= 0= 0

xx

yy

||∇∇I(x,y)| =(II(x,y)| =(Ix x 
22(x,y) + I(x,y) + Iyy

22(x,y))(x,y))1/2 1/2 > > ThTh

tan tan θθ = I= Ixx(x,y)/ (x,y)/ IIyy(x,y(x,y) ) 

F(x)F(x)

xx

dI(xdI(x))
dxdx

> > ThTh

∇∇22I(x,y) =II(x,y) =Ix x x x (x,y) + (x,y) + IIyyyy (x,y)=0(x,y)=0

LaplacianLaplacian
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Notes about the Laplacian:

• ∇∇22I(x,y) is a SCALARI(x,y) is a SCALAR
–– ↑↑ Can be found using a SINGLE maskCan be found using a SINGLE mask
–– ↓↓ Orientation information is lostOrientation information is lost

•• ∇∇22I(x,y) is the sum of SECONDI(x,y) is the sum of SECOND--order derivativesorder derivatives
–– But taking derivatives increases noiseBut taking derivatives increases noise
–– Very noise sensitive!Very noise sensitive!

•• It is always combined with a smoothing operation:It is always combined with a smoothing operation:

SmoothSmooth LaplacianLaplacian
I(x,y)I(x,y) O(x,y)O(x,y)
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LOG Filter

• First smooth (Gaussian filter),
• Then, find zero-crossings (Laplacian filter):

– O(x,y) = ∇∇22((I(x,y) * G(x,y))I(x,y) * G(x,y))
• Using linearity:

–– O(x,y) = ∇∇22G(x,y) * I(x,y)G(x,y) * I(x,y)
–– This filter is called: “This filter is called: “LaplacianLaplacian of the Gaussian” of the Gaussian” 

(LOG)(LOG)
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1D Gaussian
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First Derivative of a Gaussian
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As a mask, it is also computing a difference (derivative)As a mask, it is also computing a difference (derivative)
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Second Derivative of a Gaussian
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