
Image Segmentation

Regions and Edges

Regions and Edges

•! Edges are found based on DIFFERENCES between values of

adjacent pixels.

•! Regions are found based on SIMILARITIES between values

of adjacent pixels.

•! Goal associate some higher level – more meaningful units with

the regions of the image

Segmentation

•! Useful mid-level representation of an image - can facilitate

better further tasks

•! Partitioning image into regions should be homogeneous with
respect to some characteristic

•! (gray level, texture, color, motion)

•! The type of desired segmentation depends on the task

•! Broad theory is absent at present

•! Variety of approaches/algorithms

•! Applications finding people, summarizing video, annotation
figures, background subtraction, finding buildings/rivers in

satellite images

Segmentation and Grouping

•! Grouping (or clustering)

–! collect together tokens that “belong together”

•! Fitting

–! associate a model with tokens

–! issues

•! which model?

•! which token goes to which element?

•! how many elements in the model?

Examples of grouping

•! Group video to shots

•! Object –level grouping (find cars, bikes)

•! Determine image regions belonging to objects

•! Group foreground/background pixels

Grouping in humans

•! Figure-ground
discrimination

–! grouping can be seen
in terms of allocating
some elements to a
figure, some to
ground

–! impoverished theory

•! Gestalt properties

–! elements in a collection
of elements can have
properties that result
from relationships
(Muller-Lyer effect)

•!Gestalt-qualitat

–! A series of factors affect
whether elements should
be grouped together

•!Gestalt factors

Binary segmentation

•! Segmentation for simple binary images

•! How do we choose the threshold t for segmentation?

•! Histogram (h) - gray level frequency distribution of the
gray level image F.

–! hF(g) = number of pixels in F whose gray level is g

–! HF(g) = number of pixels in F whose gray level is <=g

Thresholding

•! Peak and valley method

–! Find the two most prominent peaks of h

•! g is a peak if hF(g) > hF(g ± !g), !g = 1, ..., k

–! Let g1 and g2 be the two highest peaks, with g1 < g2

–! Find the deepest valley, g, between g1 and g2

•! g is the valley if hF(g) <= hF(g’) , g,g’ in [g1, g2]

–! Use g as the threshold

Triangle algorithm

•! A line is constructed between the

maximum of the histogram at
brightness bmax and the lowest

value bmin = (p=0)% in the image.

•! The distance d between the line
and the histogram h[b] is

computed for all values of b from b

= bmin to b = bmax.

•! The brightness value bo where the
distance between h[bo] and the line

is maximal is the threshold value.

•! This technique is particularly
effective when the object pixels

produce a weak peak in the
histogram.

Thresholding

•! Hand selection

–! select a threshold by hand at the beginning of the day

–! use that threshold all day long!

•! Many threshold selection methods in the literature

–! Probabilistic methods

•!make parametric assumptions about object and
background intensity distributions and then derive
“optimal” thresholds

–! Structural methods

•! Evaluate a range of thresholds wrt properties of
resulting binary images

–! one with straightest edges, most easily recognized
objects, etc.

–! Local thresholding

•! apply thresholding methods to image windows

An advanced probabilistic threshold selection
method - minimizing Kullback information

distance

•! Suppose the observed histogram, f, is a mixture of the
gray levels of the pixels from the object(s) and the
pixels from the background

–! in an ideal world the histogram would contain just
two spikes (this depends of the class of images/
objects)

–! but

•!measurement noise

•!model noise (e.g., variations in ink density within
a character)

•! edge blur (misalignment of object boundaries
with pixel boundaries and optical imperfections of
camera)

spread these spikes out into hills

Kullback information distance

•! Make a parametric model of the
shapes of the component
histograms of the objects(s) and
background

•! Parametric model - the
component histograms are
assumed to be Gaussian

–! po and pb are the proportions
of the image that comprise the
objects and background

!! µo and µb are the mean gray
levels of the objects and
background

!! "o and "b- are their standard
deviations

Kullback information distance

•! Now, if we hypothesize a threshold, t, then all of these

unknown parameters can be approximated from the image
histogram.

•! Let f(g) be the observed and normalized histogram

–! f(g) = percentage of pixels from image having gray level g

Kullback information distance

•! So, for any hypothesized t, we can “predict” what the total

normalized image histogram should be if our model (mixture
of two Gaussians) is correct.

–! Pt(g) = pofo(g) + pbfb(g)

•! The total normalized image histogram is observed to be f(g)

•! So, the question reduces to:

–! determine a suitable way to measure the similarity of P
and f

–! then search for the t that gives the highest similarity

Kullback information distance

•! A suitable similarity measure is the Kullback directed

divergence, defined as

 If Pt matches f exactly, then each term of the sum is 0 and
K(t) takes on its minimal value of 0

•! Gray levels where Pt and f disagree are penalized by the log
term, weighted by the importance of that gray level (f(g))

An alternative - minimize probability of

error

•! Using the same mixture model, we can search for the t that

minimizes the predicted probability of error during
thresholding

•! Two types of errors

–! background points that are marked as object points.
These are points from the background that are darker than
the threshold

–! object points that are marked as background points. These
are points from the object that are brighter than the
threshold

An alternative - mimimize probability of

error

•! For each “reasonable”
threshold

–! compute the
parameters of the two
Gaussians and the
proportions

–! compute the two
probability of errors

•! Find the threshold that
gives

–! minimal overall error

–! most equal errors

Segmentation by Clustering

•! Pattern recognition

•! Process of partitioning a set of ‘patterns’ into clusters

•! Find subsets of points which are close together

•! Examples

-! Cluster pixels based on intensity values

-! Color properties

-! Motion/optical flow properties

-! Texture measurements etc.

Input – set of measurements x1, x2, …, xm

Output – set of clusters and their centers

Clustering
•! Find set of clusters such that the least squares

Error is minimized

Iterative K-means clustering algorithm
1.! set iter = 1;
2.! Choose randomly K-means m1, … mk
3.! For each data point xi, compute distance
 to each of the means and assign the point
 the cluster with the nearest mean
4. iter = iter + 1
5. Recompute the means based on the new assignments
 of points to clusters
6. Repeat 3-5 until the cluster centers do not change much

K-means clustering using intensity alone and color alone!

Image! Clusters on intensity! Clusters on color!

K-means using color alone, 11 segments!

Image! Clusters on color!

K-means using!

color alone,!

11 segments.!

K-means using colour and!

position, 20 segments!

Clustering
•! Pros

•! simple, fast to compute

•! If k is large (approximate nearest neighbour
methods for computing distances to clusters)

•! Converges to local minimum of within cluster
squared error

•! Cons

•! How large is K ?

•! Sensitive to initial outliers

•! Detection of spherical clusters

•! Assumes that means can be computed

•! Issues: Depending what we choose as feature space
we get different clusters (color, textures, motion etc)

•! Clusters often not spatially coherent

Segmentation and clustering

•! Texture based clustering

•! Group pixels based on
texture similarity

•! Texture representation

•! Cluster output of the filter
banks – clusters are so

called textons

•! Example – histograms of
textons computed over

window

•! In the lecture on texture – we

can classify the entire image
based on histogram of textons

•! Recognition was done by
finding a images with the
closest histogram

•! Histogram distance was
measure using chi-squared
distance between histograms

Texture Segmentation

Segmentation with EM

•! There are n – pixels and g groups – compute how likely is a

pixel belonging to group and also what are the parameters of
the group

•! Probabilistic K-means clustering

•! E.g. Use of texture and color cues

Figure from “Color and Texture Based Image Segmentation Using EM and Its Application to Content

Based Image Retrieval”,S.J. Belongie et al., Proc. Int. Conf. Computer Vision, 1998, c1998, IEEE!

Segmentation with EM

Motion Segmentation

Given a set of image points obtain:

–! Number of independently moving objects

–! Segmentation: object to which each point belongs

–! Motion: rotation and translation of each object

–! Structure: depth of each point

Three frames from the MPEG “flower garden” sequence

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE

Transactions on Image Processing, 1994, c 1994, IEEE!

Motion Segmentation Problem

•! Given optical flow at each point

•! partition/segment the flow field into regions belonging to

 individual planes “layers”

Some example slides from Forsythe and Ponce. Computer Vision, A modern approach.

Model Estimation and Grouping
•! Given a set of data points and a particular model

•! The model parameters can be estimated by LSE

 fitting data to the model

•! Previous model examples – essential/fundamental
matrix, homographies, lines/planes

•! In order to estimate the model parameters we need to

 know which data point belongs to which model

•! Difficulty – we have multiple models – we do not know
initially which data point belongs to which model and we
do not the model parameters

•! chicken and egg problem

Model Estimation and Grouping

•! Line Example

•! Set of points belonging to two lines

•! We need to estimate

 1. parameters of the lines

 slope and intercept

 2. which point belongs to

 which line

Solution: EM algorithm

Idea: Each of the above steps

Assumes the other one is

solved and iterate

EM algorithm

•! Basic structure of the EM algorithm

•! 1. Start with random parameter values for each model

•! 2. Iterate until parameter values converge

 E step: assign points to the model that fits best

 M step : update the parameters of the models using

 only points assigned to it

Simplistic explanation here –

Theoretical foundation probabilistic (model parameters

are random variables) - EM (Expectation Maximization)

E- Step

•! Case of two lines given by slopes and intercepts

•! For each data point i, estimate the residual

 (difference between the prediction and the model)

•! Calculate the weights, which correspond to the probabilities
of particular data point belonging to particular model

M-step

•! Given the weights recalculate the parameters of the

model

•! Least squares estimation of line parameters

•! In our case we will have weighted least squares
estimation of line parameters

•! Solve such estimation problem twice – once for each line

M-step

•! Iterate until the parameters of the

•! Lines converge

•! Issues with EM

•! Local maxima

–! can be a serious nuisance in some problems

–! no guarantee that we have reached the “right”
maximum

•! Starting if we do not know how many models we

 have

–! k means to cluster the points is often a good idea

Example: motion segmentation

•! Consider motion model, when the flow field

 can be approximated by some parametric model

 with small number of parameters

•! We can write x and y parameters of the flow field –

 assume that models are locally translational, i.e.

 we can locally approximate the model by pure translation

•! Suppose entire flow field can be explained by

 two translational models

•! EM algorithm can be applied in analogous way

Example: motion segmentation

•! Compute residuals

•! Compute associated weights

•! M-step analogous to line fitting

Iterate until convergence

•! Model image pair (or video sequence) as consisting

of regions of parametric motion

–! affine motion – commonly used –

–! Approximates locally motion of the planar surface

•! Now we need to

–! determine which pixels belong to which region

–! estimate parameters

Example: motion segmentation

Three frames from the MPEG “flower garden” sequence!

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE

Transactions on Image Processing, 1994, c 1994, IEEE!

Grey level shows region no. with highest probability!

Segments and motion fields associated with them!
Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE

Transactions on Image Processing, 1994, c 1994, IEEE!

Other examples

•! Segmentation

–!a segment is a gaussian that emits
feature vectors (which could contain
color; or color and position; or color,
texture and position).

–! segment parameters are mean and
(perhaps) covariance

–! if we knew which segment each point
belonged to, estimating these
parameters would be easy

Some generalities

•! Many, but not all problems that can be attacked with
EM can also be attacked with RANSAC

–! need to be able to get a parameter estimate with
a manageably small number of random choices.

–! RANSAC is usually better

•! We wish to choose a model to fit to data

–! e.g. is it a line or a circle?

–! e.g is this a perspective or orthographic camera?

–! e.g. is there an airoplane there or is it noise?

–! In general, models with more parameters will fit a
dataset better, but are poorer at prediction

Segmentation as Graph Partitioning

•! (Shi & Malik ‘’97)

•! Idea – each pixel in the image is a node in the graph

•! Arcs represent similarities between adjacent pixels

•! Graph is fully connected

•! Goal – partition the graph into a sets of vertices

 (regions), such that the similarity within the region

 is high – and similarity across the regions is low.

- See textbook (Ponce and Forsythe) for detailed description
the algorithm.

Segmentation

•! Toy example
•! Bright entries in the affinity matrix high
•! Likely to belong together

•! one possible affinity based on distance

!

aff x, y() = exp " 1
2# d

2

$
%

&
'
x " y

2()(
)
*

+
,
-

Scale affects affinity

!

aff x, y() = exp " 1
2# d

2

$
%

&
'
x " y

2()(
)
*

+
,
-

Measuring Affinity

Intensity!

Texture!

Distance!

!

aff x, y() = exp " 1
2# i

2

$
%

&
'
I x()" I y()

2()(
)
*

+
,
-

!

aff x, y() = exp " 1
2# d

2

$
%

&
'
x " y

2()(
)
*

+
,
-

!

aff x, y() = exp " 1
2# t

2

$
%

&
'
c x()" c y()

2()(
)
*

+
,
-

Graph theoretic clustering

Example: Graph theoretic clustering

Eigenvectors and segmentation

Spectral clustering

•! Simplest idea: we want
a vector giving the
association between each
element and a cluster

•! We want elements within
this cluster to, on the
whole, have strong
affinity with one another

•! We could maximize

•! But need the constraint

To avoid arbitrary scaling of
entries of vector a

•! This is an eigenvalue
problem - choose the
eigenvector of A with
largest eigenvalue -
single good cluster

•! Vector a – indicator
vector denoting how
likely is the element to
be associated with the
cluster

!

a
T
Aa

!

a
T
a = 1

Example eigenvector

points!

matrix!

eigenvector!

More than two segments

•! Reasoning about other eigenvectors - consider that
affinity matrix is block diagonal.

•! Until there are sufficient clusters pick eigenvector
associated with the largest eigenvalue, zero the
elements which were clustered, threshold elements with
large association weights - those will form a new cluster

•! Keep going until there is sufficient number of clusters
and all elements have been accounted for

•! Spectral Clustering Techniques (A. Ng and M. Jordan)

•! Problems - if the eigenvalues are similar - eigenvectors
do not reveal the clusters

•! Normalized cut - graph cut - alternative optimization
criterion J. Shi and J. Malik

Normalized Cuts

•! Find set of links whose removal will make the graph

disconnected

•! Min cut idea

•! Tends to produce small isolated clusters

•! Normalized cut

•! assoc(A,V) sum of weight of all edges with one end in A

Normalized cuts

•! Goal is to minimzie Ncut values

•! In general NP-complete

•! Approximate solutions for minimizing the Ncut value:
generalized eigenvalue problem

•! Now look for a quantization threshold that maximises the
criterion --- i.e all components of y above that threshold go to
one, all below go to –b

•! More details in the tutorial slides

!

maxy y
T
D "W()y() subject to y

T
Dy = 1()

!

D "W()y = #Dy

Graph Cuts, MRF’s

Graph Cut

Graph Cut

Interactive Foreground
Segmentation

Segmentation of Time Varying Images

(and tracking)

Technique: Shot Boundary Detection

•! Find the shots in a
sequence of video

–! shot boundaries
usually result in big
differences between
succeeding frames

•! Strategy:

–! compute interframe
distances

–! declare a boundary
where these are big

•! Possible distances

–! frame differences

–! histogram differences

–! block comparisons

–! edge differences

•! Applications:

–! representation for
movies, or video
sequences

•! find shot
boundaries

•! obtain “most
representative”
frame

–! supports search

Vision Based Localization

Buidling Model of the environment from
video

•! Impose some discrete structure on the space of
 continuous visual observations
•! Develop methods applicable to large scale environments
•! Associate semantic labels with individual locations
 (corridor, hallway, office)

Issues for Vision Based Localization
•! Representation of individual locations
•! Learning neighborhood relationships between locations

Same location ?

Global Topology and Local Geometry of

the Environment

Partitioning the video sequence

•! Transitions between individual locations determined

 during exploration

•! Location sub-sequence across which frames can be
matched successfully

•! (matching cri

•! Location Representation - set of representative views

of frames vs. # of matched features 1st – i-th view

video digital camera

Technique: Background Subtraction

•! If we know what the
background looks like, it
is easy to identify
“interesting bits”

•! Applications

–! Person in an office

–! Tracking cars on a
road

–! surveillance

•! Approach:

–! use a moving average
to estimate
background image

–! subtract from current
frame

–! large absolute values
are interesting pixels

•! trick: use
morphological
operations to clean
up pixels

Image Differencing

Image Differencing: Results

1 frame difference 5 frame difference

Motion detection

•! Background subtraction

–! create an image of the stationary background by averaging
a long sequence

•! for any pixel, most measurements will be from the
background

•! computing the median measurements, for example, at
each pixel, will with high probability assign that pixel the
true background intensity - fixed threshold on
differencing used to find “foreground” pixels

•! can also compute a distribution of background pixels by
fitting a mixture of Gaussians to set of intensities and
assuming large population is the background - adaptive
thresholding to find foreground pixels

A 300-Frame Sequence with a “Busy”
Background

click to start movie

Motion Detection

–! difference a frame from the known background
frame

•! even for interior points of homogeneous objects,
likely to detect a difference

•! this will also detect objects that are stationary but
different from the background

•! typical algorithm used in surveillance systems

•! Motion detection algorithms such as these only work if
the camera is stationary and objects are moving against
a fixed background

Background Subtraction: Results

Confidence corresponds to gray-level value.

High confidence – bright pixels, low confidence – dark pixels.

Background modeling: color-based

•! At each pixel model colors (r,g,b) or gray-level values g. The

following equations are used to recursively estimate the mean and
the variance at each pixel:

 where zt+1 is the current measurement. The mean µ and the variance
" can both be time varying. The constant # is set empirically to

control the rate of adaptation (0<#<1). $

•! A pixel is marked as foreground if given red value r (or for any other
measurement, say g or b) we have

Background model

•! "rcam is the variance of the camera noise, can be estimated from

image differences of any two frames.

•! If we compute differences for all channels, we can set a pixel as
foreground if any of the differences is above the preset threshold.

•! Noise can be cleaned using connected component analysis and
ignoring small components.

•! Similarly we can model the chromaticity values rc, gc and use them
for background subtraction:

 rc=r/(r+g+b), gc=g/(r+g+b)

Background model: edge-based

•! Model edges in the image. This can be done two different
ways:

–! Compute models for edges in a the average background
image

–! Subtract the background (model) image and the new frame;
compute edges in the subtraction image; mark all edges
that are above a threshold.

•! The threshold can be learned from examples

•! The edges can be combined (color edges) or computed
separately for all three color channels

Foreground model

•! Use either color histograms (4-bit per color), texture features,
edge histograms to model the foreground

•! Matching the foreground objects between frames: tracking

•! Can compare foreground regions directly: shift and subtract.
SSD or correlation: M, N are two foreground regions.

Histogram Matching

•! Histogram Intersection

•! Chi Squared Formula

Surveillance: Interacting people

Background Subtraction

Background Subtraction

