

Face detection

Basic idea: slide a window across image and evaluate a face model at every location

Challenges of face detection

- Sliding window detector must evaluate tens of thousands of location/ scale combinations Faces are rare: 0–10 per image .
- - For computational efficiency, we should try to spend as little time as possible on the non-face windows
 - A megapixel image has ${\sim}10^6$ pixels and a comparable number of candidate face locations
 - To avoid having a false positive in every image image, our false positive rate has to be less than 10^{-6}

The Viola/Jones Face Detector

- A seminal approach to real-time object detection
- Training is slow, but detection is very fast
- Key ideas
 - Integral images for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones. <u>Rapid object detection using a boosted cascade of simple features.</u> CVPR 2001.

P. Viola and M. Jones. <u>Robust real-time face detection.</u> IJCV 57(2), 2004.

A totally different idea

- Use many very simple features
- Learn cascade of tests for target object
- Efficient if:
- features easy to compute
 - cascade short

Using Many Simple Features Viola Jones / Haar Features (Generalized) Haar Features: Central Control (Control (Control

Feature selection

- For a 24x24 detection region, the number of possible rectangle features is ~160,000!
- At test time, it is impractical to evaluate the entire feature set
- Can we create a good classifier using just a small subset of all possible features?
- How to select such a subset?

Boosting

- Boosting is a classification scheme that works by combining weak learners into a more accurate ensemble classifier
 A weak learner need only do better than chance
- Training consists of multiple boosting rounds
- During each boosting round, we select a weak learner that does well on examples that were hard for the previous weak learners
- "Hardness" is captured by weights attached to training examples

Y. Freund and R. Schapire, <u>A short introduction to boosting</u>, Journal of Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999.

Problem

- How to avoid evaluating (all possible rectangles in 24 x 24 window ?
- For a 24x24 detection region, the number of possible rectangle features is ~160,000!
 At test time, it is impractical to evaluate the entire feature set
- Can we create a good classifier using just a small subset of all possible features?
- How to select such a subset?
- Answer: Boosting [AdaBoost, Freund/Shapire]
 Finds small set of features that are "sufficient"
 - Generalizes very well
 - Requires positive and negative examples

AdaBoost learning algorithm

Discrete AdaBoost(Freund & Schapire 1996b) 1. Start with weights $w_i = 1/N, i = 1, ..., N$.

- 2. Repeat for m = 1, 2, ..., M:

- (a) Fit the classifier $f_m(x) \in \{-1,1\}$ using weights u_i on the training data. (b) Compute $\operatorname{err}_m = E_w[1_{(y \notin f_m(x))}], c_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m).$ (c) Set $w_i \leftarrow w_i \exp[c_m \cdot 1_{(y_i \notin f_m(x_i))}], i = 1, 2, \dots N$, and renormalize so that $\sum_i w_i = 1$.
- 3. Output the classifier sign $\left[\sum_{m=1}^{M} c_m f_m(x)\right]$

Boosting for face detection

Define weak learners based on rectangle features

$$h_{t}(x) = \begin{cases} 1 & \text{if } p_{t}f_{t}(x) > p_{t}\theta_{t} \\ 0 & \text{otherwise} \quad \uparrow \\ \text{parity} \quad \text{threshold} \end{cases}$$

Boosting for face detection

- · Define weak learners based on rectangle features
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Select best threshold for each filter Select best filter/threshold combination

 - Reweight examples

.

Computational complexity of learning: O(MNK) • *M* rounds, *N* examples, *K* features

Boosting for face detection First two features selected by boosting:

۱d

Summary Viola-Jones

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fast rejection of negative windows
- Many simple features
 Generalized Haar features (multi-rectangles)
 Easy and efficient to compute
- Discriminative Learning:
 - finds a small subset for object recognition
 - Uses AdaBoost
- Result: Feature Cascade
 - 15fps on 700Mhz Laptop (=fast!)
- Applications, Face detection, Car detection, Many others