Rigid Body Motion and Image Formation

Jana Kosecka, CS 482

3-D Euclidean Space - Vectors

A "free" vector is defined by a pair
of points (p, q)
$\boldsymbol{X}_{p}=\left[\begin{array}{c}X_{1} \\ Y_{1} \\ Z_{1}\end{array}\right] \in \mathbb{R}^{3}, \boldsymbol{X}_{q}=\left[\begin{array}{c}X_{2} \\ Y_{2} \\ Z_{2}\end{array}\right] \in \mathbb{R}^{3}$,
Coordinates of the vector :
$v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{c}X_{2}-X_{1} \\ Y_{2}-Y_{1} \\ Z_{2}-Z_{1}\end{array}\right] \in \mathbb{R}^{3}$

3D Rotation of Points - Euler angles

Rotation around the coordinate axes, counter-clockwise:
$\left[\begin{array}{ccc}\cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta\end{array}\right],\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha\end{array}\right]$

$$
R=R_{z}(\gamma) R_{y}(\beta) R_{x}(\alpha)
$$

Rotation Matrices in 3D

- 3 by 3 matrices
- 9 parameters - only three degrees of freedom
- Representations - either three Euler angles
- or axis and angle representation

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- Properties of rotation matrices (constraints between the elements)

$$
\begin{aligned}
R R^{T} & =I \\
\operatorname{det}(R) & =I
\end{aligned}
$$

Rotation Matrices in 3D

- 3 by 3 matrices
- 9 parameters - only three degrees of freedom
- Representations - either three Euler angles
- or axis and angle representation

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- Properties of rotation matrices (constraints between the elements)
$R . R^{T}=I \quad r_{i}^{T} r_{j}=\delta_{i j} \doteq\left\{\begin{array}{ll}1 & \text { for } i=j, \\ 0 & \text { for } i \neq j,\end{array} \quad \forall i, j \in\{1,2,3\}\right.$.
$\operatorname{det}(R)=I \quad$ Columns are orthonormal

Canonical Coordinates for Rotation

Property of R $\quad R(t) R^{T}(t)=I$
Taking derivative
$\dot{R}(t) R^{T}(t)+R(t) \dot{R}^{T}(t)=0 \quad \Rightarrow \quad \dot{R}(t) R^{T}(t)=-\left(\dot{R}(t) R^{T}(t)\right)^{T}$
Skew symmetric matrix property

$$
\dot{R}(t) R^{T}(t)=\widehat{\omega}(t)
$$

By algebra

$$
\dot{R}(t)=\widehat{\omega} R(t)
$$

By solution to ODE

$$
R(t)=e^{\widehat{\omega} t}
$$

3D Rotation (axis \& angle)

Solution to the ODE

$$
\begin{aligned}
& \qquad R(t)=e^{\widehat{\omega} t} \\
& \qquad R=I+\widehat{\omega} \sin (\theta)+\widehat{\omega}^{2}(1-\cos (\theta)) \\
& \text { with } \quad\|\omega\|=1 \quad \omega=\left[\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right] \in \mathbb{R}^{3} \\
& \text { or } \\
& R=I+\frac{\widehat{\omega}}{\|\omega\|} \sin (\|\omega\|)+\frac{\hat{\omega}^{2}}{\|\omega\|^{2}}(1-\cos (\|\omega\|))
\end{aligned}
$$

Rotation Matrices

Given

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right],
$$

How to compute angle and axis
$\|\omega\|=\cos ^{-1}\left(\frac{\operatorname{trace}(R)-1}{2}\right), \quad \frac{\omega}{\|\omega\|}=\frac{1}{2 \sin (\|\omega\|)}\left[\begin{array}{l}r_{32}-r_{23} \\ r_{13}-r_{31} \\ r_{21}-r_{12}\end{array}\right]$.

Rigid Body Motion - Homogeneous Coordinates

3-D coordinates are related by: $\quad \boldsymbol{X}_{c}=R \boldsymbol{X}_{w}+T$,
Homogeneous coordinates:

$$
\boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \quad \rightarrow \quad \boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \in \mathbb{R}^{4}
$$

Homogeneous coordinates are related by:

$$
\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{ll}
R & T \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

Rigid Body Motion - Homogeneous

 Coordinates3-D coordinates are related by: $\quad \boldsymbol{X}_{c}=R \boldsymbol{X}_{w}+T$,
Homogeneous coordinates:

$$
\boldsymbol{X}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \quad \rightarrow \quad \boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \in \mathbb{R}^{4},
$$

Homogeneous coordinates are related by:

$$
\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{ll}
R & T \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

Properties of Rigid Body Motions

Rigid body motion composition

$$
\bar{g}_{1} \bar{g}_{2}=\left[\begin{array}{cc}
R_{1} & T_{1} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
R_{2} & T_{2} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R_{1} R_{2} & R_{1} T_{2}+T_{1} \\
0 & 1
\end{array}\right] \quad \in S E(3)
$$

Rigid body motion inverse

$$
\bar{g}^{-1}=\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
R^{T} & -R^{T} T \\
0 & 1
\end{array}\right] \quad \in S E(3) .
$$

Rigid body motion acting on vectors
Vectors are only affected by rotation $-4^{\text {th }}$ homogeneous coordinate is zero

Rigid Body Transformation

Coordinates are related by: $\quad \boldsymbol{X}_{c}=R \boldsymbol{X}_{w}+T$,
Camera pose is specified by: $\quad g=(R, T) \in S E(3)$

Image Formation

- If the object is our lens the refracted light causes the images
- How to integrate the information from all the rays being reflected from the single point on the surface?
- Depending in their angle of incidence, some are more refracted then others - refracted rays all meet at the point - basic principles of lenses
- Also light from different surface points may hit the same lens point but they are refracted differently - Kepler's retinal theory

Thin lens equation

- Idea - all the rays entering the lens parallel to the optical axis on one side, intersect on the other side at the point.

- distance behind the lens at which points becomes in focus depends on the distance of the point from the lens
- in real camera lenses, there is a range of points which are brought into focus at the same distance
- depth of field of the lens, as Z gets large - z^{\prime} approaches f
- human eye - power of accommodation - changing f

Image Formation - Perspective Projection

"The School of Athens," Raphael, 1518

More on homogeneous coordinates

In homogenous coordinates - these represent the Same point in 3D

$$
[X, Y, Z, 1]^{T}, \quad[X W, Y W, Z W, W]^{T} \quad \in \mathbb{R}^{4}
$$

The first coordinates can be obtained from the second by division by W

What if W is zero?
Special point - point at infinity - more later
In homogeneous coordinates - there is a difference between point and vector

Pinhole Camera Model

- Image coordinates are nonlinear function of world coordinates
- Relationship between coordinates in the camera frame and sensor plane

2-D coordinates $\boldsymbol{x}=\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{f}{Z}\left[\begin{array}{l}X \\ Y\end{array}\right]$
Homogeneous coordinates
$\boldsymbol{x} \rightarrow\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]=\frac{1}{Z}\left[\begin{array}{c}f X \\ f Y \\ Z\end{array}\right], \quad \boldsymbol{X} \rightarrow\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]$,
$Z\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\underbrace{\left[\begin{array}{lll}f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1\end{array}\right]}_{K_{f}} \underbrace{\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]}_{0}\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]$

Image Coordinates

- Relationship between coordinates in the sensor plane and image

$$
\boldsymbol{x}^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & s_{\theta} & o_{x} \\
0 & s_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \quad \begin{gathered}
\text { metric } \\
\text { coordinates }
\end{gathered}
$$

Linear transformation K_{s}
pixel
coordinates

rmation

Calibration Matrix and Camera Model

- Relationship between coordinates in the world frame and image

Pinhole camera Pixel coordinates

$$
\lambda \boldsymbol{x}=K_{f} \Pi_{0} \boldsymbol{X} \quad \boldsymbol{x}^{\prime}=K_{s} \boldsymbol{x}
$$

$$
\lambda \boldsymbol{x}^{\prime}=\left[\begin{array}{ccc}
f s_{x} & f s_{\theta} & o_{x} \\
0 & f s_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

More compactly $\quad \lambda x=K_{f} \Pi_{0} g X=\Pi X$

Transformation between camera coordinate Systems and world coordinate system

Radial Distortion

Nonlinear transformation along the radial direction

Distortion correction: make lines straight
 Coordinates of distorted points

Image of a point

Homogeneous coordinates of a 3-D point p

$$
\boldsymbol{X}=[X, Y, Z, W]^{T} \in \mathbb{R}^{4}, \quad(W=1)
$$

Homogeneous coordinates of its 2-D image

$$
\boldsymbol{x}=[x, y, z]^{T} \in \mathbb{R}^{3}, \quad(z=1)
$$

Projection of a 3-D point to an image plane

$$
\lambda x=\Pi X
$$

$\lambda \in \mathbb{R}, \Pi=[R, T] \in \mathbb{R}^{3 \times 4}$

$$
\lambda \boldsymbol{x}^{\prime}=\Pi \boldsymbol{X}
$$

$\lambda \in \mathbb{R}, \Pi=[K R, K T] \in \mathbb{R}^{3 \times 4}$

Image of a line - homogeneous representation

Homogeneous representation of a 3-D line L
$\boldsymbol{X}=\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]=\left[\begin{array}{c}X_{o} \\ Y_{o} \\ Z_{o} \\ 1\end{array}\right]+\mu\left[\begin{array}{c}V_{1} \\ V_{2} \\ V_{3} \\ 0\end{array}\right], \quad \mu \in \mathbb{R}$
Homogeneous representation of its 2-D image

$$
\boldsymbol{l}=[a, b, c]^{T} \in \mathbb{R}^{3}
$$

Projection of a 3-D line to an image plane

$$
\boldsymbol{l}^{T} \boldsymbol{x}=\boldsymbol{l}^{T} \sqcap \boldsymbol{X}=0
$$

$$
\Pi=[K R, K T] \in \mathbb{R}^{3 \times 4}
$$

Image of a line-2D representations

Representation of a 3-D line

$$
\boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
X_{o} \\
Y_{o} \\
Z_{o}
\end{array}\right]+\mu\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right], \quad \mu \in \mathbb{R}
$$

Projection of a line - line in the image plane

$$
\begin{aligned}
x & =\frac{X_{o}+\lambda V_{1}}{Z_{o}+\lambda V_{3}} \\
y & =\frac{Y_{o}+\lambda V_{2}}{Z_{0}+\lambda V_{3}}
\end{aligned}
$$

Special cases - parallel to the image plane, perpendicular When λ-> infinity - vanishing points
In art-1-point perspective, 2-point perspective, 3-point perspective

Different sets of parallel lines in a plane intersect at vanishing points, vanishing points form a horizon line

Ames Room Illusions

Which of the two monsters is bigger?

