-

Uncalibrated Camera

$\boldsymbol{x}^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=K \boldsymbol{x}=\left[\begin{array}{ccc}f s_{x} & f s_{\theta} & o_{x} \\ 0 & f s_{y} & o_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right] \quad$ calibrated

Overview

- Calibration with a rig
- Uncalibrated epipolar geometry
- Ambiguities in image formation
- Stratified reconstruction
- Autocalibration with partial scene knowledge

Calibration with a Rig

Use the fact that both 3-D and 2-D coordinates of feature points on a pre-fabricated object (e.g., a cube) are known.

Calibration with a Rig

- Given 3-D coordinates on known object

$$
\lambda \mathrm{x}^{\prime}=[K R, K T] \mathbf{X} \Longleftrightarrow \lambda \mathrm{x}^{\prime}=\Pi \mathbf{X}
$$

- Eliminate unknown scales

$$
\lambda\left[\begin{array}{c}
x^{i} \\
y^{i} \\
1
\end{array}\right]=\left[\begin{array}{c}
\pi_{1}^{T} \\
\pi_{2}^{T} \\
\pi_{3}^{T}
\end{array}\right]\left[\begin{array}{c}
X^{i} \\
Y^{i} \\
Z^{i} \\
1
\end{array}\right]
$$

$$
\begin{aligned}
x^{i}\left(\pi_{3}^{T} \mathbf{X}\right) & =\pi_{1}^{T} \mathbf{X}, \\
y^{i}\left(\pi_{3}^{T} \mathbf{X}\right) & =\pi_{2}^{T} \mathbf{X}
\end{aligned}
$$

- Recover projection matrix $\quad \Pi=[K R, K T]=\left[R^{\prime}, T^{\prime}\right]$
$\min \left\|M \Pi^{s}\right\|^{2} \quad$ subject to $\quad\left\|\Pi^{s}\right\|^{2}=1$

$$
\Pi^{s}=\left[\pi_{11}, \pi_{21}, \pi_{31}, \pi_{12}, \pi_{22}, \pi_{32}, \pi_{13}, \pi_{23}, \pi_{33}, \pi_{14}, \pi_{24}, \pi_{34}\right]^{T}
$$

- Factor the $K R$ into $R \in S O(3)$ and K using QR decomposition
- Solve for translation $T=K^{-1} T^{\prime}$

More details

- Direct calibration by recovering and decomposing the projection matrix

$$
\begin{array}{r}
\lambda\left[\begin{array}{c}
x^{i} \\
y^{i} \\
1
\end{array}\right]=\left[\begin{array}{c}
\pi_{1}^{T} \\
\pi_{2}^{T} \\
\pi_{3}^{T}
\end{array}\right]\left[\begin{array}{c}
X^{i} \\
Y^{i} \\
Z^{i} \\
1
\end{array}\right] \rightarrow Z\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\pi_{11} & \pi_{12} & \pi_{13} & \pi_{14} \\
\pi_{21} & \pi_{22} & \pi_{23} & \pi_{24} \\
\pi_{31} & \pi_{32} & \pi_{33} & \pi_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \\
x_{i}=\frac{\pi_{11} X_{i}+\pi_{12} Y_{i}+\pi_{13} Z_{i}+\pi_{14}}{\pi_{31} X_{i}+\pi_{32} Y_{i}+\pi_{33} Z_{i}+\pi_{34}} y_{i}=\frac{\pi_{21} X_{i}+\pi_{22} Y_{i}+\pi_{23} Z_{i}+\pi_{24}}{\pi_{31} X_{i}+\pi_{32} Y_{i}+\pi_{33} Z_{i}+\pi_{34}} \\
\begin{array}{r}
x_{i}\left(\pi_{31} X_{i}+\pi_{32} Y_{i}+\pi_{33} Z_{i}+\pi_{34}\right)=\pi_{11} X_{i}+\pi_{12} Y_{i}+\pi_{13} Z_{i}+\pi_{14} \\
y_{i}\left(\pi_{31} X_{i}+\pi_{32} Y_{i}+\pi_{33} Z_{i}+\pi_{34}\right)=\pi_{21} X_{i}+\pi_{22} Y_{i}+\pi_{23} Z_{i}+\pi_{24} \\
\hline x^{i}\left(\pi_{3}^{T} \mathbf{X}\right)=\pi_{1}^{T} \mathbf{X}, \quad 2 \text { constraints per point } \\
y^{i}\left(\pi_{3}^{T} \mathbf{X}\right)=\pi_{2}^{T} \mathbf{X} \\
\hline\left[X_{i}, Y_{i}, Z_{i}, 1,0,0,0,0,-x_{i} X_{i},-x_{i} Y_{i},-x_{i} Z_{i},-x_{i} \mid \Pi_{s}=0\right. \\
{\left[0,0,0,0, X_{i}, Y_{i}, Z_{i}, 1,-y_{i} X_{i},-y_{i} Y_{i},-y_{i} Z_{i},-y_{i}\right] \Pi_{s}=0} \\
\Pi_{s}=\left[\pi_{11}, \pi_{12}, \pi_{13}, \pi_{14}, \pi_{21}, \pi_{22}, \pi_{23}, \pi_{24}, \pi_{31}, \pi_{32}, \pi_{33}, \pi_{34}, \pi_{41}, \pi_{42}, \pi_{43}, \pi_{44}\right]_{6}^{T}
\end{array}
\end{array}
$$

More details

- Recover projection matrix $\quad \Pi=[K R, K T]=\left[R^{\prime}, T^{\prime}\right]$

$$
\begin{gathered}
\min \left\|M \Pi^{s}\right\|^{2} \quad \text { subject to } \quad\left\|\Pi^{s}\right\|^{2}=1 \\
\Pi^{s}=\left[\pi_{11}, \pi_{21}, \pi_{31}, \pi_{12}, \pi_{22}, \pi_{32}, \pi_{13}, \pi_{23}, \pi_{33}, \pi_{14}, \pi_{24}, \pi_{34}\right]^{T}
\end{gathered}
$$

- Collect the constraints from all N points into matrix $M(2 N \times 12)$
- Solution eigenvector associated with the smallest eigenvalue $M^{T} M$ [$\mathrm{u}, \mathrm{s}, \mathrm{v}]=\operatorname{svd}(\mathrm{M})$ take $\mathrm{v}(:, 12)$
- Unstack the solution and decompose into rotation and translation
- Factor the R^{\prime} into $R \in S O(3)$ and K using QR decomposition (qr matlab function)
- Solve for translation $\quad T=K^{-1} T^{\prime}$

Calibration with a planar pattern

$$
H \doteq K\left[r_{1}, r_{2}, T\right] \quad \in \mathbb{R}^{3 \times 3} \quad \lambda\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=K\left[r_{1}, r_{2}, T\right]\left[\begin{array}{c}
X \\
Y \\
1
\end{array}\right]
$$

To eliminate unknown depth, multiply both sides by

$$
\widehat{x^{\prime}} H[X, Y, 1]^{T}=0 .
$$

Uncalibrated Camera

$$
\mathbf{X}=[X, Y, Z, W]^{T} \in \mathbb{R}^{4}, \quad(W=1)
$$

Calibrated camera

- Image plane coordinates $\quad \mathbf{x}=[x, y, 1]^{T}$
- Camera extrinsic parameters $\quad g=(R, T)$
- Perspective projection $\quad \lambda \mathrm{x}=[R, T] \mathbf{X}$

Uncalibrated camera

- Pixel coordinates $\quad \mathbf{x}^{\prime}=K \mathbf{x}$
- Projection matrix $\quad \lambda \mathbf{x}^{\prime}=\Pi \mathbf{X}=[K R, K T] \mathbf{X}$

Taxonomy on Uncalibrated Reconstruction

$$
\lambda \mathrm{x}^{\prime}=[K R, K T] \mathbf{X}
$$

- K is known, back to calibrated case $\mathrm{x}=K^{-1} \mathrm{x}^{\prime}$
- K is unknown
- Calibration with complete scene knowledge (a rig) - estimate
- Uncalibrated reconstruction despite the lack of knowledge of
- Autocalibration (recover from uncalibrated images)
- Use partial knowledge
- Parallel lines, vanishing points, planar motion, constant intrinsic
- Ambiguities, stratification (multiple views)

Uncalibrated Epipolar Geometry

- Epipolar constraint $\mathbf{x}_{2}^{\prime T} \underbrace{K^{-T} \hat{T} R K^{-1}} \mathbf{x}^{\prime}{ }_{1}=0$
- Fundamental matrix $F=K^{-T} \widehat{T} R K^{-1}$
- Equivalent forms of $\quad F=K^{-T} \widehat{T} R K^{-1}=\widehat{T}^{\prime} K R K^{-1}$

Properties of the Fundamental Matrix

$$
\mathrm{x}^{\prime}{ }_{2}^{T} F \mathrm{x}_{1}^{\prime}=0
$$

- Epipolar lines
- Epipoles

$$
\begin{array}{lll}
l_{1} \sim F^{T} \mathbf{x}_{2}^{\prime} & l_{i}^{T} \mathbf{x}_{i}^{\prime}=0 & l_{2} \sim F \mathrm{x}_{1}^{\prime} \\
F \mathbf{e}_{1}=0 & l_{i}^{T} \mathbf{e}_{i}=0 & \mathrm{e}_{2}^{T} F=0
\end{array}
$$

Properties of the Fundamental Matrix

A nonzero matrix $F \in \mathbb{R}^{3 \times 3}$ is a fundamental matrix if has a singular value decomposition (SVD) $F=U \Sigma V^{T}$ with

$$
\Sigma=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, 0\right\}
$$

for some $\sigma_{1}, \sigma_{2} \in \mathbb{R}_{+}$.
There is little structure in the matrix except that

$$
\operatorname{det}(F)=0
$$

Estimating Fundamental Matrix

- Find such F that the epipolar error is minimized

$$
\min _{F} \sum_{j=1}^{n}\left(\mathbf{x}_{2}^{\prime j T} F \mathbf{x}_{1}^{\prime j}\right)^{2} \leftarrow \text { Pixel coordinates }
$$

- Fundamental matrix can be estimated up to scale
- Denote $\mathrm{a}=\mathrm{x}_{1}^{\prime} \otimes \mathrm{x}_{2}^{\prime}$
$\mathrm{a}=\left[x_{1} x_{2}, x_{1} y_{2}, x_{1} z_{2}, y_{1} x_{2}, y_{1} y_{2}, y_{1} z_{2}, z_{1} x_{2}, z_{1} y_{2}, z_{1} z_{2}\right]^{T}$
$F^{s}=\left[f_{1}, f_{4}, f_{7}, f_{2}, f_{5}, f_{8}, f_{3}, f_{6}, f_{9}\right]^{T}$
- Rewrite

$$
\mathbf{a}^{T} F^{s}=0
$$

- Collect constraints from all points

$$
\chi F^{s}=0
$$

$$
\min _{F} \sum_{j=1}^{n}\left(\mathbf{x}_{2}^{\prime j T} F \mathbf{x}_{1}^{\prime j}\right)^{2} \quad \square \min _{F^{s}\left\|\chi F^{s}\right\|^{2}}
$$

Tyo view linear algorithm - 8-point algorithm

- Solve the LLSE problem:

$$
\min _{F} \sum_{j=1}^{n}\left(\mathbf{x}_{2}^{\prime j T} F \mathbf{x}_{1}^{\prime j}\right)^{2} \Rightarrow \chi F^{s}=0
$$

- Solution eigenvector associated with smallest eigenvalue of $\chi^{T} \chi$
- Compute SVD of F recovered from data

$$
F=U \Sigma V^{T} \quad \Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)
$$

- Project onto the essential manifold:
$\Sigma^{\prime}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, 0\right) \quad F=U \Sigma^{\prime} V^{T}$
- cannot be unambiguously decomposed into pose and calibration

$$
F=K^{-T} \widehat{T} R K^{-1}
$$

What Does F Tell Us?

- F can be inferred from point matches (eight-point algorithm)
- Cannot extract motion, structure and calibration from one fundamental matrix (two views)
- F allows reconstruction up to a projective transformation (as we will see soon)
- F encodes all the geometric information among two views when no additional information is available
- F is often used in robust matching for establishing correspondences (one cannot recover R,T from single F)

Projective Reconstruction

- From points, extract , followed by computation of projection matrices $\Pi_{1 p}, \Pi_{2 p}$ and structure \mathbf{X}_{p}
- Canonical decomposition

$$
F \quad \mapsto \quad \Pi_{1 p}=[I, 0], \Pi_{2 p}=\left[\left(\widehat{T^{\prime}}\right)^{T} F, T^{\prime}\right]
$$

- Given projection matrices - recover structure

$$
\begin{aligned}
& \lambda_{1} \mathbf{x}_{1}^{\prime}=\Pi_{1 p} \mathbf{X}_{p}=[I, 0] \mathbf{X}_{p} \\
& \lambda_{2} \mathrm{x}_{2}^{\prime}=\Pi_{2 p} \mathbf{X}_{p}=\left[\left(\widehat{T^{\prime}}\right)^{T} F, T^{\prime}\right] \mathbf{X}_{p}
\end{aligned}
$$

- Projective ambiguity - non-singular $4 x 4$ matrix

$$
\begin{aligned}
\lambda_{i} \mathbf{x}_{i}^{\prime} & =\Pi_{i p} H^{-1} H \mathbf{X}_{p} \\
\lambda_{i} \mathbf{x}_{i}^{\prime} & =\tilde{\Pi}_{1 p} \tilde{\mathbf{X}}_{p}
\end{aligned}
$$

Both \mathbf{X}_{p} and $\Pi_{1 p}, \Pi_{1 p}$ are consistent with the epipolar geometry give the same fundamental matrix

Projective Reconstruction

- Given projection matrices recover projective structure
$\begin{array}{ll}\left(x_{1} \pi_{1}^{3 T}\right) \mathbf{X}_{p}=\pi_{1}^{1 T} \mathbf{X}_{p}, & \left(y_{1} \pi_{1}^{3 T}\right) \mathbf{X}_{p}=\pi_{1}^{2 T} \mathbf{X}_{p}, \\ \left(x_{2} \pi_{2}^{3 T}\right) \mathbf{X}_{p}=\pi_{2}^{1 T} \mathbf{X}_{p}, & \left(y_{2} \pi_{2}^{3 T}\right) \mathbf{X}_{p}=\pi_{2}^{2 T} \mathbf{X}_{p},\end{array}$
- This is a linear problem and can be solve using linear least-squares

$$
M \mathbf{X}_{p}=0
$$

- Projective reconstruction - projective camera matrices and projective structure

Euclidean Structure

$$
\mathbf{X}_{e}=H \mathbf{X}_{p}
$$

Projective Structure

Euclidean vs Projective reconstruction

- Euclidean reconstruction - true metric properties of objects lenghts (distances), angles, parallelism are preserved
- Unchanged under rigid body transformations
- => Euclidean Geometry - properties of rigid bodies under rigid body transformations, similarity transformation
- Projective reconstruction - lengths, angles, parallelism are NOT preserved - we get distorted images of objects - their distorted 3D counterparts --> 3D projective reconstruction
- => Projective Geometry

Euclidean Geometry

- Describes shapes as they are
- Properties of objects that are unchanged by Rigid Body Transformation
- - lengths
- - angles
- - parallelism

Projective Geometry

- Describes things as they are
- Lengths, angles become distorted
- When we look at the objects
- Mathematical model how the images of the world are formed

Examples - corner of the room

- railroad tracks

Example - parallax - displacement of objects due to the change of viewpoints

Homogeneous Coordinates (RBM)

3-D coordinates are related by: $\quad \boldsymbol{X}_{c}=R \boldsymbol{X}_{w}+T$, Homogeneous coordinates:

$$
\boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \quad \rightarrow \quad \boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \in \mathbb{R}^{4}
$$

Homogeneous coordinates are related by:

$$
\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

Homogenous and Projective Coordinates

- Homogenous coordinates in 3D before - attach 1 as the last coordinate - render the transformation as linear transformation
- Before $4^{\text {th }}$ coordinate cannot be zero 0
- Projective coordinates - all points are equivalent up to a scale

$$
\boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
1
\end{array}\right] \approx \boldsymbol{X}=\left[\begin{array}{c}
W X \\
W Y \\
W
\end{array}\right] \in \mathbb{R}^{3} \quad \boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \approx \boldsymbol{X}=\left[\begin{array}{c}
W X \\
W Y \\
W Z \\
W
\end{array}\right] \in \mathbb{R}^{4}
$$

2D- projective plane
3D- projective space
Each point on the plane is
represented by a ray in projective space

Homogenous and Projective Coordinates

- Ideal points - last coordinate is 0 - ray parallel to the image plane point at infinity - never intersects the image plane

$$
\boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
0
\end{array}\right]
$$

$$
\boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z \\
0
\end{array}\right] \in \mathbb{R}^{4}
$$

Vanishing points

Representation of a 3-D line - in homogeneous coordinates

$$
\boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X_{o} \\
Y_{0} \\
Z_{0} \\
1
\end{array}\right]+\lambda\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
0
\end{array}\right], \quad \mu \in \mathbb{R}
$$

When λ-> infinity - vanishing points - last coordinate -> 0

$$
\boldsymbol{X}=\left[\begin{array}{c}
X_{o}+\lambda V_{1} \\
Y_{0}+\lambda V_{2} \\
Z_{0}+\lambda V_{3} \\
1
\end{array}\right] \quad \boldsymbol{X}=\left[\begin{array}{c}
X_{o} / \lambda+V_{1} \\
Y_{o} / \lambda+V_{2} \\
Z_{o} / \lambda+V_{3} \\
1 / \lambda
\end{array}\right] \quad \boldsymbol{X}=\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
0
\end{array}\right]
$$

Projection of a line - line in the image plane
$x=\frac{X_{o}+\lambda V_{1}}{Z_{o}+\lambda V_{3}}$
$y=\frac{Y_{o}+\lambda V_{2}}{Z_{o}+\lambda V_{3}}$

Calibration using vanishing points

Vanishing points - intersections of the parallel lines

$$
v_{i}=l_{1} \times l_{2}=\widehat{l_{1}} l_{2}
$$

Vanishing points of three orthogonal directions

$$
\mathbf{v}_{1}=K R e_{1}, \quad \mathbf{v}_{2}=K R e_{2}, \quad \mathbf{v}_{3}=K R e_{1}
$$

- Orthogonal directions - inner product is zero

$$
\mathbf{v}_{i}^{T} S \mathbf{v}_{j}=\mathbf{v}_{i}^{T} K^{-T} K^{-1} \mathbf{v}_{j}=e_{i}^{T} R^{T} R e_{j}=e_{i}^{T} e_{j}=0, \quad i \neq j
$$

- Provide directly constraints on matrix $S=K^{-T} K^{-1}$
- S - has 5 degrees of freedom, 3 vanishing points - 3 constraints (need additional assumption about K)
- Assume zero skew and aspect ratio = 1

Rotation Only - Calibrated Case

- Calibrated Two views related by rotation only

$$
\lambda_{2} \mathrm{x}_{2}=R \lambda_{1} \mathrm{x}_{1} \quad \widehat{\mathrm{x}_{2}} R \mathbf{x}_{1}=0
$$

- Mapping to a reference view - rotation can be estimated

- Mapping to a cylindrical surface

Rotation Only - Uncalibrated Case

- Calibrated Two views related by rotation only

$$
\begin{gathered}
\lambda_{2} K \mathbf{x}_{2}=\lambda_{1} K R K^{-1} K \mathbf{x}_{1} \quad \widehat{\mathbf{x}_{2}^{\prime}} K R K^{-1} \mathbf{x}_{1}^{\prime}=0 \\
C=K R K^{-1}
\end{gathered}
$$

- Given three rotations around linearly independent axes - S, K can be estimated using linear techniques
- Applications - image mosaics

Projective transformations in 2D

And what remains invariant
$H=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]$
Projective transformation 8-DOF (collinearity, cross ratios)
$H=\left[\begin{array}{ccc}a_{1} & a_{2} & d_{1} \\ a_{3} & a_{4} & d_{2} \\ 0 & 0 & 1\end{array}\right] \quad \begin{aligned} & \text { Affine transformation 6-DOF } \\ & \text { (parallelism, ration of areas, length ratios) }\end{aligned}$
$H=\left[\begin{array}{ccc}s r_{11} & s r_{12} & t_{1} \\ s r_{21} & s r_{22} & t_{2} \\ 0 & 0 & 1\end{array}\right] \quad \begin{aligned} & \text { Similarity transformation 4-DOF } \\ & \text { (angles, length ratios) }\end{aligned}$
$H=\left[\begin{array}{ccc}r_{11} & r_{12} & t_{1} \\ r_{21} & r_{22} & t_{2} \\ 0 & 0 & 1\end{array}\right]$
Rigid Body Motion 3-DOF
(angles, lengths, areas)

Example

Images of planes (+ rectification)

$$
\lambda_{2} \mathrm{x}_{2}^{\prime}=H \lambda_{1} \mathrm{x}_{1}^{\prime} \quad \lambda_{2} \mathrm{x}_{2}^{\prime}=H \mathbf{X} \quad \mathbf{X}=[X, Y, 1]^{T}
$$

- There is one-to-one mapping between two images of a plane
- or between image plane and world plane
- 2D projective transformation H - homography (3×3 matrix)
- Estimation of homography from point correspondences

1. eliminate unknown depth

$$
\widehat{\mathrm{x}_{2}^{\prime}} H \mathrm{x}_{1}^{\prime}=0
$$

2. get two independent constraints per point - (9-1) unknowns
3. need at least 4 points to estimate H
4. H is can be estimated up to a scale factor

Using H

- Image based rectification (given some points in 3D world) compute H which would map them into a square
- Use H to rectify the entire image
- In calibrated case inter-image homography $H=\left(R+\frac{1}{d} T n^{T}\right)$

Solving for homographies

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right] \cong\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]} \\
& x_{i}^{\prime}=\frac{h_{00} x_{i}+h_{01} y_{i}+h_{02}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
& y_{i}^{\prime}=\frac{h_{10} x_{i}+h_{11} y_{i}+h_{12}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
& x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{00} x_{i}+h_{01} y_{i}+h_{02} \\
& y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{10} x_{i}+h_{11} y_{i}+h_{12} \\
& {\left[\begin{array}{ccccccccc}
x_{i} & y_{i} & 1 & 0 & 0 & 0 & -x_{i}^{\prime} x_{i} & -x_{i}^{\prime} y_{i} & -x_{i}^{\prime} \\
0 & 0 & 0 & x_{i} & y_{i} & 1 & -y_{i}^{\prime} x_{i} & -y_{i}^{\prime} y_{i} & -y_{i}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Solving for homographies

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
& & & & \vdots & & & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} & -x_{n}^{\prime} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

$$
\|\mathbf{A} \hat{\mathbf{h}}\|^{2}=(\mathbf{A} \hat{\mathbf{h}})^{T} \mathbf{A} \hat{\mathbf{h}}=\hat{\mathbf{h}}^{T} \mathbf{A}^{T} \mathbf{A} \hat{\mathbf{h}}
$$

- LLS solution to solving a system of homogeneous equations
- Solution - eigenvector associated with the smallest eigenvalue of $A^{\top} A$

Examples

Given a set of line segments, group them based on which vanishing direction then belong to and estimate vanishing points

Camera pose recovery

- Assume partially calibrated camera

$$
K=\left[\begin{array}{ccc}
f & \alpha_{\theta} & o_{x} \\
0 & k f & o_{y} \\
0 & 0 & 1
\end{array}\right] \quad K_{f}=\left[\begin{array}{ccc}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Explicitely parametrize the homography

$$
\boldsymbol{x} \sim H \boldsymbol{X}
$$

$$
\lambda \mathbf{x}=\left[\begin{array}{ccc}
f r_{11} & f r_{12} & f t_{x} \\
f r_{21} & f r_{22} & f t_{y} \\
r_{31} & r_{32} & t_{z}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
1
\end{array}\right]=H\left[\begin{array}{c}
X \\
Y \\
1
\end{array}\right]
$$

- Explicitely parametrize the unknown structure

$$
\mathbf{S}=\left[\begin{array}{cccc}
0 & 0 & \alpha b & \alpha b \\
0 & b & b & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Homography Estimation

- Decouple known and unknown structure

$$
\begin{gathered}
\mathbf{S}=\mathbf{S}_{\alpha} \mathbf{S}_{\mathbf{s}}=\left[\begin{array}{ccc}
\alpha b & 0 & 0 \\
0 & b & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right] \\
\lambda \mathbf{x}=H_{\alpha} \mathbf{S}_{s}
\end{gathered}
$$

- Estimate the unknown homography

$$
H_{\alpha}=\left[\begin{array}{ccc}
\alpha b f r_{11} & b f r_{12} & f t_{x} \\
\alpha b f r_{21} & b f r_{22} & f t_{y} \\
\alpha b r_{31} & b r_{32} & t_{z}
\end{array}\right]=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]
$$

Homography Factorization

- Exploiting orthogonality constraints

$$
r_{1}^{T} r_{2}=0,\left\|r_{1}\right\|=\left\|r_{2}\right\|=1
$$

- Directly estimate the focal length

$$
\begin{gathered}
\frac{1}{\gamma^{2}} \frac{1}{2} \frac{1}{b^{2}}\left(\frac{h_{11} h_{12}+h_{21} h_{22}}{f^{2}}+h_{31} h_{32}\right)=0 . \\
\hat{f}=\sqrt{\frac{-h_{31} h_{32}}{h_{11} h_{12}+h_{21} h_{22}}}
\end{gathered}
$$

- remaining parameters and final pose

$$
H^{\prime}=\gamma\left[\begin{array}{lll}
\alpha b r_{11} & b r_{12} & t_{x} \\
\alpha b r_{21} & b r_{22} & t_{y} \\
\alpha b r_{31} & b r_{32} & t_{z}
\end{array}\right]=\gamma\left[h_{1}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime}\right] . \quad g=\left[\begin{array}{lll}
r_{11} & r_{12} & \frac{t_{x}}{b} \\
r_{21} & r_{22} & \frac{t_{y}}{b} \\
r_{31} & r_{32} & \frac{t_{z}}{b}
\end{array}\right]
$$

Example

- With shared segment the pose can be reconciled and we obtain single consistent pose recovery up to scale and error ~ 3 degrees

EM (Expectation Maximization)
Brief tutorial by example:
EM well known statistical technique for estimation of models from data
Set up: Given set of datapoints which were generated by multiple models estimate the parameters of the models and assignment of the data points to the models
Here: set of points in the plane with coordinates (x, y), two lines with parameters ($a 1, b 1$) and ($a 2, b 2$)

1. Guess the line parameters and estimate error of each point wrt to current model $\quad r_{1}(i)=a_{1} x_{i}+b_{1}-y_{i}$
2. Estimate Expectation (weight for each point)

$$
\begin{aligned}
& w_{1}(i)=\frac{e^{-r_{1}^{2}(i) / \sigma^{2}}}{e^{-r_{1}^{2}(i) / \sigma^{2}}+e^{-r_{2}^{2}(i) / \sigma^{2}}} \\
& w_{2}(i)=\frac{e^{-r_{2}^{2}(i) / \sigma^{2}}}{e^{-r_{1}^{2}(i) / \sigma^{2}}+e^{-r_{2}^{2}(i) / \sigma^{2}}}
\end{aligned}
$$

Maximization step:
Traditional least squares:

$$
\left(\begin{array}{cc}
\sum_{i} x_{i}^{2} & \sum_{i} x_{i} \\
\sum_{i} x_{i} & \sum_{i} 1
\end{array}\right)\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
\sum_{i} x_{i} y_{i} \\
\sum_{i} y_{i}
\end{array}\right]
$$

Here weighted least squares:

$$
\left(\begin{array}{cc}
\sum_{i} w_{i} x_{i}^{2} & \sum_{i} w_{i} x_{i} \\
\sum_{i} w_{i} x_{i} & \sum_{i} w_{i} 1
\end{array}\right)\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
\sum_{i} w_{i} x_{i} y_{i} \\
\sum_{i} w_{i} y_{i}
\end{array}\right]
$$

Iterate until no change
Problems: local minima, how many models ?

Uncalibrated Camera

$$
\mathbf{X}=[X, Y, Z, W]^{T} \in \mathbb{R}^{4}, \quad(W=1)
$$

Calibrated camera

- Image plane coordinates $\quad \mathbf{x}=[x, y, 1]^{T}$
- Camera extrinsic parameters $\quad g=(R, T)$
- Perspective projection $\quad \lambda \mathrm{x}=[R, T] \mathbf{X}$

Uncalibrated camera

- Pixel coordinates $\quad \mathbf{x}^{\prime}=K \mathbf{x}$
- Projection matrix $\quad \lambda \mathrm{x}^{\prime}=\Pi \mathbf{X}=[K R, K T] \mathbf{X}$

