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Linear transformation 
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  Calibration with a rig 

  Uncalibrated epipolar geometry 

  Ambiguities in image formation 

  Stratified reconstruction 

  Autocalibration with partial scene knowledge 
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Use the fact that both 3-D and 2-D coordinates of feature  
points on a pre-fabricated object (e.g., a cube) are known.  
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•  Eliminate unknown scales 

•  Factor the  KR  into                   and K  using QR decomposition 

•  Solve for translation  

•  Recover projection matrix 

•  Given 3-D coordinates on known object   
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•  Direct calibration by recovering and decomposing the projection matrix   

2 constraints per point 
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•  Factor the  R’    into                   and  K  using QR decomposition 
   (qr matlab function) 
•  Solve for translation  

•  Recover projection matrix 

•  Collect the constraints from all N points into matrix M (2N x 12) 

•  Solution eigenvector associated with the smallest eigenvalue 
  [u,s,v] = svd(M) take v(:,12) 

•  Unstack the solution and decompose into rotation and translation  
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To eliminate unknown depth, multiply both sides by  
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•   Pixel coordinates 

•   Projection matrix 

Uncalibrated camera 

•  Image plane coordinates 

•  Camera extrinsic parameters  

•  Perspective projection 

Calibrated camera 
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  K  is known, back to calibrated case 

  K  is unknown 
  Calibration with complete scene knowledge (a rig) – estimate  
  Uncalibrated reconstruction despite the lack of knowledge of  
  Autocalibration (recover      from uncalibrated images) 

  Use partial knowledge 
  Parallel lines, vanishing points, planar motion, constant intrinsic 

  Ambiguities, stratification (multiple views) 
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•  Epipolar constraint 

•  Fundamental matrix 

•  Equivalent forms of 

12 

Image 
correspondences 

•  Epipolar lines 

•  Epipoles  
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A nonzero matrix                 is a fundamental matrix if     has  
a singular value decomposition (SVD)                    with  

for some                    .          

There is little structure in the matrix      except that          
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•  Fundamental matrix can be estimated up to scale 

•   Find such F that the epipolar error is minimized  

•  Denote 

•  Rewrite 

•  Collect constraints from all points 

Pixel coordinates 
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•  Project onto the essential manifold: 

•       cannot be unambiguously decomposed into pose 
  and calibration  

•  Solve the LLSE problem: 

•  Compute SVD of F recovered from data 

•  Solution eigenvector associated with  
  smallest eigenvalue of  

16 

  F  can be inferred from point matches (eight-point 
algorithm) 

  Cannot extract motion, structure and calibration from one 
fundamental matrix (two views) 

  F allows reconstruction up to a projective transformation 
(as we will see soon) 

  F  encodes all the geometric information among two views 
when no additional information is available 

  F is often used in robust matching for establishing 
correspondences (one cannot recover R,T from single F) 
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  From points, extract    , followed by computation  
    of projection matrices              and structure  
  Canonical decomposition 

  Given projection matrices – recover structure  

  Projective ambiguity – non-singular 4x4 matrix 

Both         and                    are consistent with the epipolar geometry – 
give the same fundamental matrix 

18 

•  Given projection matrices recover projective structure 

•  This is a linear problem and can be solve using linear least-squares 

•  Projective reconstruction – projective camera matrices and  
  projective structure 

Euclidean Structure Projective Structure 
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  Euclidean reconstruction – true metric properties of objects 
    lenghts (distances), angles, parallelism are preserved  
  Unchanged under rigid body transformations 
  =>  Euclidean Geometry – properties of rigid bodies under 
    rigid body transformations, similarity transformation 

  Projective reconstruction – lengths, angles, parallelism are NOT 
    preserved – we get distorted images of objects – their distorted 

3D counterparts  --> 3D projective reconstruction 
  => Projective Geometry  

20 

  Describes shapes as they are  
  Properties of objects that are unchanged by Rigid 

Body Transformation 
  - lengths  
  - angles 
  - parallelism 
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  Describes things as they are  
  Lengths, angles become distorted  
  When we look at the objects  
  Mathematical model how the images of the  
    world are formed 

Examples – corner of the room 
              - railroad tracks 
Example – parallax – displacement of objects due  
                to the change of viewpoints 
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3-D coordinates are related by: 

Homogeneous coordinates: 

Homogeneous coordinates are related by: 
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  Homogenous coordinates in 3D  before – attach 1 as the last  
    coordinate – render the transformation as linear transformation 
  Before  4th coordinate cannot be zero  0 
  Projective coordinates – all points are equivalent up to a scale 

Each point on the plane is  
represented by a ray in projective  

space 

2D- projective plane 3D- projective space 

24 

  Ideal points – last coordinate is 0 – ray parallel to the image plane 
     point at infinity – never intersects the image plane 
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Representation of a 3-D line – in homogeneous coordinates 

Projection of a line  - line in the image plane  

When λ -> infinity  - vanishing points – last coordinate -> 0 
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  Vanishing points – intersections of the parallel lines 

  Vanishing points of three orthogonal directions 

  Orthogonal directions – inner product is zero 

  Provide directly constraints on matrix  

  S – has 5 degrees of freedom, 3 vanishing points – 3 
constraints (need additional assumption about K) 

  Assume zero skew and aspect ratio = 1 
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Vermeer’s Music Lesson 

28 

  Calibrated Two views related by rotation only 

  Mapping to a reference view – rotation can be estimated 

  Mapping to a cylindrical surface 
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  Calibrated Two views related by rotation only 

  Given three rotations around linearly independent 
    axes – S, K can be estimated using linear techniques 
  Applications – image mosaics 
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Projective transformation 8-DOF 
(collinearity, cross ratios) 

Affine transformation 6-DOF 
(parallelism, ration of areas, length ratios) 

Similarity transformation 4-DOF 
(angles, length ratios) 

Rigid Body Motion 3-DOF 
(angles, lengths, areas) 
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•  There is one-to-one mapping between two images of a plane  
•  or between image plane and world plane 

•  2D projective transformation H – homography  (3x3 matrix)  
•  Estimation of homography from point correspondences 
      1. eliminate unknown depth 

      2. get two independent constraints per point – (9-1) unknowns  
      3. need at least 4 points to estimate H  
      4. H is can be estimated up to a scale factor  
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p 
p’ 

•   Image based rectification (given some points in 3D world)  
    compute H which would map them into a square 
•  Use H to rectify the entire image 
•  In calibrated case inter-image homography    

34 
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•  LLS solution to solving a system of homogeneous equations 
•  Solution – eigenvector associated with the smallest eigenvalue of ATA 

36 

1st view 2nd view 

2nd view warped 
by the planar homography 
between two views 
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Examples 

Given a set of line segments, group them based on which  
vanishing direction then belong to and estimate vanishing points 
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  Assume partially calibrated camera  

•  Explicitely parametrize the homography 

•  Explicitely parametrize the unknown structure 

40 

  Decouple known and unknown structure 

•  Estimate the unknown homography 
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  Exploiting orthogonality constraints 

•  Directly estimate the focal length   

•  remaining parameters and final pose  
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•  With shared segment the pose can be reconciled and we  
   obtain single consistent pose recovery up to scale and  
   error ~  3 degrees 
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43 •  Recovery of the camera displacement from a planar structure 

44 

•  Recovery of the camera displacement from a planar structure 
•  Dominant  plane is decomposed to  
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EM (Expectation Maximization)  

Brief tutorial by example: 

EM well known statistical technique for estimation of models from data 

Set up: Given set of datapoints which were generated by multiple models 
            estimate the parameters of the models and assignment of the 
            data points to the models 
Here: set of points in the plane with coordinates (x,y), two lines with parameters 
         (a1,b1) and (a2,b2) 

1.  Guess the line parameters and estimate error of each point wrt  
     to current model 

2.  Estimate Expectation (weight for each point) 
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EM 

Maximization step:  
Traditional least squares:  

Here weighted least squares:  

Iterate until no change 

Problems: local minima, how many models ?  
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EM - example  

48 

•   Pixel coordinates 

•   Projection matrix 

Uncalibrated camera 

•  Image plane coordinates 

•  Camera extrinsic parameters  

•  Perspective projection 

Calibrated camera 


