Kinematics, Kinematics Chains

Previously

- Representation of rigid body motion
- Two different interpretations
- as transformations between different coordinate frames
- as operators acting on a rigid body
- Representation in terms of homogeneous coordinates
- Composition of rigid body motions
- Inverse of rigid body motion

Rigid Body Transform

Translation only $t_{A B}$ is the origin of the frame B expressed in the Frame A

$$
\mathbf{X}_{A}=\mathbf{X}_{B}+t_{A B}
$$

Composite transformation:

$$
\mathbf{X}_{A}=R_{A B} \mathbf{X}_{B}+t_{A B}
$$

Transformation: $T=\left(R_{A B}, t_{A B}\right)$
Homogeneous coordinates

$$
\mathbf{X}_{A}=\left[\begin{array}{cc}
R_{A B} & t_{A B} \\
0 & 1
\end{array}\right] \mathbf{X}_{B}
$$

The points from frame A to frame B are transformed by the inverse of $T=\left(R_{A B}, t_{A B}\right)$ (see example next slide)

Kinematic Chains

- We will focus on mobile robots (brief digression)
- In general robotics - study of multiple rigid bodies lined together (e.g. robot manipulator)
- Kinematics - study of position, orientation, velocity, acceleration regardless of the forces
- Simple examples of kinematic model of robot manipulator and mobile robot
- Components - links, connected by joints

Various joints

Cylindrical

Prismatic
1 Degree of Freedom

Screw
1 Degree of Freedom

Planar
Spherical
2 Degrees of Freedom 3 Degrees of Freedom 3 Degrees of Freedom

- Given θ_{1}, θ_{2} determine what is X, Y, Z.
- Given $\dot{\theta}_{1}, \theta_{2}$ determine what is $\dot{X}, \dot{Y}, \dot{Z}$
- We can control θ_{1}, θ_{2}, want to understand how it affects position of the tool frame
- How does the position of the tool frame change as the manipulator articulates
- Actuators change the joint angles

Forward kinematics for a 2D arm

- Find position of the end effector as a function of the joint angles

$$
f\left(\theta_{1}, \theta_{2}\right)=\left[\begin{array}{l}
X \\
Y
\end{array}\right]
$$

- Blackboard example

Kinematic Chains in 3D

- More joints possible (spherical, screw)
- Additional offset parameters, more complicated
- Same idea: set up frame with each link
- Define relationship between links
- Two rules:
- use Z-axis as an axis of a revolute joint
- connect two axes shortest distance

In 2D we need only link length and joint angle to specify the transform
In 3D $d_{i}, \theta_{i}, a_{i-1}, \alpha_{i-1}$ Denavit-Hartenberg parameters (see LaValle (chapter [3])

Inverse kinematics

- In order to accomplish tasks, we need to know given some coordinates in the tool frame, how to compute the joint angles
- Blackboard example (see handout)

Jacobians

- Kinematics enables us study what space is reachable
- Given reachable points in space, how well can be motion of an arm controlled near these points
- We would like to establish relationship between velocities in joint space and velocities in end-effector space
- Given kinematics equations for two link arm

$$
\begin{aligned}
x & =f_{x}\left(\theta_{1}, \theta_{2}\right) \\
y & =f_{y}\left(\theta_{1}, \theta_{2}\right)
\end{aligned}
$$

- The relationship between velocities is
- manipulator Jacobian $J\left(\theta_{1}, \theta_{2}\right)$
$\left[\begin{array}{c}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{ll}\frac{\partial x}{\partial \theta_{1}} & \frac{\partial x}{\partial \theta_{2}} \\ \frac{\partial y}{\partial \theta_{1}} & \frac{\partial y}{\partial \theta_{2}}\end{array}\right]\left[\begin{array}{c}\dot{\theta_{1}} \\ \dot{\theta_{2}}\end{array}\right]\left[\begin{array}{c}\dot{x} \\ \dot{y}\end{array}\right]=J\left(\theta_{1}, \theta_{2}\right)\left[\begin{array}{c}\dot{\theta_{1}} \\ \dot{\theta_{2}}\end{array}\right]$

Manipulator Jacobian

- Determinant of the Jacobian
- If determinant is 0 , there is a singularity
- Manipulator kinematics: position of end effector can be determined knowing the joint angles
- Actuators: motors that drive the joint angles
- Motors can move the joint angles to achieve certain position
- Mobile robot actuators: motors which drive the wheels
- Configuration of a wheel does not reveal the pose of the robot, history is important

Locomotion concepts

Type of motion	Resistance to motion	Basic kinematics of motion
Flow in		
a Channel		

Mobile robot kinematics

- Depends on the type of robot Position and type of the wheels

Two types of wheels
a) Standard - rotation around (motorized) wheel axel and the contact point

b) Castor wheel - rotation around wheel axes, contact point and castor axel
c) Swedish wheels
d) Ball wheels

Representing Mobile Robot Position

- Representing to robot within an arbitrary initial frame
- Initial frame: $\left\{X_{I}, Y_{I}\right\}$
- Robot frame: $\left\{X_{R}, Y_{R}\right\}$
- Robot pose: $\quad \xi_{I}=\left[\begin{array}{lll}x & y & \theta\end{array}\right]$
- Mapping between the two frames

- transforms points/velocities from body to inertiglx x_{t} frame

$$
T(\theta, x, y)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & x \\
\sin \theta & \cos \theta & y \\
0 & 0 & 1
\end{array}\right]
$$

- Example: Robot aligned with VI $_{I}$

Mobile robot kinematics

- Differential drive mobile robot
- Two wheels, with radius r, point P centered
- Between two wheels is the origin of the robot frame
- Distance between the wheels l

Mobile Robot Kinematic Models

- Manipulator case - given joint angles, we can always tell where the end effector is
- Mobile robot basis - given wheel positions we cannot tell where the robot is
- We have to remember the history how it got there
- Need to find relationship between velocities and changes in pose
- Presented on blackboard (see handout)
- How is the wheel velocity affecting velocity of the chassis

Differential Drive Kinematics

- Blackboard derivation
- Kinematics in the robot frame

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]_{R}=\left[\begin{array}{c}
\frac{v_{l}+v_{r}}{2} \\
0 \\
\frac{v_{r}-v_{l}}{l}
\end{array}\right]=\left[\begin{array}{l}
v \\
0 \\
\omega
\end{array}\right]
$$

- Relationship between robot frame and inertial frame

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]_{R}=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]_{I}
$$

