
CS 685 notes, J. Košecká

1 Trajectory Generation

The material for these notes has been adopted from:
John J. Craig: Robotics: Mechanics and Control.

This example assumes that we have a starting position and goal pose of the
end effector and we are asked to move the joint angles to move the end effector
from one pose to another. Here we describe a strategy how to doso by designing a
trajectory in joint space from one end point to another. Assuming that we know the
inverse kinematics of the system, we can compute the desiredjoint angle for goal
position of the end effector. This example shows how to design a trajectory of a
single jointθ(t) as function of time. Suppose that we have following constrains of
out trajectory: we have desired position at the beginning and end of the trajectory
and we the velocity at the begining and end has to be zero. Hence our desired
trajectory has to satisfy the following constraints:

θ(0) = θ0; θ(t f ) = θd θ̇(0) = 0 θ̇ (t f ) = θd (1)

Cubic polynomials In order to satisfy the above constraints, our trajectory has
to be at least polynomial of the 3rd order, which has four coefficients, and hence
can satisfy the above 4 constraints. This can be achieved by third order cubic
polynomial which has the following form

θ(t) = a0+a1t +a2t
2+a3t

3

Given the above form the joint velocity and acceleration will have the following
forms

θ̇ = a1+2a2t +3a3t
2 (2)

θ̈ = 2a2+6a3t (3)
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Using the above equations and instantiating the constraints we can solve for the
coefficients of the cubic polynomial and obtain

a0 = θ0 (4)

a1 = 0 (5)

a2 =
3

t2
f

(θ f −θ0) (6)

a3 =
2

t3
f

(θ f −θ0) (7)

Now given a particular instance of the problem, we can substitute to the above
equations the desired parametersθ0,θ f , t f and obtain different trajectories.

Linear functions with parabolic blends If we were to simply just connect the
desired position with a linear function, it would cause the velocity to be discon-
tinuous at the beginning and end of the motion. Also note thatof the shape of the
part in the joint space is linear, that does not mean that the shape of the path in
the end effector space is linear. Hence what can be done is to take a linear path
in the end effector space and interpolate it linearly. We would like to do it in a
way that the velocities at the would not be discontinuous at the places where the
pieces meet. One way to achieve this is to add a parabolic blend region, such
that the we will create a smooth and continuous path. During the blend portion
of the trajectory the acceleration will be constant (i.e. wewill assume that it will
not be changing in time and that we can instantaneously generate the constant ac-
celeration profile). To construct a one such single segment,we will assume that
parabolic blend at the beginning and the end have the same duration and the same
constant acceleration (with opposite signs) will be used during those blends. If
the blends at the beginning and the end will have the same duration, the final solu-
tion will be always symmetric around the half way pointth andθh. To guarantee
smoothness the velocity at the end of the blend has to be the same as the velocity
of the linear section

θ̈ tb =
θh−θb

th− tb
whereθb is the value ofθ at the end of the blend region. Since the blend is
parabolic the value ofθb is given by

θb = θ0+
1
2

θ̈ t2
b
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Combining the above two equations and denotingt = 2th, we get

θ̈ t2
b − θ̈ ttb+(θ f −θ0) = 0

wheret is the desired time of motion. Given the desiredθ f ,θ0 andt, the above
equation gives is constraints on betweenθ̈ andtb which the trajectory has to sat-
isfy. Hence typicallyθ̈ is chosen and then we can use the equation to solve fortb
to obtain

tb =
t
2
−

√

θ̈ t2−4θ̈(θ f −θ0)

2θ̈
Notice that depending on acceleration the time of the blend region will vary. De-
pending on the acceleration, the path will be composed from two parabolic blends
which will meet in the middle with the same slope and the linear portion of the
blend will go to zero. If the acceleration is high the blend region will be shorter. In
the limit when acceleration is infinite, we will reach the simple linear interpolation
case.

2 Control of Second-Order Systems

Figure 1: Block with massm attached to the wall with spring with stiffnessk.

Before we start considering the trajectory tracking problem, lets consider a
simpler problem. Consider a block with the massm sliding along a surface and
attached with the spring to the wall. The equation of motion of the block is

mẍ+bẋ+kx= 0

wherex is the position the block (distance to the wall), thebẋ is the frictional force
proportional to the velocity andkx is the related to the position and stiffness of the
spring. We would like to study the behavior of the system by understanding the
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trajectoriesx(t). From the study of differential equations the form of the solution
depends on he roots of its characteristic equation

ms2+bs+k = 0

with the roots

s1 = −
b

2m
+

√
b2 = −4mk

2m
and s1 = −

b
2m

−

√
b2 = −4mk

2m

It can be easily shown by substitution that the solutionx(t) has the following form

x(t) = c1es1t +c2es2t

wherec1 andc2 are constants which can be determined from the initial conditions.
We will now show 3 different cases of qualitatively different solutions which de-
pend of the valuess1 ands2 and consequently of the parameters of the system
m,b,k.

1. The first case we consider iss1 = −2 ands2 = −3, where two roots are
real and have negative parts. In case the initial conditions, x(0) = −1 and
ẋ(0) = 0, substituting to the differential equation

c1 +c2 = 0 (8)

−2c1−3c2 = 0 (9)

which is satisfied byc1 = −3 andc2 = 2. The motion of the system is then

x(t) = −3e−2t +2e−3t

The trajectory of the system is plotted in Figure 2.

2. The second case we consider is when the two roots have complex roots and
the solution has the form

x(t) = c1es1t +c2es2t

wheres1 = λ + iµ ands2 = λ − iµ. Using the well knownEuler formula

eix = cosx+ i sinx
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Figure 2: Case 1x(t).

we can rewrite the trajectory in the following form

x(t) = c1eλ t cos(µt)+c2eλ t sin(µt)

where the coefficientsc1 andc2 can be computed from initial conditions. If
we rewrite them in the following way

c1 = r cosδ (10)

c2 = r sinδ (11)

then using the formula forcos(α + β ) we can write the trajectories in the
following way

x(t) = reλ t cos(µt −δ )

where

r =
√

c2
1 +c2

2 andδ = arctan(c2,c1)

In the above form is is easier to see that the resulting trajectories will be os-
cillations, with the amplitude exponentially decreasing to zero. This type of
oscillatory system is also often described in terms of following parameters,
which are the functions of the terms already defined above. First it is the
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Figure 3: Case 2x(t).

natural frequency of the systemωn, the damping ratioζ

λ = −ζ ωn (12)

µ = ωn

√

1−ζ 2 (13)

These symbols are related to the canonical form of the characteristic equa-
tion of the second order system

s2 +ζ ωns+ω2
n = 0

3. Another interesting case is the case when, the solutions to the characteristic
equations are two real repeated roots, i.e.

s1 = s2 = −
b

2m

In this case the trajectory will have the following form

x(t) = (c1+c2)e
−b
2mt

When the roots of the characteristics equations (also called poles of the
second order system) are real and equal, the system iscritically damped
and exhibits the fastest possible non-oscilatory response.
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2.1 Control of second order systems

We saw in the previous section that the behavior of the secondorder system (in-
volving second derivatives of the position) depends on the coefficient of the sys-
tem. If we want to achieve a desired behavior we need to modified these coeffi-
cients by means of control. Suppose for example that we are going to apply some
external force to the system, which will yield the followingequation of motion

mẍ+bẋ+kx= f (14)

Assuming that we have at our disposal sensors which can measure the position
x and the velocity ˙x, we would like to make the force proportional to the sense
feedback. Hence suppose the control of the following form

f = −kpx−kvẋ (15)

wherekp andkv are some constants, also referred to as gains determining how big
the force will be as proportion of velocity and position. This particular control
law will strive to keep the position of the block at zero and stationary, i.e. when
bothx = 0 andẋ = 0, the applied force will be 0. If we now bring the equation
of motion to the canonical form above (right hand side is zero), we will have an
equation of motion of closed feedback loop system

mẍ+(b+kv)ẋ+(k+kp)x = 0 (16)

or
mẍ+b′ẋ+k′x = 0 (17)

Notice now that we can now chance the control gainskp andkv so as to ob-
tain the coefficients of the second order system which would generate the desired
behavior.

2.2 Trajectory following

So how is this related to the trajectory following? Well instead of designing a
control to maintain the block a a particular position, we candesign a control which
will make the block to follow particular trajectory. Suppose now that the trajectory
is given to us asxd(t) which specifies the desired position of the block. We also
assume that out trajectory is smooth (i.e. first two derivatives exist) and that our
trajectory generator provides us withxd, ẋd andẍd at all times. We now define the
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servo error ase= xd−x. A servo control law which we will then use for trajectory
following will have the following form

f = ẍd +kvė+kpe (18)

The block diagram of such feedback control law is in Figure 4.

Figure 4: Feedback control diagram for trajectory following.

If we combine the above equation with the simplified canonical equation of
motionẍ = f 1 we will obtain the following equation:

ẍ = ẍd +kvė+kpe (19)

or
ë+kvė+kpe= 0 (20)

whereë= ẍd − ẍ. Notice that this again second order differential equation, hence
we can determine the behavior of the error trajectoriese(t) by setting the coeffi-
cients of the equation, based on the cases outlined at the beginning of this hand-
out. This equation captures the behaviour of the system in the error space. If our
model is perfect (we know exactlym,b andk) the controller will follow the tra-
jectory perfectly. In practice two things often happen: oneis that the knowledge
of our model is not perfect and that our system can be affectedby some external
disturbances. If the presence of external disturbances theclosed loop behavior of
our system will have the following form:

ë+kvė+kpe= fdist (21)

1Any second order system can be rewritten to this form by simply grouping the other parame-
ters of the system intof .
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where fdist. The simplest kind of disturbance is when thefdist is constant. In such
case when the system is in steady-stage (i.e. all derivatives are zero), we will have

kpe= fdist

i.e. the value of the steady state error will bee= fdist
kp

. From here we can see that
higher the gainkp two lower the error will be. In order to eliminate the steady-
state error, the control law is typically modified to incorporate so called intergral
term and the control law then becomes

f ′ = ẍ+kvė+kpe+ki

∫

edt

This resulting control law is ofter calledPID control law which stands for ”pro-
portional, intergral, derivative” control law. It is one ofthe most commonly used
control strategies applicable to a large variety of problems.

3 Mobile Robots

Control of mobile robots topics covered in class:

• pose to point control of differential drive robot (slides)

• pose-to-pose control of differential drive robot in the polar coordinates (slides)

• line following

4 Time-varying coordinates of Rigid Body

Here we will make a slight digression from the control discussion and return to
the issue of generating trajectories. In the previous examples we shown how to
generate trajectories from a single joint angle, assuming some initial and final
conditions and some constraints on the velocities. We have shown that if we want
to motion to be smooth (no velocity discontinuities), we need to specify the trajec-
tory as a polynomial. Another strategy we had was the generating the trajectories
as linear segments with parabolic blends, which generated so called trapezoidal
velocity profiles and enable the joing variable to move at maximal (on some con-
stant) velocity during pre-specified time.
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We will try to generalize these ideas for genera rigid bodies, which have 6
degrees of freedom. Suppose that you have initial poseg0 = (R0,T0) and you
want to generate trajectory which interpolates between initial and final poseg1 =
(R1,T1). The idea of interpolation is the following to generate intermediate poses
it any instance of time

g(t) = (1−s)g0+sg1

wheres∈ [0,1]. Note at the beginning wheres= 0 the pose isg0 and at the end
s= 1 we will haveg1. If g0 is a rigid body pose which is represented by a ma-
trix, we cannot simply multiply the matrix bys as the resulting matrix would not
longer represent a rigid body pose and it is part corresponding to the rotation ma-
trix which is problematic. This brings about the issues of parametrization which
we discussed previously. Given that any rotation can be express using its expo-
nential coordinatesω asR= eω̂ t we can just interpolate betweenω0 andω1, while
the translation component can be interpolated linearly.

In situations where we want the 3D rigid body follow a path, which is speci-
fied in terms of the waypoints, we need to again worry about smooth transitions
between waypoints and use higher order polynomial (as opposed just line) for in-
terpolation. The common choice of such polynomials are so called splines, which
are specified in terms of their waypoints, although the final curve may not pass
through them.
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