* Uncalibrated Two-View Geometry
|

Uncalibrated Camera
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Overview

= Calibration with a rig

= Uncalibrated epipolar geometry
= Ambiguities in image formation
= Stratified reconstruction

= Autocalibration with partial scene knowledge

Calibration with a Rig

Use the fact that both 3-D and 2-D coordinates of feature
points on a pre-fabricated object (e.g., a cube) are known.




Calibration with a Rig

e Given 3-D coordinates on known object i
j T
Ax' = [KR,KT]X mmp Xx' =NX R [ z ] [ | v
Yy = | ™2 Zi
« Eliminate unknown scales 1 i 1
d(7dX) = #fX,
yz(ﬂ'g:X) = W%X
« Recover projection matrix M = [KR, KT] = [R/, T]
min||MM%||2 subject to |N%||2=1
NS = [m11, 721, ®31, 712, T22, 732, 713, T23, 133, W14, 724, 734] 1
e Factor the KR into R € SO(3) and K using QR decomposition
* Solve for translation 7= K—177
5
More details
lct calibration by recovering and decomposing the projection matrix
j X
@l T i/(z z M1 T2 T3 T4 v
Aoyt | = T 7i —Z |y | =| T21 T2 T2z T4 7
1 4 1 1 T31 T3z 33 T34 1
X+ meYi + msZi + mig X + maYi + o3 Zi + g

B 31X + M32Y; + M3z Z; + 34 vi = 7T31X,i + 7T32Y;' + 7T33Z7: + Ty

x;i(m31X; + w32Y; + my3Z; + m34) = 11X + M12Y; + m13Z; + T4
Yi(m31.X; + T32Y; + T332 + W34) = o1 X + TooY; + Mo3Z; + Tay

v 1 _ T
w.(ﬁ3 X) = mX 5 constraints per point
yl(ﬂ'gX) = W%X
[Xia Yv'h Zia 17 Oa 0) 07 0’ _xiXi; —xi}/i, _xiZi’ _x’L]HS =0
|_O’ 0’ 07 07 X’ia }/ia Z’i7 1a _y'LX'La _yz}/’w _yzZu _y’LJHS =0

II; = [7T11,7T12,7T13,7T14,7T21,7T22,7T23,7T24,7T31,7T32,7T33,7T34,7T41,7T42,7T43,7T44!




More details

‘ecover projection matrix N = [KR,KT] = [R,T]
min |[MN%||2  subject to |N%]|2=1
NS = [r11, ™21, ™31, T12, 22, 732, 113, 723, 133, W14, 724, 734] T
e Collect the constraints from all N points into matrix M (2N x 12)

« Solution eigenvector associated with the smallest eigenvalue M7 M
[u,s,v] = svd(M) take v(:,12)

¢ Unstack the solution and decompose into rotation and translation

e Factor the R’ into R € SO(3) and K using QR decomposition
(gr matlab function)

e Solve for translation 7 = K177

Calibration with a planar pattern

.

' X
H=K[ry,ry, T] €R>3 AMy'| = Klr,r, T) Y]
1 1
To eliminate unknown depth, multiply both sides by v

HX, Y, 1T =0.




‘ Uncalibrated Camera

X =[X,Y,Z,W]l eR*, (W=1)

Calibrated camera
« Image plane coordinates  x = [z, v, 1]7

¢ Camera extrinsic parameters g = (R, T)

* Perspective projection Ax = [R,T]X

Uncalibrated camera

(R, T)
« Pixel coordinates X = Kx

o Projection matrix Ax' = MNX = [KR, KT]X E

!T axonomy on Uncalibrated Reconstruction

M = [KR, KT]X

= K is known, back to calibrated case x = K—1x/

= K is unknown
= Calibration with complete scene knowledge (a rig) — estimate
= Uncalibrated reconstruction despite the lack of knowledge of
= Autocalibration (recover  from uncalibrated images)

= Use partial knowledge
= Parallel lines, vanishing points, planar motion, constant intrinsic

= Ambiguities, stratification (multiple views)




Uncalibrated Epipolar Geometry

=

Ao Kxp = KRA1x1 + KTA Aoxh = KRK~I\x| + T’

(R, T)

- Epipolar constraint ~ x’3K-TTRK 1x';y =0
%/—/
» Fundamental matrix F =K TTRK™!

o Equivalent forms of F =K TTRK 1 =T'KRK™!
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Properties of the Fundamental Matrix

.

x3Fx'y =0
« Epipolar lines

« Epipoles

correspondences

I3 ~ FTx, Ixl=0 Io ~ Fx}
Fep =0 Te, =0 elF =0

7
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Properties of the Fundamental Matrix

y

A nonzero matrix F € R>*3 s a fundamental matrix if  has
a singular value decomposition (SVD) F =UxVT with

2 = diag{al, oo, 0}

for some 01,02 € Ry

There is little structure in the matrix ~ except that

det(F) =0
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!Estimating Fundamental Matrix

e Find such F that the epipolar error is minimized

n
. 13T 1 13N\2 . .
min Z(x 5 Fx'7) Pixel coordinates
=1
e Fundamental matrix can be estimated up to scale
e Denote a = x| @ x5
a = [z172, T1Y2, £122, Y172, Y1Y2, Y122, 2172, 212, 2122] |

FS = [f1, fa, 7, f2, f5, fs. f3. fo. fol T

e Rewrite aTFs =0

¢ Collect constraints from all points
xF*=0
n

m}n Z(x'gTFx'{)Q - minps||XFS||2
j=1
14




Ty view linear algorithm — 8-point algorithm

e Solve the LLSE problem:

n
11}}11 Z(X%TFX’{)Z my xXF¥=0
j=1
e Solution eigenvector assgciated with
smallest eigenvalue of X X

e Compute SVD of F recovered from data
F=UxVT ¥ =diag(o1,02,03)

e Project onto the essential manifold:
> = diag(o1,00,0) F=Ux'VT

. cannot be unambiguously decomposed into pose
and calibration

F=K TTRK!
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What Does F Tell Us?

=

= F can be inferred from point matches (eight-point
algorithm)

= Cannot extract motion, structure and calibration from one
fundamental matrix (two views)

= F allows reconstruction up to a projective transformation
(as we will see soon)

= F encodes all the geometric information among two views
when no additional information is available

= Fis often used in robust matching for establishing
correspondences (one cannot recover R, T from single F)

16




Projective Reconstruction

8 !rom points, extract , followed by computation
of projection matrices I1,,, II>,and structure X,
= Canonical decomposition

F  — My, =1, 0], Mo, = [(THTF, T]

= Given projection matrices — recover structure
axy) = NpXp = [1,01Xp,
Aoxh = MpX, = [(T)TFTXp.
= Projective ambiguity — non-singular 4x4 matrix
Ax = My H1HX,
)‘iX;; = Izllpf(p

Bpth Xp and H1p7 Hl pare _consistent with the epipolar geometry —
give the same fundamental matrix
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! Projective Reconstruction
¢ Given projection matrices recover projective structure
 This is a linear problem and can be solve using linear least-squares
MX, =0

e Projective reconstruction — projective camera matrices and
projective structure

Euclidean Structure Projective Structure

18




Euclidean vs Projective reconstruction

=

Euclidean reconstruction — true metric properties of objects
lenghts (distances), angles, parallelism are preserved
Unchanged under rigid body transformations

=> Euclidean Geometry — properties of rigid bodies under
rigid body transformations, similarity transformation

Projective reconstruction — lengths, angles, parallelism are NOT

preserved — we get distorted images of objects — their distorted
3D counterparts --> 3D projective reconstruction

=> Projective Geometry

19

Euclidean Geometry

Describes shapes as they are

Properties of objects that are unchanged by Rigid
Body Transformation

- lengths
- angles
- parallelism

20
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! Projective Geometry

= Describes things as they are

= Lengths, angles become distorted

= When we look at the objects

= Mathematical model how the images of the
world are formed

Examples — corner of the room
- railroad tracks
Example — parallax — displacement of objects due
to the change of viewpoints

21

! Homogeneous Coordinates (RBM)

3-D coordinates are related by: Xe=RXuy+T,
Homogeneous coordinates:

X
Y
Z

X = - X = € R4,

X
Y
Z
1

Homogeneous coordinates are related by:

Xc Xw
v. | | B T||v,
Zc - Z’LU
1 0 1 1

22
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‘ Homogenous and Projective Coordinates

= Homogenous coordinates in 3D before — attach 1 as the last
coordinate — render the transformation as linear transformation

= Before 4t coordinate cannot be zero 0

= Projective coordinates — all points are equivalent up to a scale

X WX ;‘ Vw‘ié
X=|Y|~X=|WYy |eR3 Xx= gl 2X=| c R*
2D- projective plane 3D- projective space

Each point on the plane is
represented by a ray in projective
space

23

; Homogenous and Projective Coordinates

= Ideal points — last coordinate is 0 — ray parallel to the image plane
point at infinity — never intersects the image plane

b% X
X=1|Y X = }Z/ e R*
0 0

24
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! Vanishing points

Representation of a 3-D line — in homogeneous coordinates

I X XO V]_
_ | Y| _| Yo Va
X = z|= 1|z + A Vi | uweR
1 1 0
When M\ -> infinity - vanishing points — last coordinate -> 0
[ Xo+ A1 Xo/A+ V1 | %1
_ Yo+)\V2 X = YO/)\+V2 X = V2
X=1 Z,+2v3 Zo/A+ V3 Vs
1 1/A 0
Projection of a line - line in the image plane
 Zo+ A3
_ Yo + /\V2
YTz s 2

Calibration using vanishing points

\ Vamshmg pomts — intersections of the parallel lines

T ;i =11 Xl = l1l2

Vgishing poiht§ of three orthogonal directions
vi = KRey, vVvp=KRey, v3z=KRe;
= Orthogonal directions — inner product is zero

V;TFSV]- = VZTK_TK_lvj = e;prTRej = e;rej =0, i#j,
= Provide directly constraints on matrix S = K TK~1!

= S —has 5 degrees of freedom, 3 vanlshlngbpomts -
constraints (need additional assumptlon out K)

= Assume zero skew and aspect ratio = 1

26
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‘ Applications of projective geometry

Vermeer’s Music Lesson

27

; Rotation Only - Calibrated Case

= Calibrated Two views related by rotation only
/\2X2 == R)\]_X]_ }/(\2RX1 =0
= Mapping to a reference view — rotation can be estimated

28
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! Rotation Only - Uncalibrated Case

= Calibrated Two views related by rotation only

AoKxp = M KRK-1Kx; xLbKRK- x| =0

C=KRK!

= Given three rotations around linearly independent
axes — S, K can be estimated using linear techniques
= Applications — image mosaics

29

Projective transformations in 2D

And what remains invariant

H =

[ hi11 hi2 his
h21 hoo hoz
| h31 h3o his

a1 ap dp
a3z a4 d2

|0 0 1

sri11 Srio t1
sro1 Sroo 1o
0 0 1

ri1 ri2 61
ro1 T2 12
0 0O 1

Projective transformation 8-DOF
(collinearity, cross ratios)

Affine transformation 6-DOF
(parallelism, ration of areas, length ratios)

Similarity transformation 4-DOF
(angles, length ratios)

Rigid Body Motion 3-DOF
(angles, lengths, areas)

30
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‘ Example

31

‘ Images of planes (+ rectification)

Aoxh = HA1x) Aoxh = HX X =[Xx,Y,1]T

e There is one-to-one mapping between two images of a plane
e or between image plane and world plane

« 2D projective transformation H — homography (3x3 matrix)
e Estimation of homography from point correspondences
1. eliminate unknown depth

)%Hx’l =0
2. get two independent constraints per point — (9-1) unknowns

3. need at least 4 points to estimate H
4. H is can be estimated up to a scale factor

32
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e Image based rectification (given some points in 3D world)
compute H which would map them into a square

¢ Use H to rectify the entire image

e In calibrated case inter-image homography H = (R + %TnT)
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; Solving for homographies
@] hoo ho1 hoz | | @i
Y | = | hio h11 hi2 Yi
1 hoo ho1 hoz 1
o — _loo%i+ hoiyi + hoo
! hooxi 4+ ho1y; + hoo
J = hiox; + h11y; + hio
! hoox; + ho1yi + hoo
@}(hoowi + ho1yi + ho2) = hoow; + ho1yi + hoo
yihoom; + ho1yi + hoo) = hiowi + hi1yi + hio
oo ]
ho1
ho2
% y 1 0 0 0 —alw; —aly, —af 210 _1|0
0 00 @ yi 1 —ymi —ymi —vi]|,. 0
h2o
h21
| ha2 | 34
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‘ Solving for homographies

oo
ho1
27y y1 1 0 0 O —x:1x1 —leyl —zjl hoo 0
0 0 0 21 y1 1 —yi=z1 —¥ivy1 —v1 hio 0
H hll = H
Tn yn 1 0 0 0 —zhan —alyn —z, h12 0
0 0 0 zn yn 1 —ypan —Yninm —?J;z h2o 0
ho1
[ h22 ]

|AL||? = (Ah)TAh = h"ATARL

e LLS solution to solving a system of homogeneous equations
» Solution — eigenvector associated with the smallest eigenvalue of ATA

35

2nd view

2nd view warped

between two views

by the planar homography

36
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X
covery

traction of rectangular structures and pose

37
Examples
0
50 -
100 Mo e
150
200+
250
200 ‘ ‘ ‘ . ‘ ‘ ‘ ‘ .
-500 -400 -300 -200 -100 0 100 200 300 400 500
Given a set of line segments, group them based on which
vanishing direction then belong to and estimate vanishing points
* e
* i
.
3(;0 460 600
38
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Camera pose recovery

.

= Assume partially calibrated camera

f g ox f 0O
K=|0 kf oy K;=|0 f O
0O 0 1 00 1

L . x~ HX
e Explicitely parametrize the homography
|:f7'11 friz fta | | X X
Ax = | fro1 froo fiy Y |=H|Y

1 1

r31 132tz

e Explicitely parametrize the unknown structure

ab ab
S= b 0
11

= OO
= o O

; Homography Estimation

= Decouple known and unknown structure

I

AX = HaSs

s:sassz[

ook
[eRSNe)
= OO
= OO
== O
e

=OoR
[

e Estimate the unknown homography

hi1 hiz hiz
= | h21 hoo hos
h31 h3z hsz

Ho = | abfrar bfroa fty

abrzy  brzo  tz

abfri1 bfriz ftz}

40
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‘ Homography Factorization

= Exploiting orthogonality constraints
r{ra =0,||r1ll = |r2ll = 1
¢ Directly estimate the focal length

hiih ho1h
111 ( 11 12;; 21 22—|—h31h32> —0.

72ab2
f — —h;ﬂ h32
hi1h12+h21ho2

e remaining parameters and final pose

t

abriy briz te r11 T12 th

H' =1 | abray broo ty | =[], h, ki) g=|r21 ro2 #
abrzy braz tx r31 732 %‘i

41

(Rl7 11l)7 (R”’aj—‘l)

e With shared segment the pose can be reconciled and we
obtain single consistent pose recovery up to scale and

error ~ 3 degrees

42
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e Recovery of the camera displacement from a planar structure 43

e Recovery of the camera displacement from a planar structure
e Dominant plane is decomposed to

44
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!M (Expectation Maximization)

Brief tutorial by example:
EM well known statistical technique for estimation of models from data

Set up: Given set of datapoints which were generated by multiple models
estimate the parameters of the models and assignment of the
data points to the models
Here: set of points in the plane with coordinates (x,y), two lines with parameters
(al,b1) and (a2,b2)

1. Guess the line parameters and estimate error of each point wrt
to current model ri(i) = ayx; + by — i

2. Estimate Expectation (weight for each point)
e—ri)/a?
wy(2)

-1 (0)/7 4 =3 ()]0

—r3(i)/a*

€

walt) = R G Ve TG Y

45

!EM

Maximization step:
Traditional least squares:

Yiai Y ) a | | Xiwiy
Zi‘l)i le ; [) B ZIU(

Here weighted least squares:

Swid 3wy a B Yo Wity
Siwirg S w;il b | 3wy

Iterate until no change

Problems: local minima, how many models ?

46
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‘EM - example

0 0 S

t=1 =2

N
—-~ %
Il

!Uncalibrated Camera
=[x,v,Zzw]l erR*, (W=1)

Calibrated camera -
* Image plane coordinates X = [33; Y, 1]

e Camera extrinsic parameters g = (R7 T)

« Perspective projection  Ax = [R, T]X

(R, T)
Uncalibrated camera

. . ;_
e Pixel coordinates X = KX

e Projection matrix Ax' = MNX = [KR, KT]X

Dhﬁﬁ

8
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