

Finding lines in an image

- Option 1:
- Search for the line at every possible position/orientation
- What is the cost of this operation?
- Option 2:
- Use a voting scheme: Hough transform

Finding lines in an image

- Connection between image (x, y) and Hough (m, b) spaces
- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
- given a set of points (x, y), find all (m, b) such that $y=m x+b$

CS482, Jana Kosecka

Finding lines in an image

- Connection between image (x, y) and Hough (m, b) spaces
- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
- given a set of points (x, y), find all (m, b) such that $y=m x+b$
- What does a point $\left(x_{0}, y_{0}\right)$ in the image space map to?
- A : the solutions of $b=-x_{0} m+y_{0}$

$$
\begin{aligned}
& \text { - this is a line in Hough space } \\
& \text { cs482, Jana Kosecka }
\end{aligned}
$$

Hough transform algorithm

- Typically use a different parameterization

$$
d=x \cos \theta+y \sin \theta
$$

- d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis
- Why?

Idea - keep an accumulator array (Hough space) and let each edge pixel contribute to it Line candidates are the maxima in the accumulator array

Typical Hough Transform
Basic Hough transform algorithm

1. Initialize $H[d, ~ \theta]=0$
2. For each edge point $I[x, y]$ in the image
3. For $\theta=0$ to 180
$H[\mathrm{~d}, \theta]+=1$ where $\quad d=x \cos \theta+y \sin \theta$

- point is now a sinusoid in Hough space
- Find the value(s) of (d, θ) where
$H[d, \theta]$ is maximum
The detected line in the image is given by

$$
d=x \cos \theta+y \sin \theta
$$

What's the running time (measured in \# votes)?

CS482, Jana Kosecka

Extensions

- Extension 1: Use the image gradient

1. Initialize
2. for each edge point $I[x, y]$ in the image
compute unique (d, θ) based on image gradient at (x, y) $H[d, \theta]+=1$
3. Find the value(s) of (d, θ) where $H[d, \theta]$ is maximum
4. Extension 2

- give more votes for stronger edges
- The same procedure can be used with circles, squares, or any other shape

Hough Transform for Curves

- The H.T. can be generalized to detect any curve that can be expressed in parametric form:
$-Y=f(x, a 1, a 2, . . a p)$
- a1, a2, ... ap are the parameters
- The parameter space is p-dimensional
- The accumulating array is LARGE!

H.T. Summary

- H.T. is a "voting" scheme
- points vote for a set of parameters describing a line or curve.
- The more votes for a particular set
- the more evidence that the corresponding curve is present in the image.
- Can detect MULTIPLE curves in one shot.
- Computational cost increases with the number of parameters describing the curve.

Line fitting

Non-max suppressed gradient magnitude

- Edge detection, non-maximum suppression
(traditionally Hough Transform - issues of resolution, threshold selection and search for peaks in Hough space)
- Connected components on edge pixels with similar orientation - group pixels with common orientation

CS482, Jana Kosecka

Finding Corners

Intuition:

- Right at corner, gradient is ill defined.
- Near corner, gradient has two different values.

First, consider case where:
$C=\left[\begin{array}{ll}\sum I_{x}^{2} & \sum I_{x} I_{y} \\ \sum I_{x} I_{y} & \sum I_{y}^{2}\end{array}\right]=\left[\begin{array}{ll}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$
This means all gradients in neighborhood are: $(k, 0)$ or $(0, c)$ or $(0,0)$ (or off-diagonals cancel).
What is region like if:

1. $I 1=0$?
2. $12=0$?
3. $11=0$ and $12=0$?
4. $11>0$ and $12>0$?

So, to detect corners

- Filter image.
- Compute magnitude of the gradient everywhere.
- We construct C in a window.
- Use Linear Algebra to find $\lambda 1$ and $\lambda 2$.
- If they are both big, we have a corner.

General Case:

From Linear Algebra, it follows that because C is symmetric:

$$
C=R^{-1}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] R
$$

With R a rotation matrix.
So every case is like one on last slide.
CS482, Jana Kosecka
Point Feature Extraction
$G=\left[\begin{array}{cc|}\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}\end{array}\right]$

- Compute eigenvalues of G
- If smalest eigenvalue σ of G is bigger than τ - mark pixel as candidate
feature point

$C(G)=\operatorname{det}(G)+k \cdot$ trace $^{2}(G)$

- Alternatively feature quality function (Harris Corner Detector)
C Jana Kosecka

