
Image Segmentation 

Regions and Edges 

Regions and Edges 

•! Edges are found based on DIFFERENCES between values of 

adjacent pixels. 

•! Regions are found based on SIMILARITIES between values 

of adjacent pixels. 

•! Goal associate some higher level – more meaningful units with 

the regions of the image 

Segmentation 

•! Useful mid-level representation of an image - can facilitate 

better further tasks 

•! Partitioning image into regions should be homogeneous with 
respect to some characteristic 

•! (gray level, texture, color, motion) 

•! The type of desired segmentation depends on the task 

•! Broad theory is absent at present  

•! Variety of approaches/algorithms 

•! Applications finding people, summarizing video, annotation 
figures, background subtraction, finding buildings/rivers in 

satellite images 

Segmentation and Grouping 

•! Grouping (or clustering) 

–! collect together tokens that “belong together” 

•! Fitting 

–! associate a model with tokens 

–! issues 

•! which model? 

•! which token goes to which element? 

•! how many elements in the model? 

Examples of grouping 

•! Group video to shots 

•! Object –level grouping (find cars, bikes) 

•! Determine image regions belonging to objects  

•! Group foreground/background pixels 

Grouping in humans 

•! Figure-ground 
discrimination 

–! grouping can be seen 
in terms of allocating 
some elements to a 
figure, some to 
ground 

–! impoverished theory 

•! Gestalt properties 

–! elements in a collection 
of elements can have 
properties that result 
from relationships 
(Muller-Lyer effect) 

•!Gestalt-qualitat 

–! A series of factors affect 
whether elements should 
be grouped together 

•!Gestalt factors 



Binary segmentation                  

•! Segmentation for simple binary images 

•! How do we choose the threshold t for segmentation? 

•! Histogram (h) - gray level frequency distribution of the 
gray level image F. 

–! hF(g) = number of pixels in F whose gray level is g 

–! HF(g) = number of pixels in F whose gray level is <=g 

Thresholding 

•! Peak and valley method 

–! Find the two most prominent peaks of h 

•! g is a peak if hF(g) > hF(g ± !g), !g = 1, ..., k 

–! Let g1 and g2 be the two highest peaks, with g1 < g2 

–! Find the deepest valley, g,  between g1 and g2 

•! g is the valley if hF(g) <= hF(g’) , g,g’ in [g1, g2]  

–! Use g as the threshold 

Triangle algorithm 

•! A line is constructed between the 

maximum of the histogram at 
brightness bmax and the lowest 

value bmin = (p=0)% in the image.  

•! The distance d between the line 
and the histogram h[b] is 

computed for all values of b from b 

= bmin to b = bmax.  

•! The brightness value bo where the 
distance between h[bo] and the line 

is maximal is the threshold value.  

•! This technique is particularly 
effective when the object pixels 

produce a weak peak in the 
histogram. 

Thresholding 

•! Hand selection 

–! select a threshold by hand at the beginning of the day 

–! use that threshold all day long! 

•! Many threshold selection methods in the literature 

–! Probabilistic methods 

•!make parametric assumptions about object and 
background intensity distributions and then derive 
“optimal” thresholds 

–! Structural methods 

•! Evaluate a range of thresholds wrt properties of 
resulting binary images 

–! one with straightest edges, most easily recognized 
objects, etc. 

–! Local thresholding 

•! apply thresholding methods to image windows 



An advanced probabilistic threshold selection 
method - minimizing Kullback information 

distance 

•! Suppose the observed histogram, f, is a mixture of the 
gray levels of the pixels from the object(s) and the 
pixels from the background  

–! in an ideal world the histogram would contain just 
two spikes (this depends of the class of images/
objects) 

–! but  

•!measurement noise 

•!model noise  (e.g., variations in ink density within 
a character)  

•! edge blur (misalignment of object boundaries 
with pixel boundaries and optical imperfections of 
camera)  

spread these spikes out into hills 

Kullback information distance 

•! Make a parametric model of the 
shapes of the component 
histograms of the objects(s) and 
background 

•! Parametric model - the 
component histograms are 
assumed to be Gaussian 

–! po and pb are the proportions 
of the image that comprise the 
objects and background 

!! µo and µb are the mean gray 
levels of the objects and 
background 

!! "o and "b- are their standard 
deviations 

Kullback information distance 

•! Now, if we hypothesize a threshold, t, then all of these 

unknown parameters can be approximated from the image 
histogram. 

•! Let f(g) be the observed and normalized histogram 

–! f(g) = percentage of pixels from image having gray level g 

Kullback information distance 

•! So, for any hypothesized t, we can “predict” what the total 

normalized image histogram should be if our model (mixture 
of two Gaussians) is correct. 

–! Pt(g) = pofo(g) + pbfb(g) 

•! The total normalized image histogram is observed to be f(g) 

•! So, the question reduces to: 

–! determine a suitable way to measure the similarity of  P 
and f 

–! then search for the t that gives the highest similarity 

Kullback information distance 

•! A suitable similarity measure is the Kullback directed 

divergence, defined as 

    If Pt matches f exactly, then each term of the sum is 0 and 
K(t) takes on its minimal value of 0 

•! Gray levels where Pt and f disagree are penalized by the log 
term, weighted by the importance of that gray level (f(g)) 

An alternative - minimize probability of 

error 

•! Using the same mixture model, we can search for the t that 

minimizes the predicted probability of error during 
thresholding 

•! Two types of errors 

–! background points that are marked as object points.  
These are points from the background that are darker than 
the threshold 

–! object points that are marked as background points. These 
are points from the object that are brighter than the 
threshold 

An alternative - mimimize probability of 

error 

•! For each “reasonable” 
threshold 

–! compute the 
parameters of the two 
Gaussians and the 
proportions 

–! compute the two 
probability of errors 

•! Find the threshold that 
gives 

–! minimal overall error 

–! most equal errors 

Segmentation by Clustering 

•! Pattern recognition  

•! Process of partitioning a set of ‘patterns’ into clusters  

•! Find subsets of points which are close together 

•! Examples  

-! Cluster pixels based on intensity values 

-! Color properties  

-! Motion/optical flow properties  

-! Texture measurements etc.  

Input – set of measurements x1, x2, …, xm 

Output – set of clusters and their centers 



Clustering  
•! Find set of clusters such that the least squares 

Error is minimized  

Iterative K-means clustering algorithm 
1.! set iter = 1; 
2.! Choose randomly K-means m1, … mk 
3.! For each data point xi, compute distance 
      to each of the means and assign the point  
      the cluster with the nearest mean 
4. iter = iter + 1 
5. Recompute the means based on the new assignments  
    of points to clusters 
6. Repeat 3-5 until the cluster centers do not change much   

K-means clustering using intensity alone and color alone!

Image! Clusters on intensity! Clusters on color!

K-means using color alone, 11 segments!

Image! Clusters on color!

K-means using!

color alone,!

11 segments.!

K-means using colour and!

position, 20 segments!

Clustering  
•! Pros  

•!  simple, fast to compute 

•! If k is large (approximate nearest neighbour 
methods for computing distances to clusters) 

•! Converges to local minimum of within cluster 
squared error 

•! Cons 

•! How large is K ?  

•! Sensitive to initial outliers 

•! Detection of spherical clusters  

•! Assumes that means can be computed  

•! Issues: Depending what we choose as feature space 
we get different clusters (color, textures, motion etc) 

•! Clusters often not spatially coherent 

Segmentation and clustering 

•! Texture based clustering 

•! Group pixels based on 
texture similarity 

•! Texture representation  

•! Cluster output of the filter 
banks – clusters are so 

called textons 

•! Example – histograms of 
textons computed over 

window 

•! In the lecture on texture – we 

can classify the entire image 
based on histogram of textons 

•! Recognition was done by 
finding a images with the 
closest histogram  

•! Histogram distance was 
measure using chi-squared 
distance between histograms 

Texture Segmentation 



Segmentation with EM 

•! There are n – pixels and g groups – compute how likely is a 

pixel belonging to group and also what are the parameters of 
the group 

•! Probabilistic K-means clustering  

•! E.g. Use of texture and color cues   

Figure from “Color and Texture Based Image Segmentation Using EM and Its Application to Content 

Based Image Retrieval”,S.J. Belongie et al., Proc. Int. Conf. Computer Vision, 1998, c1998, IEEE!

Segmentation with EM 

Motion Segmentation 

Given a set of image points obtain: 

–! Number of independently moving objects 

–! Segmentation: object to which each point belongs 

–! Motion: rotation and translation of each object 

–! Structure: depth of each point 

Three frames from the MPEG “flower garden” sequence 

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE 

Transactions on Image Processing, 1994, c 1994, IEEE!

Motion Segmentation Problem 

•! Given optical flow at each point 

•! partition/segment the flow field into regions belonging to  

   individual planes “layers”  

Some example slides from Forsythe and Ponce. Computer Vision, A  modern approach. 

Model Estimation and Grouping 
•! Given a set of data points and a particular model  

•! The model parameters can be estimated by LSE 

    fitting data to the model 

•! Previous model examples – essential/fundamental 
matrix, homographies, lines/planes  

•! In order to estimate the model parameters we need to  

    know which data point belongs to which model 

•! Difficulty – we have multiple models – we do not know 
initially which data point belongs to which model and we 
do not the model parameters  

•! chicken and egg problem 

Model Estimation and Grouping 

•! Line Example 

•! Set of points belonging to two lines  

•! We need to estimate  

    1.  parameters of the lines 

         slope and intercept 

    2.  which point belongs to  

         which line 

Solution: EM algorithm  

Idea: Each of the above steps 

Assumes the other one is  

solved and iterate 

EM algorithm 

•! Basic structure of the EM algorithm 

•! 1. Start with random parameter values for each model 

•! 2. Iterate until parameter values converge 

        E step: assign points to the model that fits best 

        M step : update the parameters of the models using 

                      only points assigned to it 

Simplistic explanation here –  

Theoretical foundation probabilistic (model parameters 

are random variables) - EM (Expectation Maximization) 

E- Step 

•! Case of two lines given by slopes and intercepts 

•! For each data point i, estimate the residual  

    (difference between the prediction and the model) 

•! Calculate the weights, which correspond to the probabilities 
of particular data point belonging to particular model 



M-step 

•! Given the weights recalculate the parameters of the 

model 

•! Least squares estimation of line parameters 

•! In our case we will have weighted least squares 
estimation of line parameters  

•! Solve such estimation problem twice – once for each line 

M-step 

•! Iterate until the parameters of the  

•! Lines converge 

•! Issues with EM 

•! Local maxima 

–! can be a serious nuisance in some problems 

–! no guarantee that we have reached the “right” 
maximum 

•! Starting if we do not know how many models we  

    have 

–! k means to cluster the points is often a good idea 

Example: motion segmentation 

•! Consider motion model, when the flow field  

    can be approximated by some parametric model  

    with small number of parameters 

•! We can write x and y parameters of the flow field –  

    assume that models are locally translational, i.e.  

    we can locally approximate the model by pure translation 

•! Suppose entire flow field can be explained by  

    two translational models 

•! EM algorithm can be applied in analogous way 

Example: motion segmentation 

•! Compute residuals 

•! Compute associated weights 

•! M-step analogous to line fitting      

Iterate until convergence 

•! Model image pair (or video sequence) as consisting 

of regions of parametric motion 

–! affine motion – commonly used –  

–! Approximates locally motion of the planar surface 

•! Now we need to 

–! determine which pixels belong to which region 

–! estimate parameters 

Example: motion segmentation 

Three frames from the MPEG “flower garden” sequence!

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE 

Transactions on Image Processing, 1994, c 1994, IEEE!

Grey level shows region no. with highest probability!

Segments and motion fields associated with them!
Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE 

Transactions on Image Processing, 1994, c 1994, IEEE!

Other examples 

•! Segmentation 

–!a segment is a gaussian that emits 
feature vectors (which could contain 
color; or color and position; or color, 
texture and position). 

–! segment parameters are mean and 
(perhaps) covariance 

–! if we knew which segment each point 
belonged to, estimating these 
parameters would be easy 



Some generalities 

•! Many, but not all problems that can be attacked with 
EM can also be attacked with RANSAC 

–! need to be able to get a parameter estimate with 
a manageably small number of random choices. 

–! RANSAC is usually better 

•! We wish to choose a model to fit to data 

–! e.g. is it a line or a circle? 

–! e.g is this a perspective or orthographic camera? 

–! e.g. is there an airoplane there or is it noise? 

–! In general, models with more parameters will fit a 
dataset better, but are poorer at prediction 

Segmentation as Graph Partitioning 

•! (Shi & Malik ‘’97)  

•! Idea – each pixel in the image is a node in the graph  

•! Arcs represent similarities between adjacent pixels 

•! Graph is fully connected 

•! Goal – partition the graph into a sets of vertices 

    (regions), such that the similarity within the region  

     is high – and similarity across the regions is low. 

- See textbook (Ponce and Forsythe) for detailed description 
the algorithm.  

Segmentation 

•! Toy example 
•! Bright entries in the affinity matrix high  
•! Likely to belong together 

•! one possible affinity based on distance 
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Measuring Affinity 

Intensity!

Texture!

Distance!

! 
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Graph theoretic clustering 

Example: Graph theoretic clustering 

Eigenvectors and segmentation  

Spectral clustering 

•! Simplest idea:  we want 
a vector giving the 
association between each 
element and a cluster 

•! We want elements within 
this cluster to, on the 
whole, have strong 
affinity with one another 

•! We could maximize   

•! But need the constraint  

To avoid arbitrary scaling of 
entries of vector a              

•! This is an eigenvalue 
problem - choose the 
eigenvector of A with 
largest eigenvalue - 
single good cluster 

•! Vector a – indicator 
vector denoting how 
likely is the element to 
be associated with the 
cluster 

! 

a
T
Aa

! 

a
T
a = 1



Example eigenvector 

points!

matrix!

eigenvector!

More than two segments 

•! Reasoning about other eigenvectors - consider that 
affinity matrix is block diagonal. 

•! Until there are sufficient clusters pick eigenvector 
associated with the largest eigenvalue, zero the 
elements which were clustered, threshold elements with 
large association weights - those will form a new cluster 

•! Keep going until there is sufficient number of clusters 
and all elements have been accounted for 

•! Spectral Clustering Techniques (A. Ng and M. Jordan) 

•! Problems - if the eigenvalues are similar - eigenvectors 
do not reveal the clusters 

•! Normalized cut - graph cut - alternative optimization 
criterion J. Shi and J. Malik 

Normalized Cuts 

•! Find set of links whose removal will make the graph 

disconnected 

•! Min cut idea 

•! Tends to produce small isolated clusters 

•! Normalized cut 

•! assoc(A,V) sum of weight of all edges with one end in A   

Normalized cuts   

•! Goal is to minimzie Ncut values 

•! In general NP-complete 

•! Approximate solutions for minimizing the Ncut value: 
generalized eigenvalue problem 

•! Now look for a quantization threshold that maximises the 
criterion --- i.e all components of y above that threshold go to 
one, all below go to –b 

•! More details in the tutorial slides 

! 
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Graph Cuts, MRF’s 

Graph Cut 

Graph Cut 

Interactive Foreground 
Segmentation 

Segmentation of Time Varying Images 

(and tracking) 

Technique:  Shot Boundary Detection 

•! Find the shots in a 
sequence of video 

–! shot boundaries 
usually result in big 
differences between 
succeeding frames 

•! Strategy: 

–! compute interframe 
distances 

–! declare a boundary 
where these are big 

•! Possible distances 

–! frame differences 

–! histogram differences 

–! block comparisons 

–! edge differences 

•! Applications: 

–! representation for 
movies, or video 
sequences  

•! find shot 
boundaries 

•! obtain “most 
representative” 
frame 

–! supports search 

Vision Based Localization  

Buidling Model of the environment from 
video 

•! Impose some discrete structure on the space of  
    continuous visual observations 
•! Develop methods applicable to large scale environments 
•! Associate semantic labels with individual locations  
    (corridor, hallway, office) 

Issues for Vision Based Localization 
•! Representation of individual locations  
•! Learning neighborhood relationships between locations 

Same location ? 

Global Topology and Local Geometry of 

the Environment 



Partitioning the video sequence 

•! Transitions between individual locations determined  

    during exploration 

•! Location sub-sequence across which frames can be 
matched successfully  

•! (matching cri 

•! Location Representation - set of representative views 

# of frames vs. # of matched features 1st – i-th view 

video digital camera 

Technique:  Background Subtraction 

•! If we know what the 
background looks like, it 
is easy to identify 
“interesting bits” 

•! Applications 

–! Person in an office 

–! Tracking cars on a 
road 

–! surveillance 

•! Approach: 

–! use a moving average 
to estimate 
background image 

–! subtract from current 
frame 

–! large absolute values 
are interesting pixels 

•! trick: use 
morphological 
operations to clean 
up pixels 

Image Differencing 

Image Differencing: Results 

1 frame difference 5 frame difference 

Motion detection 

•! Background subtraction 

–! create an image of the stationary background by averaging 
a long sequence  

•! for any pixel, most measurements will be from the 
background 

•! computing the median measurements, for example, at 
each pixel, will with high probability assign that pixel the 
true background intensity - fixed threshold on 
differencing used to find “foreground” pixels 

•! can also compute a distribution of background pixels by 
fitting a mixture of Gaussians to set of intensities and 
assuming large population is the background - adaptive 
thresholding to find foreground pixels 

A 300-Frame Sequence with a “Busy” 
Background 

click to start movie 

Motion Detection 

–! difference a frame from the known background 
frame 

•! even for interior points of homogeneous objects, 
likely to detect a difference 

•! this will also detect objects that are stationary but 
different from the background 

•! typical algorithm used in surveillance systems 

•! Motion detection algorithms such as these only work if 
the camera is stationary and objects are moving against 
a fixed background 

Background Subtraction: Results 

Confidence corresponds to gray-level value.  

High confidence – bright pixels, low confidence – dark pixels.  



Background modeling: color-based 

•! At each pixel model colors (r,g,b) or gray-level  values g. The 

following equations are used to recursively estimate the mean and 
the variance at each pixel: 

    where zt+1 is the current measurement. The mean µ and the variance 
" can both be time varying. The constant # is set empirically to 

control the rate of adaptation (0<#<1). $

•! A pixel is marked as foreground if given red value r (or for any other 
measurement, say g or b) we have  

Background model 

•! "rcam is the variance of the camera noise, can be estimated from 

image differences of any two frames. 

•! If we compute differences for all channels, we can set a pixel as 
foreground if any of the differences is above the preset threshold. 

•! Noise can be cleaned using connected component analysis and 
ignoring small components. 

•! Similarly we can model the chromaticity values rc, gc and use them 
for background subtraction: 

 rc=r/(r+g+b), gc=g/(r+g+b) 

Background model: edge-based  

•! Model edges in the image. This can be done two different 
ways: 

–! Compute models for edges in a the average background 
image 

–! Subtract the background (model) image and the new frame; 
compute edges in the subtraction image; mark all edges 
that are above a threshold.  

•! The threshold can be learned from examples 

•! The edges can be combined (color edges) or computed 
separately for all three color channels 

Foreground model 

•! Use either color histograms (4-bit per color), texture features, 
edge histograms to model the foreground 

•! Matching the foreground objects between frames: tracking 

•! Can compare foreground regions directly: shift and subtract. 
SSD or correlation: M, N are two foreground regions.  

Histogram Matching 

•! Histogram Intersection 

•! Chi Squared Formula 

Surveillance:  Interacting people 

Background Subtraction 

Background Subtraction 


