CS 685 notes, J. Kosexk

1 Trajectory Generation

The material for these notes has been adopted from
John J. Craig: Robotics: Mechanics and Control.

This example assumes that we have a starting position arigpgsa of the
end effector and we are asked to move the joint angles to ni@verid effector
from one pose to another. Here we describe a strategy howdo bp designing a
trajectory in joint space from one end point to another. Assig that we know the
inverse kinematics of the system, we can compute the dgsirgdangle for goal
position of the end effector. This example shows how to deaityajectory of a
single jointO(t) as function of time. Suppose that we have following constraf
out trajectory: we have desired position at the beginnirdyeard of the trajectory
and we the velocity at the begining and end has to be zero. eHeucdesired
trajectory has to satisfy the following constraints:

8(0) = Bo; O(tf) =6y 6(0) =0 B(tr) = By (1)

Cubic polynomials In order to satisfy the above constraints, our trajectory ha
to be at least polynomial of thé®Border, which has four coefficients, and hence
can satisfy the above 4 constraints. This can be achievedity drder cubic
polynomial which has the following form

0(t) = ag+ ast + apt? + ast®

Given the above form the joint velocity and acceleratior have the following
forms

6 = a+2ast+3agt? (2)
0 = 2a,+6ast 3)



Using the above equations and instantiating the conssraiatcan solve for the
coefficients of the cubic polynomial and obtain

ao 6o (4)

ag = 0 (5)

% = S0 6) 6)
f

8 — é(ef—ew @)

Now given a particular instance of the problem, we can stuistto the above
equations the desired parameté§sfs,t; and obtain different trajectories.

Linear functions with parabolic blends If we were to simply just connect the
desired position with a linear function, it would cause tle¢oeity to be discon-
tinuous at the beginning and end of the motion. Also notedhtie shape of the
part in the joint space is linear, that does not mean thathhees of the path in
the end effector space is linear. Hence what can be done akéoat linear path
in the end effector space and interpolate it linearly. We ldilke to do it in a
way that the velocities at the would not be discontinuousatpiaces where the
pieces meet. One way to achieve this is to add a parabolid bksgion, such
that the we will create a smooth and continuous path. Dutiegolend portion
of the trajectory the acceleration will be constant (i.e.wik assume that it will
not be changing in time and that we can instantaneously gengire constant ac-
celeration profile). To construct a one such single segmentyill assume that
parabolic blend at the beginning and the end have the saraga@uand the same
constant acceleration (with opposite signs) will be usednduthose blends. If
the blends at the beginning and the end will have the saméoluréhe final solu-
tion will be always symmetric around the half way pdintind 6,. To guarantee
smoothness the velocity at the end of the blend has to be the aa the velocity
of the linear section

Oh— 6o

th—1tp
where 6, is the value off at the end of the blend region. Since the blend is
parabolic the value dof}, is given by

étb =

1.
O = 90+§et§
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Combining the above two equations and denotiag2ty,, we get
6t2 — Bttp+ (6 — 6p) =0

wheret is the desired time of motion. Given the desigd 6, andt, the above
equation gives is constraints on betwe®andt, which the trajectory has to sat-
isfy. Hence typicallyd is chosen and then we can use the equation to solug for
to obtain

¢ \/6t2—48(6; — o)
=3 26

Notice that depending on acceleration the time of the blegn will vary. De-

pending on the acceleration, the path will be composed frempiarabolic blends
which will meet in the middle with the same slope and the lingation of the

blend will go to zero. If the acceleration is high the blengioa will be shorter. In

the limit when acceleration is infinite, we will reach the pimlinear interpolation
case.

2 Control of Second-Order Systems

AW~

QO

Figure 1: Block with masm attached to the wall with spring with stiffneks

Before we start considering the trajectory tracking probléets consider a
simpler problem. Consider a block with the massliding along a surface and
attached with the spring to the wall. The equation of motibthe block is

mMX+bx+kx=10

wherex is the position the block (distance to the wall), tixas the frictional force
proportional to the velocity anki is the related to the position and stiffness of the
spring. We would like to study the behavior of the system bgtaratanding the
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trajectoriesx(t). From the study of differential equations the form of theutioh
depends on he roots of its characteristic equation

m<+bs+k=0
with the roots
b vb%2=—-4mk b vb%2=—-4mk
$$5=——+————and§gy=——— ———
2m m 2m m

It can be easily shown by substitution that the solusi@n has the following form
X(t) = c1e™ + e

wherec; andc, are constants which can be determined from the initial daord.

We will now show 3 different cases of qualitatively diffetesolutions which de-
pend of the values; ands, and consequently of the parameters of the system
m, b, k.

1. The first case we consider $§ = —2 ands, = —3, where two roots are
real and have negative parts. In case the initial conditief@®y = —1 and
x(0) = 0, substituting to the differential equation

cit+c = 0 (8)
—2c1—-3c, = 0 9)

which is satisfied bg; = —3 andc, = 2. The motion of the system is then
X(t) = —3e 2422
The trajectory of the system is plotted in Figure 2.

2. The second case we consider is when the two roots have epngats and
the solution has the form

X(t) = c1€™" 4 et
wheres; = A +ip ands, = A —iu. Using the well knowrEuler formula

X = cosx+isinx
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Figure 2: Case X(t).

we can rewrite the trajectory in the following form
X(t) = c1e’ coq ut) + coeM sin(ut)

where the coefficients; andc, can be computed from initial conditions. If
we rewrite them in the following way

c1 = rcosd (10)
C; = Trsind 11

then using the formula focog a + ) we can write the trajectories in the
following way
x(t) = re* cogut — J)

r=,/c2+c3 andd = arctarcy, 1)

In the above form is is easier to see that the resulting ti@jies will be os-
cillations, with the amplitude exponentially decreasiogéro. This type of
oscillatory system is also often described in terms of feifey parameters,
which are the functions of the terms already defined abowest Fiis the

where
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Figure 3: Case (t).

natural frequency of the systemp, the damping ratid
A = —{un (12)

o= wn/1-¢? (13)

These symbols are related to the canonical form of the ctearstic equa-
tion of the second order system

P+ lwns+ w2 =0
. Another interesting case is the case when, the solutiotietcharacteristic

equations are two real repeated roots, i.e.

b
S=%=—5

In this case the trajectory will have the following form
X(t) = (C1 + Cp)ezt

When the roots of the characteristics equations (alsoctgitdes of the
second order system) are real and equal, the systenitisally damped
and exhibits the fastest possible non-oscilatory response
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2.1 Control of second order systems

We saw in the previous section that the behavior of the seoasher system (in-
volving second derivatives of the position) depends on tedficient of the sys-
tem. If we want to achieve a desired behavior we need to mddifiese coeffi-
cients by means of control. Suppose for example that we ang ¢go apply some
external force to the system, which will yield the followieguation of motion

MK+ bX+ kx = f (14)

Assuming that we have at our disposal sensors which can meets position
x and the velocityx, we would like to make the force proportional to the sense
feedback. Hence suppose the control of the following form

f = —kpx— kX (15)

wherek, andk, are some constants, also referred to as gains determinmimgigo
the force will be as proportion of velocity and position. $luarticular control
law will strive to keep the position of the block at zero anatisinary, i.e. when
bothx = 0 andx = 0, the applied force will be 0. If we now bring the equation
of motion to the canonical form above (right hand side is gese@ will have an
equation of motion of closed feedback loop system

mxX+ (b+ky)x+ (K+kp)x=0 (16)

or
mx+b'x+kx=0 (17)

Notice now that we can now chance the control g&inandk, so as to ob-
tain the coefficients of the second order system which woettegate the desired
behavior.

2.2 Trajectory following

So how is this related to the trajectory following? Well et of designing a
control to maintain the block a a particular position, we dasign a control which
will make the block to follow particular trajectory. Supmasow that the trajectory
is given to us agy(t) which specifies the desired position of the block. We also
assume that out trajectory is smooth (i.e. first two demeatiexist) and that our
trajectory generator provides us witf Xg andxXy at all times. We now define the
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servo error ag = xXq — X. A servo control law which we will then use for trajectory
following will have the following form

f =Xq+kv&+kpe (18)

The block diagram of such feedback control law is in Figure 4.
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Figure 4: Feedback control diagram for trajectory folloguin

If we combine the above equation with the simplified candrecpiation of
motionx'= f 1 we will obtain the following equation:

% = Xq + k& kpe (19)

or
&+ kje+kpe=0 (20)

wheree'= Xg — X. Notice that this again second order differential equati@mce
we can determine the behavior of the error trajectog{esby setting the coeffi-
cients of the equation, based on the cases outlined at thenoeg of this hand-
out. This equation captures the behaviour of the systemeietior space. If our
model is perfect (we know exactip, b andk) the controller will follow the tra-
jectory perfectly. In practice two things often happen: @athat the knowledge
of our model is not perfect and that our system can be affdnfexsbme external
disturbances. If the presence of external disturbanceddised loop behavior of
our system will have the following form:

é-+kve+ kpe = fyist (1)

1Any second order system can be rewritten to this form by sirgpbuping the other parame-
ters of the system inté.



wherefgist. The simplest kind of disturbance is when thg; is constant. In such
case when the system is in steady-stage (i.e. all derigatingezero), we will have

Kpe = fqist

i.e. the value of the steady state error willde fd'St . From here we can see that
higher the gairky, two lower the error will be. In order to eliminate the steady-
state error, the control law is typically modified to incorgie so called intergral
term and the control law then becomes

£ = 5+ ket koot K /edt

This resulting control law is ofter calldel D control law which stands for "pro-
portional, intergral, derivative” control law. It is one tife most commonly used
control strategies applicable to a large variety of proldem

3 MobileRobots

Control of mobile robots topics covered in class:

e pose to point control of differential drive robot (slides)
e pose-to-pose control of differential drive robot in thegraloordinates (slides)

e line following

4 Time-varying coor dinates of Rigid Body

Here we will make a slight digression from the control distos and return to
the issue of generating trajectories. In the previous exasnwe shown how to
generate trajectories from a single joint angle, assumamgesinitial and final
conditions and some constraints on the velocities. We hawes that if we want
to motion to be smooth (no velocity discontinuities), wedaespecify the trajec-
tory as a polynomial. Another strategy we had was the geingrtite trajectories
as linear segments with parabolic blends, which generaiezhlded trapezoidal
velocity profiles and enable the joing variable to move at imax(on some con-
stant) velocity during pre-specified time.



We will try to generalize these ideas for genera rigid bodve@sich have 6
degrees of freedom. Suppose that you have initial mgse (Rp, To) and you
want to generate trajectory which interpolates betwedralrand final posey; =
(R1,T1). The idea of interpolation is the following to generate imediate poses
it any instance of time

g(t) = (1-9)go+st

wheres € [0,1]. Note at the beginning where= 0 the pose ig)p and at the end
s=1 we will havegs. If go is a rigid body pose which is represented by a ma-
trix, we cannot simply multiply the matrix by as the resulting matrix would not
longer represent a rigid body pose and it is part correspgnidi the rotation ma-
trix which is problematic. This brings about the issues abpgetrization which
we discussed previously. Given that any rotation can beesgpusing its expo-
nential coordinate® asR = et we can just interpolate betweeg andw;, while

the translation component can be interpolated linearly.

In situations where we want the 3D rigid body follow a pathjelhis speci-
fied in terms of the waypoints, we need to again worry aboutamtransitions
between waypoints and use higher order polynomial (as @upost line) for in-
terpolation. The common choice of such polynomials are 8edcaplines, which
are specified in terms of their waypoints, although the finm/e may not pass
through them.
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