Image Segmentation
Some slides: courtesy of O. Capms, Penn State,
J.Ponce and D. Fortsyth, Computer Vision Book

Regions and Edges

Ideally, regions are bounded by closed contours

- We could "fill" closed contours to obtain regions
- We could "trace" regions to obtain edges
- Unfortunately, these procedures rarely produce satisfactory results.

J. Kosecka

Regions and Edges

Edges are found based on DIFFERENCES between values of adjacent pixels.
Regions are found of adjacent pixels.
Goal associate some higher level - more meaningful units with the regions of the image
J. Kosecka

Segmentation

Useful mid-level representation of an image - can facilitate better further tasks
Partitioning image into regions should be homogeneous with
respect to some characteristic
(gray level, texture, color, motion)

- The type of desired segmentation depends on the task
- Broad theory is absent at present
- Broad theory is absent at present
- Applications finding people, summarizing video, annotation figures, background subtraction, finding buildings/rivers in satellite images
J. Kosecka

Examples of grouping
Group video to shots

- Object -level grouping (find cars, bikes)
- Determine image regions belonging to objects
- Group foreground/background pixels

Grouping in humans

- Figure-ground
discrimination
grouping can be seen in terms of allocating some elements to a figure, some to
figure,
ground
- impoverished theory

J. Kosecka

Binary segmentation

- Segmentation for simple binary images
- How do we choose the threshold t for segmentation?
- Histogram (h) - gray level frequency distribution of the gray level image F
- $\mathrm{h}_{\mathrm{F}}(\mathrm{g})=$ number of pixels in F whose gray level is g - $\mathrm{H}_{\mathrm{F}}(\mathrm{g})=$ number of pixels in F whose gray level is $<=\mathrm{g}$

Triangle algorithm

- A line is constructed between the maximum of the histogram at brightness $\mathrm{b}_{\text {max }}$ and the lowest
value $b_{\text {min }}=(p=0) \%$ in the image
- The distance d between the line and the histogram $h[b]$ is
computed for all values of b from $=\mathrm{b}_{\text {min }}$ to $\mathrm{b}=\mathrm{b}_{\text {max }}$.
- The brightness value b_{0} where the en $h\left[b_{0}\right]$ and the lin is maximal is the threshold value.
- This technique is particularly
effective when the object pixe
produce a weak peak in the
histogram.
- Hand selection
- select a threshold by hand at the beginning of the day
- use that threshold all day long
- Many threshold selection methods in the literature
- Probabilistic methods
- make parametric assumptions about object and background intensity distributions and then derive background intensity distributions and then deriv uctural methods
- Structural methods
- Evaluate a range of thresholds wrt properties of resulting binary images
one with straightest edges, most easily recognized objects, etc.
- Local thresholding
- apply thresholding methods to image windows

An advanced probabilistic threshold selection method - minimizing Kullback information distance

- Suppose the observed histogram, f , is a mixture of the gray levels of the pixels from the object(s) and the pixels from the background
- in an ideal world the histogram would contain just two spikes (this depends of the class of images/ objects)
- but
variations in ink density within a character)
edge blur (misalignment of object boundaries with pixel boundaries and optical imperfections of camera)
spread these spikes out into hills

Kullback information distance
- A suitable similarity measure is the Kullback directed divergence, defined as If P_{t} matches f exactly, then each term of the sum is 0 and $K(t)$ takes on its minimal value of 0 - Gray levels where P_{t} and f disagree are penalized by the log term, weighted by the importance of that gray level ($\mathrm{f}(\mathrm{g}$)) $K(t)=\sum_{g=0}^{\max } f(g) \log \left[\frac{f(g)}{P_{r}(g)}\right]$

An alternative - mimimize probability of error

- For each "reasonable"
threshold
- compute the
parameters of the two
aussians and the
proportions
compute the two
Find the threshold that
$\begin{aligned} & \text { gives } \\ & \text { - minimal overall error }\end{aligned} e_{b}(t)=p_{b} \sum_{g=0}^{t} f_{b}(g)$
- most equal errors

$$
e_{o}(t)=p_{o} \sum_{g=t+1}^{\max } f_{o}(g)
$$

Segmentation by Clustering

- Pattern recognition
- Process of partitioning a set of 'patterns' into clusters
- Find subsets of points which are close together
- Examples
- Cluster pixels based on intensity values

Color properties

- Motion/optical flow properties

Texture measurements etc.
Input - set of measurements $\times 1, \times 2, \ldots, x m$
Output - set of clusters and their centers
J. Kosecka
\quad Clustering

- Find set of clusters such that the least squares
Error is minimized

$$
E=\sum_{k=1}^{K} \sum_{x_{i} \in C_{i}}\left\|x_{i}-m_{k}\right\|^{2}
$$

Iterative K -means clustering algorithm

1. set iter $=1 ;$
2. Choose randomly K -means $\mathrm{m} 1, \ldots \mathrm{mk}$
3. For each data point xi, compute distance
to each of the means and assign the point
the cluster with the nearest mean
4. iter $=$ iter +1
5. Recompute the means based on the new assignments
of points to clusters
6. Repeat $3-5$ until the cluster centers do not change much
J. Kosecka

Clustering

- Pros
simple, fast to compute
- If k is large (approximate nearest neighbour
methods for computing distances to clusters)
- Converges to local minimum of within cluster
squared error
- Cons
- How large is K ?
- Sensitive to initial outliers
- Detection of spherical clusters
- Assumes that means can be computed
- Issues: Depending what we choose as feature space we get different clusters (color, textures, motion etc)
j. Kusters often not spatially coherent

Texture Segmentation

Segmentation with EM
- There are n - pixels and g groups - compute how likely is a
pixel belonging to group and also what are the parameters of
the eroup
Probailistic K--means clustering
E.g. Use of texture and color cues

Three frames from the MPEG "flower garden" sequence

- Given optical flow at each point
- partition/segment the flow field into regions belonging to individual planes "layers"

Figure from "Representing Images with layers", by J. Wang and E.F. Adelson, IEEE
Transactions on Image Processing, 1994,c 1994, , IEEE
J. Koseckeacaumple slides from Forsythe and Ponce. Computer Vision, A modern approach.

Model Estimation and Grouping

- Given a set of data points and a particular model
- The model parameters can be estimated by LSE fitting data to the model
- Previous model examples - essential/fundamental matrix, homographies, lines/planes
- In order to estimate the model parameters we need to know which data point belongs to which model
- Difficulty - we have multiple models - we do not know Difficulty - we have multiple models - we do not know
initially which data point belongs to which model and we do not the model parameters
- chicken and egg problem
J. Kosecka

Model Estimation and Grouping

- Line Example
- Set of points belonging to two lines

We need to estimate
slope and intercept
2. which point belongs to which line
Solution: EM algorithm
Idea: Each of the above steps
s the other one is
solved and iterate
J. Kosecka

EM algorithm

- Basic structure of the EM algorithm

1. Start with random parameter values for each mode 2. Iterate until parameter values converge Estep: assign points to the model that fits best M step : update the parameters of the models using only points assigned to it

Simplistic explanation here -
Theoretical foundation probabilistic (model parameters
are random variables) - EM (Expectation Maximization)
J. Kosecka

E- Step

- Case of two lines given by slopes and intercepts $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
((difference between the prediction and the model)
$r_{1}(i)=a_{1} x_{i}+b_{1}-y_{i}$
$r_{2}(i)=a_{2} x_{i}+b_{2}-y_{i}$
Calculate the weights, which correspond to the probabilities
of particular data point belonging to particular model

$$
w_{1}(i)=\frac{e^{-r_{1}^{2}(i) / \sigma^{2}}}{e^{-r_{1}^{2}(i) / \sigma^{2}}+e^{-r_{2}^{2}(i) / \sigma^{2}}} \quad w_{2}(i)=\frac{e^{-r_{2}^{2}(i) / \sigma^{2}}}{e^{-r_{1}^{2}(i) / \sigma^{2}}+e^{-r_{2}^{2}(i) / \sigma^{2}}}
$$

J. Kosecka
M-step

- Given the weights recalculate the parameters of the

model | $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ |
| :---: |

- Least squares estimation of line parameters
$\left[\begin{array}{cc}\sum_{i} x_{i}^{2} & \sum_{i} x_{i} \\
\sum_{i} x_{i} & \sum_{i} 1\end{array}\right]\left[\begin{array}{c}a \\
b\end{array}\right]=\left[\begin{array}{c}\sum_{i} x_{i} y_{i} \\
\sum_{i} y_{i}\end{array}\right]$
- In our case we will have weighted least squares
estimation of line parameters
$\quad\left[\begin{array}{l}\sum_{i} w_{i} x_{i}^{2} \\
\sum_{i} w_{i} x_{i} w_{i} x_{i} \\
\sum_{w_{i}} w_{i}\end{array}\right]\left[\begin{array}{c}a \\
b\end{array}\right]=\left[\begin{array}{c}\sum_{i} w_{i} x_{i} y_{i} \\
\sum_{i} i_{i} y_{i}\end{array}\right]$
- Solve such estimation problem twice - once for each line
J. Kosecka

Example: motion segmentation

- Consider motion model, when the flow field can be approximated by some parametric mode with small number of parameters
- We can write x and y parameters of the flow field -
assume that models are locally translational, i.e.
we can locally approximate the model by pure translation (u, v)
- Suppose entire flow field can be explained by
two translational models $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)$
- EM algorithm can be applied in analogous way
J. Kosecka

Example: motion segmentation

- Compute residuals
$r_{1}(i, j)^{2}=\left(u_{1}-v_{x}(i, j)\right)^{2}+\left(v_{1}-v_{y}(i, j)^{2}\right)$
$r_{2}(i, j)^{2}=\left(u_{2}-v_{x}(i, j)\right)^{2}+\left(v_{2}-v_{y}(i, j)^{2}\right)$
- Compute associated weights
$w_{1}(i, j)=\frac{e^{-r_{1}^{2}(i, j) / \sigma^{2}}}{e^{-r_{1}^{2}(i, j) / \sigma^{2}}+e^{-r_{2}^{2}(i, j) / \sigma^{2}}} w_{2}(i, j)=\frac{e^{-r_{2}^{2}(i, j) / \sigma^{2}}}{e^{-r_{1}^{2}(i, j) / \sigma^{2}}+e^{-r_{2}^{2}(i, j) / \sigma^{2}}}$
- M-step analogous to line fitting

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\sum_{i, j} w_{1}(i, j) & 0 \\
0 & \sum_{i, j} w_{1}(i, j)
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right]=\left[\begin{array}{l}
\sum_{i, j} w_{1}(i, j) v_{x}(i, j) \\
\sum_{i, j} w_{1}(i, j) v_{y}(i, j)
\end{array}\right.} \\
& \text { Iterate until convergence } \\
& \text { J. Kosecka }
\end{aligned}
$$

Example: motion segmentation

- Model image pair (or video sequence) as consisting
f regions of parametric motion
- affine motion - commonly used

Approximates locally motion of the planar surface

$$
\left[\begin{array}{l}
v_{x}(x, y) \\
v_{y}(x, y)
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]
$$

- Now we need to
- determine which pixels belong to which region
- estimate parameters
J. Kosecka

Segments and motion fields associated with them Figure from "Representing Images with layers,", by J. Wang and E.H. Adelson, IEEE
Transactions on Imaae Processing . 1944 , c 1994 , IEEE Figure from "Representing Imases with layers,", by J, W
Transactions on mage Processing, 1994, c 1944, IEEE
J. Kosecka J. Kosecka

Other examples

- Segmentation
- a segment is a gaussian that emits feature vectors (which could contain color; or color and position; or color, texture and position)
- segment parameters are mean and (perhaps) covariance
- if we knew which segment each point belonged to, estimating these parameters would be easy

Grey level shows region no. with highest probability

[^0]

Segmentation as Graph Partitioning
(Shi \& Malik `97)

- Idea - each pixel in the image is a node in the graph
- Arcs represent similarities between adjacent pixels

Graph is fully connected
Goal - partition the graph into a sets of vertices (regions), such that the similarity within the region is high - and similarity across the regions is low. See textbook (Ponce and Forsythe) for detailed description the algorithm.

Measuring Affinity
Intensity $\operatorname{aff}(x, y)=\exp \left\{-\left(1 / 2 \sigma_{i}^{2}\right)\left(\\|I(x)-I(y)\\|^{2}\right)\right\}$
Distance $\operatorname{aff}(x, y)=\exp \left\{-\left(1 / 2 \sigma_{d}^{2}\right)\left(\\|x-y\\|^{2}\right)\right\}$
Texture $\operatorname{aff}(x, y)=\exp \left\{-\left(1 / 2 \sigma_{t}^{2}\right)\left(\\|c(x)-c(y)\\|^{2}\right)\right\}$
J. Kosecka

Scale affects affinity
Depending of the scale the blocks are more (middle) Or less obvious (left and right)

Example: Graph theoretic clustering

Eigenvectors and segmentation Spectral clustering

- Simplest idea: we want a vector giving the ssociation between eac element and a cluster
We want elements within
We want elements with
this cluster to, on the whole, have strong affinity with one another
- We could maximize $a^{T} A a$
his is eigenvalue problem - choose the eigenvector of A with single good cluster
- Vector a - indicator vector denoting how likely is the element to be associated with the cluster
- But need the constraint

More than two segments

- Reasoning about other eigenvectors - consider that
affinity matrix is block diagonal.
- Until there are sufficient clusters pick eigenvector
ssociated with the largest eigenvalue, zero the
large association weights - those will form a new cluste
Keep going until there is sufficient number of clusters
and all elements have been accounted for
Spectral Clustering Techniques (A. Ng and M. Jordan)
- Problems - if the eigenvalues are similar - eigenvectors do not reveal the clusters
- Normalized cut - graph cut - alternative optimization criterion J. Shi and J. Malik
J. Kosecka
- Normalized Cuts set of links whose removal will make the graph
disconnected
- Min cut idea
- Tends to produce small isolated clusters
(Normalized cut $(A, B)=\sum_{p \in A, q \in B} w_{p, q}$
Ncut $(A, B)=\frac{\operatorname{cut}(A, B)}{\operatorname{cssoc}(A, V)}+\frac{\operatorname{cut}(A, B)}{\text { assoc }(A, V)}$
assoc(A,V) sum of weight of all edges with one end in A

Normalized cuts

Goal is to minimzie Ncut values

- In general NP-complete

Approximate solutions for minim
generalized eigenvalue problem
$\max _{y}\left(y^{T}(D-W) y\right)$ subject to $\left(y^{T} D y=1\right)$
$(D-W) y=\lambda D y$

- Now look for a quantization threshold that maximises the criterion ---- i.e all components of y above that threshold go to criterion --- i.e all comb
More details in the tutorial slide

Global Topology and Local Geometry of the Environment

- Impose some discrete structure on the space of continuous visual observations
- Develop methods applicable to large scale environments
- Associate semantic labels with individual locations
(corridor, hallway, office)

Issues for Vision Based Localization

- Representation of individual locations

Learning neighborhood relationships between locations

Partitioning the video sequence

- Transitions between individual locations determined during exploration
- Location sub-sequence across which frames can be matched successfully
- (matching cri
- Location Representation - set of representative views

Technique: Background Subtraction

- If we know what the
background looks like, it is easy to identify
"interesting bits
- Applications
- Person in an office
- Tracking cars on a
road
- surveillance

- even for interior points of homogeneous objects,
likely to detect a difference
this will also detect objects that are stationary but different from the background
- typical algorithm used in surveillance system

Motion detection algorithms such as these only work the camera is stationary and objects are moving against a fixed background

Background modeling: color-based

- At each pixel model colors (r, g, b) or gray-level values g. The At each pixel model colors (r, g, b) or gray-level values g. The
following equations are used to recursively estimate the mean and the variance at each pixel:

$$
\begin{aligned}
& \mu_{t+1}=\alpha \mu_{t}+(1-\alpha) z_{t+1} \\
& \sigma_{t+1}^{2}=\alpha\left(\sigma_{t}^{2}+\left(\mu_{t+1}-\mu_{t}\right)^{2}\right)+(1-\alpha)\left(z_{t+1}-\mu_{t+1}\right)^{2}
\end{aligned}
$$

where z_{t+5} is the current measurement. The mean μ and the variance σ can both be time varying. The constant α is set empirically to
control the rate of adaptation ($0<a<1$).
A pixel is marked as foreground if given red value r (or for any other
measurement, say g or b) we have

$$
\left|r-\mu_{t}\right|>3 \max \left(\sigma_{r}, \sigma_{\text {rcam }}\right)
$$

Background model

- $\sigma_{\text {rcam }}$ is the variance of the camera noise, can be estimated from image differences of any two frames.
- If we compute differences for all channels, we can set a pixel as
foreground if any of the differences is above the preset threshold
- Noise can be cleaned using connected component analysis and
ignoring small components.
Similarly we can model the chromaticity values rc, gc and use them for background subtraction:
$r_{c}=r /(r+g+b), g_{c}=g /(r+g+b)$

Background model: edge-based

- Model edges in the image. This can be done two different ways:
- Compute models for edges in a the average background Subtract the background (model) image and the new frame compute edges in the subtraction image; mark all edges that are above a threshold.
- The threshold can be learned from examples
-The edges can be combined (color edges) or computed separately for all three color channels
- Histogram Intersection

$$
I\left(h_{c}, h_{b}\right)=\frac{\sum_{i} \min \left\{h_{c}(i), h_{b}(i)\right\}}{\sum_{i} \max \left\{h_{c}(i), h_{b}(i)\right\}}
$$

- Chi Squared Formula $\chi^{2}\left(h_{c}, h_{b}\right)=\sum_{i} 2 \frac{\left(h_{c}(i)-h_{b}(i)\right)^{2}}{h_{c}(i)+h_{b}(i)}$

[^0]: J. Kosecka

