* Two-View Geometry - Stereo
I
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%neral Formulation

Given two views of the scene
recover the unknown camera

displacement and 3D scene
o1 structure
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g‘gid Body Motion — Two Views

X=[x,v,71"

x= [z,y9,1]7

oXp = RAixq + T

P

‘/—\ S ——
A o

Aoxp = RA\x1 + T

Ax = NX = [R, 71X
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Nn=[R,T] € R3*4

g Structure and Motion Recovery

Euclidean transformation
Aoxo = RA\1x1 + T

measurements unknowns
S0y |l = m(Ra, T2, X)|[2+|Ixb — m(Ra, T2, X) |2

Find such Rotation and Translation and Depth that
the reprojection error is minimized

Two views ~ 200 points

6 unknowns - Motion 3 Rotation, 3 Translation
- Structure 200x3 coordinates
- (-) universal scale

Difficult optimization problem
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Why Stereo Vision?

» 2D images project 3D points into 2D:
p

o]

* 3D Points on the same viewing line have the
same 2D image:

- 2D imaging results in depth information loss
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Stereo

= Assumes (two) cameras.
= Known positions.
= Recover depth.
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Stereo — Special Configuration
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Recovering Depth Information:

Depth can be recovered with two images and triangulation.
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Finding Correspondences:

CS 482

Finding Correspondences:

CS 482

Simplest Case

= Image planes of cameras are parallel.
= Focal points are at same height.
= Focal lengths same.

= Then, epipolar lines are horizontal scan
lines.
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Stereo correspondence

= Determine Pixel Correspondence
= Pairs of points that correspond to same scene
point

epipolar line epipolar line

= Epipolar Constraint
= Reduces correspondence problem to 1D
search along corresponding epipolar lines
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Epipolar Geometry

orrespondences’

(R,T)

Aoxo = RA\1x1 + T /XoT

¢ Algebraic Elimination of Depth [Longuet-Higgins '81]:

Xg@xl =0
E

o Essential matrix E=TR
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Epipolar Geometry

« Epipolar lines {y./s

e Epipoles &1, &%

« Additional constraints a3 S
I1 ~ ETxp l;rxi =0 lp ~ Exq
Ee; =0 Te,=0 exET =0
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Characterization of Essential Matrix

X%TRX]_ =0

Essential matrix F = T'R special 3x3 matrix

€1 e2 €2
xg eq e5 eg |x1 =0

ey eg €g

(Essential Matrix Characterization)
A non-zero matrix FE is an essential matrix iff its SVD: E =U>V7T

satisfies: >~ = diag([o1,02,03]) withoy =02 7# 0 andoz =0
and U,V € SO(3)
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gimating Essential Matrix

e Find such Rotation and Translation that the epipolar error is
minimized
) T )
ming Z?:l x]2 Ele
e Space of all Essential Matrices is 5 dimensional
¢ 3 DOF Rotation, 2 DOF - Translation (up to scale !)

; Epipolar Geometry for Parallel Cameras

o] O,
e Denote a = x1 ® X2 T -
a = [z122, 212, ©122, Y172, Y1¥2, Y172, 2172, 21¥2, 2122] " _ e e
r
— T
B = [e1,e4,e7,€2,¢5, €8, €3, €6, €9]
* Rewrite aTEs =0
e Collect constraints from all points p
xE®=0 Ebinol infini
. n I i . $112 pipoles are at infinite -
ming Yz X5 Bx; mmmp mings||xE°|| Epipolar lines are parallel to the baseline
17 18
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; Image rectification

Image Reprojection
= reproject image planes onto common
plane parallel to line between optical centers
Notice, only focal point of camera really matters

(Seitz)
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; Epipolar rectification

* Rectified Image Pair

e Corresponding epipolar lines are aligned with the scan-lines
e Search for dense correspondence is a 1D search

20
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: Epipolar rectification

Rectified Image Pair

CS 482
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: Correspondence: What should we match?

= Objects?

= Edges?

= Pixels?

= Collections of pixels?

22
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Random dot stereograms

ot 3 5

MY

B. Julesz: Showed that correspondence is not needed for stereo.
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; Correspondence: Epipolar constraint.

Corresponding point has to lie on the epipolar line

24
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Correspondence Problem

= Two classes of algorithms:
= Correlation-based algorithms
» Produce a DENSE set of correspondences

= Feature-based algorithms

= Produce a SPARSE set of correspondences

25
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Correspondence: Photometric constraint

= Same world point has same intensity in
both images.
= Lambertian fronto-parallel
= Issues:
= Noise
= Specularity
= Foreshortening

26
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Stereo Matching

B T HON. ADRATIAM LINCOLN, Fresident of Unlted States. v M

For each epipolar line
For each pixel in the left image
« compare with every pixel on same epipolar line in right image
« pick pixel with minimum match cost
« This will never work, so:

Improvement: match windows

(slides O. Camps) 7
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Comparing Windows:

-
f 9

SSD= Y (f(i.5) — 9(i,1))?

li.jleR Most
o I
Crg= > f(i.7)9(i5) popular
li.jleR

For each window, match to closest window on epipolar
line in other image.

(slides O. Camps) g
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g Comparing Windows:

i %:R(f(i,j) - g(ivj))z Sum of Squared
,7]€

Minimize
Differences
Maximize o= 3™ f(i,5)g(i, 5)

[i.j]eR
It is closely related to the SSD:

SSD= Y (f-¢)?=
[i,jleER

= Y P+ Y 422

[i,j]€ER [i,j]€ER
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Cross correlation

29

Window size

» Effect of window size

Better results with adaptive window

T. Kanade and M. Okutomi, A Stereo Matching Algorithm with an Adaptive
Window: Theory and Experiment,, Proc. International Conference on Robotics and
Automation, 1991.

D. Scharstein and R. Szeliski. Stereo matching with nonlinear diffusion.
International Journal of Computer Vision, 28(2):155-174, July 1998

(S. Seitz) 30
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4 Stereo results

= Data from University of Tsukuba

o
\ §|
Ground truth Wmdow—b.ased ma.tchmg Ground truth
(best window size)
(Seitz) ., (Seitz) ,,
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Results with window correlation




g Results with better method

State of the art

Ground truth

Boykov et al., Fast Approximate Energy Minimization via Graph Cuts,
International Conference on Computer Vision, September 1999. ( S eitz)
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= Ordering constraint

= Usually, order of points in two images is
same.

= Is this always true?

= If we match pixel i in image 1 to pixel j
in image 2, no matches that follow will
affect which are the best preceding
matches.

» Example with pixels (a la Cox et al.).

34
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the Ordering Constraint

Points on the epipolar lines appear in the same order

But it is not always the case ...
This enables dynamic programming

35
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Dynamic Programming (Baker and Binford, 1981)

1 L2 3 4 5 6

Find the minimum-cost path going monotonically
down and right from the top-left corner of the
graph to its bottom-right corner.

* Nodes = matched feature points (e.g., edge points).
* Arcs = matched intervals along the epipolar lines.

* Arc cost = discrepancy between intervals.

36
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Eynamic Programming (Baker and Binford, 1981)

1 1 23 4 5 6

% Loop over all nodes (K, I) in ascending order.
for k=1tomdo
forl=1tondo .
b % tmitiaize optimal cost C(k, 1) and backward pointer B(k,[). onlcally
C(k, 1) + +o0; B(k, 1)  nil; N
€ % Loop over all inferior neighbors (i, ) of (k1) the
for (i, ) € Inferior — Neighbors(k, ) do
£ % Compute new path cost and update backward pointer if necessary.
d C(i, j) + Arc - Cost(i, j, k,1);
if d < C(k,1) then C'(k,1) + d; B(k,1) « (i,]) endif;
endfor; H
e ge points).
o endfor; slar lines.
% Construct optimal path by following backward pointers from (m,n).
« P {(m,m)}; (4,5 + (m,n);

Eynamic Programming (Ohta and Kanade, 1985)

i S.
while B(i, j) # nil do (i, j) + B(i,); P + {(i, j)} U P endwhile.
37 Reprinted from “Sterco by Intra- and Intet-Scanline Scarch,” by Y. Ohta and. T, Kanade, IEEE Trans. on Pattern Analysis and Machine 38
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; Other constraints

= Smoothness: disparity usually doesn’t change
too quickly.
= Unfortunately, this makes the problem 2D again.

= Solved with a host of graph algorithms, Markov
Random Fields, Belief Propagation, ....

= Uniqueness constraint (each feature can at
most have one match)

= Occlusion and disparity are connected.

39
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; Feature-based Methods

= Conceptually very similar to Correlation-
based methods, but:

= They only search for correspondences of a
sparse set of image features.

= Correspondences are given by the most
similar feature pairs.

= Similarity measure must be adapted to the
type of feature used.

40
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Feature-based Methods:

= Features most commonly used:

= Corners
= Similarity measured in terms of:
= surrounding gray values (SSD, Cross-correlation)
= location
= Edges, Lines
= Similarity measured in terms of:
= orientation
= contrast
= coordinates of edge or line’s midpoint
= length of line

41
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Example: Comparing lines

= |, and |.: line lengths

6, and 6.: line orientations

(x,y) and (x.,y,): midpoints

¢ and c,: average contrast along lines
O, Wy ®, 0, : Weights controlling
influence

1

S =
il = 12 + wp(8 = 07)2 + wml(@p — 27)2 + (g — yr)?] + weley — er)?

The more similar the lines, the larger S is!
CS 482
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Summary

= First, we understand constraints that make
the problem solvable.
= Some are hard, like epipolar constraint.

= Ordering isn't a hard constraint, but most useful when
treated like one.

= Some are soft, like pixel intensities are similar,
disparities usually change slowly.
= Then we find optimization method.

= Which ones we can use depend on which
constraints we pick.

43
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Epipolar Geometry

Correspondences'

(R, T)

Aoxp = RA\1x1 + T /XoT

e Algebraic Elimination of Depth [Longuet-Higgins '81]:

T —
x3 LBx1 =0
E
¢ Essential matrix E=TR

CS 482
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Epipolar Geometry

e Epipolar lines 1,2

T —
x5 Ex1 =0
e Epipoles #j.%% 2 1

E=TR

== Epipolar transfer
[ ]
 Additional constraints o /

l]_ ~ ETX2 lZTXZ' =0
Ee;=0 Ife=0 eE'=0

45
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Characterization of Essential Matrix

X%TRXl =0
Essential matrix E = T'R special 3x3 matrix

€1 €2 €2
xg eq e5 eg [ x3 =0

e7 eg eg

(Essential Matrix Characterization)

A non-zero matrix E is an essential matrix iff its SVD: E =USVT
satisfies: ¥ = diag([o1,02,03]) withoy =02 # 0 ando3z =20
and U,V € SO(3)

46
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Estimating Essential Matrix

e Find such Rotation and Translation that the epipolar error is
minimized
) T .
ming Z?:l xj2 E}cjl
e Space of all Essential Matrices is 5 dimensional
¢ 3 DOF Rotation, 2 DOF - Translation (up to scale !)
e Denote a = x1 ® X2
a = [z122, 112, T122, Y102, Y1Y2, Y122, 2152, 21Y2, 2122) T

E® = [61, €4, €7, €2, €5, €8, €3, €6, EQ]T

* Rewrite alEs =0
¢ Collect constraints from all points
xE* =

ming Sy x5 Ex| mmmp  minps|xE°|?

47
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Estimating Essential Matrix

) iT . j .

mingYp_y x5 Bx| mmmp  minps|xES|?
Solution E; T
¢ Eigenvector associated with the smallest eigenvalue of X* X
o If rank(xTx) < 8 degenerate configuration

*

E* estimated using linear least squares
unstack £%-> F

Projection on to Essential Space

(Project to Essential Manifold)

If the SVD of a matrix F e R3*2 is given by F = Udiag(c1,02,03)V7T
then the essential matrix £ which minimizes the

Frobenius distance ||E — FH% is given by E = Udiag(c,0,0)VT
withe = ﬂ¥3

CS 482
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Poese Recovery from Essential Matrix
E=TR

Essential matrix

(Pose Recovery)
There are two relative poses (R,T) withT € R3 and R € SO(3)
corresponding to a non-zero matrix essential matrix.

E=UuxvT
(T1,R1) = (URz(+HEUT, URL(HHVT)
(I, R2) = (URz(-5)=UT,URL(-5)VT)
-1

S =diag([1,1,0]) R.(+3) = 0
0

(ol N}

= O O
[E—

o Twisted pair ambiguity (Rp,7») = (eﬂ”RL —Ty)

49
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Two view linear algorithm - summary

E = {TR|R € SO(2),T € 52}
* Solve the LLSE problem:
ming Z?:l X‘72TEXJ]_ m YES=0

e Solution eigenvector assgciated with
smallest eigenvalue of X" X

e Compute SVD of F recovered from data
ES—»F F=UxzvT

¢ Project onto the essential manifold:

>/ =diag(1,1,0) E=UX'VT

e Recover the unknown pose:

E is 5 diml. sub. mnfld. in

e 8-point linear algorithm

(T,R) = (URz(5)xUT, URL(£5)VT)

50
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Pose Recovery

e There are two pairs (R,T") corresponding to essential matrix F.

e There are two pairs (R,T) corresponding to essential matrix — F .

* Positive depth constraint disambiguates the impossible solutions

* Translation has to be non-zero

* Points have to be in general position
- degenerate configurations - planar points
- quadratic surface

e Linear 8-point algorithm

* Nonlinear 5-point algorithms yield up to 10 solutions

51
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3D;Structure Recovery

AoXp = RA\ix1 + T

¢ Eliminate one of the scale’s

unknowns

MxbRx) + T =0, j=1,2,....n

e Solve LLSE problem )
- = . J

MIN = [XJQRle, ng] {/\1 } =0
Y

If the configuration is non-critical, the Euclidean structure of
the points and motion of the camera can be reconstructed up
to a universal scale.

eAlternatively recover each point depth separately

52
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1- 3D Reconstruction in general case

 Linear Method such that

A1xp = MX x1 X MX =
—) —) AX = 0
Aoxp = MeX xp x MX = 0

|
o

* Non-Linear Method: find Q minimizing

53
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Two views

Point Feature Matching

54

Camera Pose
and
Sparse Structure Recovery )

55
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