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•  A* methods 
•  Road map methods 
•  Configuration space 
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Discrete Planning 

•  Review of some discrete planning methods 
•  Given state space and transition function and initial 

state, find a set of states which lead to goal state 
    (state space is discrete)  
•  Use well developed search and graph traversal 

algorithms to find the path 
•  Path: set of vertices in the graph 

•  For more details CS 583, CS 580 



Previously 

•  Reactive Navigation Strategies  
•  Braitenberg vehicles no map of the world, no memory 
•  Extensions to more complex behaviors and behavior 

assemblages  
•   Steering behaviors 

Today:  
•  Navigation with some memory 
•  Map based approaches 
•  More general motion planning methods 



Bug Algorithms 

•  Extensions of reactive strategies 
•  Assumes local knowledge of the environment 
•  And global knowledge of the goal  



Bug Algorithms 

•  Algorithm 
•  Head towards the goal until you encounter obstacle 
•  Follow obstacle until you can turn to goal again 
•  Continue  



Bug 1 

•  Head towards the goal  
•  Circumnavigate obstacle and  
•  Remember how close you got to  
•  The goal 
•  Return to the closes point by  
•  Wall following  
•  Continue 



Completeness  

•  Algorithm is complete if in finite time will find the path 
to the goal or declare failure if such path does not exist 

•  Incomplete algorithm – never terminates, or does not 
find the goal 



Bug 2 

•  Draw a line to the goal. Follow the line until obstacle, 
then circumnavigate to obstacle until you reach the goal 

•   heads towards the goal again 



Potential problem 

•  Follow the obstacle until you encounter line closer to the 
goal 

•  Leave the obstacle and continue 



Bug 1 vs Bug 2 

•  Bug 2 beats Bug 1                  Bug 1 beats Bug2 



Bug 1 vs Bug 2 

•  Bug 1 is an exhaustive search algorithm 
    - looks at all choices before committing 

•  Bug 2 is a greedy algorithm, takes the first thing  
    that looks better  

•  Bug 2 in many cases out performs Bug 1, but Bug 1 is 
    overall more reliable 



Examples in practice  
•  Example using zero range sensors 

•  Example with finite range sensors  



Map based planning 

•  Consider a simple case of map 
•  Grid with cells marked as occupied or empty 
•  Formulate path finding problem as a search  
•  What is the sequence of states you need to visit in  
    order to reach the goal 



Navigation functions - Discrete version  

•  Useful potential functions – for any starting point you will 
reach a goal: Navigation function (see previously how to 
define these in continuous spaces)  

•  In discrete state space – navigation function has to have 
some value for each state, consider grid 

•  Goal: will have zero potential  
•  Obstacles have infinite potential  
•  Example of useful navigation function: optimal cost to go to 

goal G*  (example) , assuming that for each state  

€ 

l(x,u) =1



Wavefront planner 





•  Zeros should exist only in unreachable regions exist 
•  Ones for regions which cannot be reached 
•  Other book keeping methods can be used 



Finding the path 

•  From any initial grid cell, move toward the cell  
•  with the lowest number – follow the steepest  
•  descent 



Wavefront planner 

•  Can be pre-computed using distance transform 



Path Planning as search 

•  Various performance measures of search:  
•  Optimality, completeness, time and space complexity 
•  Uninformed search – blind no information is gathered 

from the environment (BFS, DFS) 
•  Informed search - some evaluation function is used   
•  Dijkstra algorithm – shortest path  
•  A* algorithm – heuristics for pruning the search 
•  D* dynamic version of A* 



Generalization of occupancy grid 

•  Occupancy grid – cells are occupied or empty 
•  We can define more general notion of a cost 
•  C(x,y) is infinite for obstacles 
•  C(x,y) can be large for hard to traverse regions  
•  i.e. cost is inversely proportional to traversability 

•  You can also incorporate passenger comfort, related to 
roughness of terrain. 



A* 

•  Complete provided finite boundary condition 
•  Optimal in terms of path cost 
•  Memory inefficient 
•  Exponential growth of search space with respect to the 

length of the solution 
•  How can we use it in partially known, or dynamically 

changing environment D*  

•  Same as Dijkstra – different way of updating the cost of 
each node 

•  As long as heuristics under-estimates the cost to go – 
A* is optimal  

•  In may practical problems it is hard to find good 
heuristics 



A* 
•  Extension to Dijkstra, tries to reduce the number of states  
•  Using heuristic estimate of the cost to go 
•  Evaluation function f(n) = g(n) + h(n) 
•  Operating cost function g(n) – cost so far 
•  Heuristic function h(n)  
     information used to find promising node to take next  
     heuristics is admissible if it never overestimates the actual 

cost 



A* 

Start => A => E => goal 

Nodes with higher or equal priority then goal can be pruned away 
There can still be shorter path through the remaining nodes 



A* 

Keep on expanding nodes with the priority level lower then goal 
Path: Start => C = > K => Goal 



Classical Motion Planning 

•  Given a continuous space with obstacles plan a path 
between configuration A and configuration B 

•  Given a point robot and a workspace described by 
polygons 

•  Large class of methods – transform continuous space to 
discrete 

•  Roadmap methods 
–  Visibility graph 
–  Cell decomposition 
–  Retraction 



Configuration Space 

•  Well, most robot is not a point and can have arbitrary 
shape 

•  What should we do if our robot is not a point? 

•  Convert rigid robots, articulated robots, etc. into points 

•  Apply algorithms for moving points 



Configuration Space 

Workspace Configuration Space 

x 

y Robot  

Obstacle C-obstacle 

Robot  

•  for now C-obstacle is a polygon. 
•  how to compute C-space bit later 



Roadmap Methods 

roadmap 

Capture the connectivity of Cfree with a roadmap (graph 
or network) of one-dimensional curves 



difficult 
part 

Roadmap Methods 

Path Planning with a Roadmap 
Input: configurations qinit and qgoal , and B 
Output: a path in Cfree connecting qinit and qgoal  

1. Build a roadmap in Cfree (preprocessing) 
•  roadmap nodes are free configurations  
•  two nodes connected by edge if can (easily) move between 
them 

2. Connect qinit and qgoal to roadmap nodes vinit and vgoal 

3. Find a path in the roadmap between vinit and vgoal 
 - directly gives a path in Cfree 



Visibility Graph 

•  A visibility graph of C-space for a given C-obstacle is an 
undirected graph G where 
–  nodes in G correspond to vertices of C-obstacle 
–  nodes connected by edge in G if 

•  they are connected by an edge in C-obstacle, or 
•  the straight line segment connecting them lies entirely in 

Cfree 

–  (could add qinit and qgoal as roadmap nodes) 



Visibility Graph 

•  Brute Force Algorithm 
–  add all edges in C-obstacle to G 
–  for each pair of vertices (x, y) of C-obstacle, add the edge 

(x, y) to G if the straight line segment connecting them lies 
entirely in cl(C-free) 
•  test (x; y) for intersection with all O(n) edges of C-

obstacle 
• O(n2) pairs to test, each test takes O(n) time 

Complexity: O(n3), n is number of vertices in C-obstacle 



Visibility Graph 

•  Visibility graphs – good news 
–  are conceptually simple 
–  shortest paths (if the query cannot see each other) 
–  we have efficient algorithms if Workspace  is 

polygonal 
•  O(n2), where n is number of vertices of C-obstacle 
•  O(k + n log n), where k is number of edges in G 

–  we can make a 'reduced' visibility graph (don't need 
all edges) 
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Reduced Visibility Graph 

•  we don't really need all the edges in the visibility graph 
(even if we want shortest paths) 

•  Definition: Let L be the line passing through an edge 
(x; y) in the visibility graph G. The segment (x; y) is a 
tangent segment iff  L is tangent to C-obstacle at both 
x and y. 

•  Line segment is tangent if extending the line beyond 
each of the end points would not intersect the obstacles  



Reduced Visibility Graph 

•  It turns out we need only keep 
–  convex vertices of C-obstacle 
–  non-CB edges that are tangent segments 



Visibility Graph in 3-D 

•  Visibility graphs don't necessarily contain shortest paths in 
R3 

–  in fact finding shortest paths in R3 is NP-hard [Canny 
1988] 

–  (1 + ε²) approximation algorithm [Papadimitriou 1985] 

Bad news: Visibility graphs really only suitable for 2D  C 



Retraction Approach 

•  Basic Idea: 'retract' Cfree onto a 1-dimensional subset of 
itself (the roadmap). 

•  a map ρ : Cfree → R, R ⊂ Cfree, is a retraction iff  it is 
continuous and its restriction to R is the identity map 
(i.e., ρ (R) = R) 
–  thus, ρ(x) ∈R for all x ∈ Cfree and ρ(y) = y for all y ∈ 

R 
–  a retraction ρ : Cfree ⊂ R is connectivity preserving iff 

for all x ⊂ Cfree, x and ρ(x) belong to the same 
connected component of Cfree 



Retraction Approach 

Fact: There exists a free path from qinit to qgoal iff there exists a 
path in 
R between ρ (qinit) and ρ (qgoal). 

This is why retractions make good roadmaps. 



Retraction Approach 

•  Retraction Example: Generalized Voronoi Diagrams (or 
Medial axis) 

Generalized Voronoi Diagram  
Vor(Cfree) = { q ∈ Cfree | card(near(q)) 
> 1 } 
i.e., points in Cfree with at least two 
nearest neighbors in Cfree's boundary 



Voronoi Diagram for Point Sets 
•  Voronoi diagram of point set X consists of straight line 

segments, constructed by 
–  computing lines bisecting each pair of points and their 

intersections 
–  computing intersections of these lines 
–  keeping segments with more than one nearest neighbor 

•  segments of Vor(X) have largest clearance from X and 
regions identify closest point of X 



Voronoi Diagram for Point Sets 

•  When C = R2 and polygonal C-obstacle, Vor(Cfree) 
consists of a finite collection of straight line segments 
and parabolic curve segments (called arcs) 
–  straight arcs are defined by two vertices or two 

edges of C-obstacle, i.e., the set of points equally 
close to two points (or two line segments) is a line 

–  parabolic arcs are defined by one vertex and one 
edge of C-obstacle, i.e., the set of points equally 
close to a point and a line is a parabola 



Voronoi Diagram for Point Sets 
•  Naive Method of Constucting V or (Cfree) 

–  compute all arcs (for each vertex-vertex, edge-edge, and 
vertex-edge pair) 

–  compute all intersection points (dividing arcs into 
segments) 

–  keep segments which are closest only to the vertices/
edges that defined them 



Retraction 

•  Retraction ρ : Cfree → Vor(Cfree) 

To find a path: 
1. compute Vor(Cfree) 
2. find paths from qinit and qgoal to ρ(qinit) and ρ(qgoal), respectively 
3. search Vor(Cfree) for a set of arcs connecting ρ(qinit) and ρ(qgoal) 



Cell Decomposition 

•  Idea: decompose Cfree into a collection K of non-
overlapping cells such that the union of all the cells 
exactly equals the free C-space 

•  Cell Characteristics: 
•  geometry of cells should be simple so that it is easy to 

compute a path between any two configurations in a cell 
•  it should be pretty easy to test the adjacency of two cells, 

i.e., whether they share a boundary 
•  it should be pretty easy to find a path crossing the portion 

of the boundary shared by two adjacent cells 

•  Thus, cell boundaries correspond to 'criticalities' in C, 
i.e., something changes when a cell boundary is 
crossed. No such criticalities in C occur within a cell. 



Difficult 

•  Preprocessing: 
–  represent Cfree as a collection of cells (connected regions of Cfree ) 

•  planning between configurations in the same cell should be 
'easy' 

–  build connectivity graph representing adjacency relations between 
cells  

•  cells adjacent if can move directly between them 
•  Query: 

–  locate cells kinit and kgoal containing start and goal configurations 
–  search the connectivity graph for a 'channel' or sequence of adjacent 

cells connecting kinit and kgoal  
–  find a path that is contained in the channel of cells 

•  Two major variants of methods: 
–  exact cell decomposition: 

•  set of cells exactly covers Cfree  
•  complicated cells with irregular boundaries (contact constraints) 
•  harder to compute 

–  approximate cell decomposition: 
•  set of cells approximately covers Cfree  
•  simpler cells with more regular boundaries 
•  easier to compute 

Cell Decomposition 



Trapezoidal Decomposition 

•  Basic Idea: at every vertex of C-obstacle, extend a 
vertical line up and down in Cfree until it touches a C-
obstacle or the boundary of Cfree 

trapezoid 



Trapezoidal Decomposition 

•  Sweep line 
algorithm 
–  Add vertical lines as we 

sweep from left to right 
–  Events need to be 

handled accordingly 

trapezoidal decomposition can be built in O(n log n) time 



Approx. Cell Decomposition 

•  Construct a collection of non-overlapping cells such that 
the union of all the cells approximately covers the free 
C-space! 

•  Cell characteristics 
–  Cell should have simple shape 
–  Easy to test adjacency of two cells  
–  Easy to find path across two adjacent cells 



Approx. Cell Decomposition 

•  Each cell is 
–  Empty 
–  Full 
–  Mixed 

•  Different resolution 
–  Different roadmap 



Approx. Cell Decomposition 

•  Higher resolution around CBs 



Approx. Cell Decomposition 

•  Hierarchical approach 
–  Find path using empty and mixed cells 
–  Further decompose mixed cells into smaller cells 



Approx. Cell Decomposition 

•  Advantages: 
–  simple, uniform decomposition 
–  easy implementation 
–  adaptive  

•  Disadvantages: 
–  large storage requirement  
–  Lose completeness  

•  Bottom line 1: We sacrifice exactness for simplicity and 
efficiency 

•  Bottom line 2: Approx. cell decomposition methods are 
practically for lower dimension C, i.e., dof <5, b/c they 
generate too many cells, i.e. (Nd) cells in d dimension 



Configuration Space 

•  Well, most robot is not a point and can have arbitrary 
shape 

•  What should we do if our robot is not a point? 

•  Convert rigid robots, articulated robots, etc. into points 

•  Apply algorithms for moving points 



Configuration Space 

•  Mapping between the workspace and configuration space 



Workspace 
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Workspace 

(4,5,45) 

obstacle 

Workspace 

(x,y) 

theta 

Configuration  (x,y,theta) 

Workspace Obstacle 



•  Th
et
a 

C-Space Obstacle 

C-Obstacle 
Really look like this ?  Every point in the C-obst 
corresponds to the configuration where the robot would collide 
with the obstacle 



Initial 

Goal 

Finding a Path 

Find a path in 
workspace for a 
robot 

T
h
et

a 

Find a path in  
C-space for a point 



robot 

obst 

obst 

obst 

obst 

x 
y 

C-obst 

C-obst C-obst 

C-obst 

robot  

Path is swept volume 

Motion Planning in C-space 

Path is 1D curve 

Workspace 

C-space 
Simple workspace obstacle transformed  
Into complicated C-obstacle!! 



C = S1 x S1 

φ	


ϕ	


Topology of the configuration pace 

•  The topology of C is usually not that of a 
Cartesian space Rn. 

0 2π	


2π	


φ	


ϕ	




Example: rigid robot in 2-D workspace 

•  dim of configuration space = ??? 
•  Topology ??? 

R2 x SO(1) 



Example: articulated robot 

•  Number of DOFs? 

•  What is the topology? 

An articulated object is a set of rigid 
bodies connected at the joints. 



Example: Multiple robots 

•  Given n robots in 2-D 
•  What are the possible 

representations? 

•  What is the number of dofs? 

J.J. Kuffner et al. 

ROV, GAMMA group, UNC 

5 articulated robots 



Computing C-obstacles 

•  For polygonal obstacles and polygonal translating 
robots – how to compute C-obstacles 

•  Minkowski sum allows us to solve problems with 
translational robots 



Minkowski sum of convex polygons 

•  The Minkowski sum of two convex polygons P and Q of 
m and n vertices respectively is a convex polygon P + Q 
of m + n vertices. 

–  The vertices of P + Q are the “sums” of vertices of P 
and Q. 

= 



Minkowski Sum 

•  Minkowski sum 
•  P⊕Q={p+q | p∈P, q∈Q} 

⊕	


P 

Q 
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Minkowski Sum 

•  Minkowski sum 
•  P⊕Q={p+q | p∈P, q∈Q} 



Minkowski Sum 

•  Minkowski sum 
•  P⊕Q={p+q | p∈P, q∈Q} 



Minkowski Sum 

•  Minkowski sum 
•  P⊕Q={p+q | p∈P, q∈Q} 

⊕	
 = 



Algorithm 

•  Sort normals to the edges of the polygon 
•  Every edge of C-obst is either edge of the polygon or 

edge of the robot.  Every edge is used exactly once, we 
need to determine the ordering of the edges 

•  Sort inward angles on the robot counterclockwise 
•  Sort outward angles of the obstacle normals  
•  Use incrementally the edges which correspond to the 

sorted normals in the order they are encountered 



Compute Minkowski Sum 

•  Convex object 
–  Use Gaussian map 
–  Compute convex hull of Point-based Minkowski sum 

(slower) 

2D 

3D 
[Fogel and Halperin 06] 

P Q 
P⊕Q 



Polygonal robot translating in 2-D 
workspace 

workspace configuration 
space 

The complexity of the Minkowski sum is O(n2)  in 2D 



Robot with Rotations 

•  If a robot is allowed rotation in addition to translation in 
2D then it has 3 DOF 

•  The configuration space is 3D: (x,y,φ) where φ is in the 
range [0:360) 



Polygonal robot translating & rotating in 
2-D workspace 

workspace configuration 
space 



Polygonal robot translating & rotating in 
2-D workspace 

x 

y 
θ	




Mapping to C-Space 

•  The obstacles map to “twisted pillars” in C-Space 
•  They are no longer polygonal but are composed of 

curved faces and edges 



Computing Free Space 

•  Exact cell decomposition in 3D is really hard 
•  Compute z: a finite number of slices for discrete 

angular values 
•  Each slice will be the representation of the free space 

for a purely translational problem 
•  Robot will either move within a slice (translating) or 

between slices (rotating) 



Hard Motion Planning  

•  Configuration Space methods – complex even 
for low dimensional configuration spaces 

•  Plus – always guarantee finding a plan if it 
exists in finite time (or answer no)  

•  Idea behind sampling cased motion planning – 
sacrifice completeness for efficiency – weaker 
guarantee – notion on probabilistic 
completeness  



•  General motion planning problem is  
•  PSPACE-hard [Reif 79, Hopcroft et al. 84 & 86] 
•  PSPACE-complete [Canny 87] 
The best deterministic algorithm known has 
running time that is exponential in the dimension 
of the robot’s C-space [Canny 86] 
•  C-space has high dimension - 6D for rigid body in 3D 
space 
•   simple obstacles have complex C-obstacles impractical 
to 
   compute  explicit representation of free space for 
more 
   than 4 or 5 dof 

The Complexity of  
Motion Planning PSPACE 

NP 

P 



The Alpha Puzzle 

Hard Motion Planning Problems  

  Swapping Cubes Puzzle 

•  Separate two shapes (one considered robot) – another obstacle 
•  Exchange the positions of two cubes (one needs move to empty space) 
•  All these planning problems are considered in continuous spaces 



Probabilistic Methods 

•  Resort to sampling based methods 
•  Avoid computing C-obstacles 

– Too difficult to compute efficiently 

•  Idea: Sacrifice completeness to gain simplicity 
and efficiency 

•  Probabilistic Methods 
– Graph based 
– Tree based 



Sampling Based Motion Planning 

Geometric 
Models S 

Sampling Based Motion  
Planner 

Discrete  
Search 

C-space 
planning 

Idea :  Generate random configurations 
Check whether they are collision free  
Connect them using Local planners 



Probabilistic Motion Planning 

•  First encounter with randomized techniques – in the 
context of potential field based methods 

•  Use random walk to escape local minima (May take long 
time) 

•  Idea – potential function gives as a cost to go g(q) 
•  If local planner is not successful in reducing the cost to 

go  
•  Switch to random walk mode from current node, 

terminate if node with lower g(q) is found or number of   
iterations have been reached 

•  If better node has not been found back-track – pick one 
of the nodes encounteted in Random walk and restart 
best first search 



•  T
h
e
t
a 

Probabilistic Roadmap Method 
[Kavraki, Svestka, Latombe,Overmars 1996] 

Explicit representation of the configuration space is unknown 



1. Connect start and goal to roadmap  

Query processing 
start 

goal 

Probabilistic Roadmap Method 

C-obst 

C-obst 

C-obst 

C-obst 

Roadmap Construction (Pre-processing) 

2. Connect pairs of nodes to form roadmap 
     - simple, deterministic local planner 
       (e.g., straightline) 
     - discard paths that are invalid 

1. Randomly generate robot configurations (nodes) 
     - discard nodes that are invalid 

C-obst 

C-space 

2. Find path in roadmap between start and goal 
    - regenerate plans for edges in roadmap 



Probabilistic Roadmap Method 

•  Important sub-routines 
–  Generate random configurations 
–  Local planners 
–  Distance metrics  
–  Selecting k-nearest neighbors (becoming dominant 

in high dimensional space) 
–  Collision detection (>80% computation) 



PRMs: Pros & Cons 

PRMs: The Good News 
1. PRMs are probabilistically complete 
2. PRMs apply easily to high-dimensional 
C-space 
3. PRMs support fast queries w/ enough 
preprocessing 

Many success stories where PRMs solve 
previously unsolved problems 

C-
obst 

C-
obst 

C-
obst 

C-
obst 

C-
obst 

sta
rt 

goa
l 

PRMs: The Bad 
News 

1. PRMs don’t work as well for some problems: 
–  unlikely to sample nodes in narrow passages 
–  hard to sample/connect nodes on constraint 
surfaces 

sta
rt 

go
al 

C-
obst 

C-
obst 

C-
obst 

C-
obst 



Related Work (selected)  

•  Probabilistic Roadmap Methods 
•  Uniform Sampling (original)  [Kavraki, Latombe, Overmars, 
Svestka, 
   92, 94, 96] 
•  Obstacle-based PRM (OBPRM) [Amato et al, 98] 
•  PRM Roadmaps in Dilated Free space [Hsu et al, 98] 
•  Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99] 
•  Bridge test [Hsu et al 03] 
•  Visibility Roadmaps [Laumond et al 99] 
•  Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/
Amato/ 
  Stiller 99, 03, Lin et al 00] 
•  Generating Contact Configurations [Xiao et al 99]  
•  Using workspace clues 



An Obstacle-Based PRM 

start 

goal 

C-obst 

C-obst 

C-obst 

C-obst 

To Navigate Narrow Passages we must sample in them 
•  most PRM nodes are where planning is easy (not needed) 

PRM Roadmap 

start 

goal 

C-obst 

C-obst 

C-obst 

C-obst 

Idea: Can we sample nodes near C-obstacle 
surfaces? 
•  we cannot explicitly construct the C-obstacles... 
•  we do have models of the (workspace) obstacles... 

OBPRM Roadmap 



1 

3 

2 

4 
5 

Finding Points on C-obstacles 

Basic Idea (for workspace obstacle S) 

1. Find a point in S’s C-obstacle 
    (robot placement colliding with S) 
2.  Select a random direction in C-
space 
3. Find a free point in that direction 
4. Find boundary point between 
them  
    using binary search (collision 
checks) 

Note: we can use more 
sophisticated heuristics to try to 
cover C-obstacle 

C-obst 



OBPRM 



1 

2 

Gaussian Sampling PRM  

1. Find a point in S’s C-obstacle 
    (robot placement colliding with S) 

2. Find another point that is within 
distance d to the first point, where d 
is a random variable in a Gaussian 
distribution 

3. Keep the second point if it is 
collision free 

C-obst d 

Note  

•  Two paradigms: (1) OBPRM: Fix the samples (2) Gaussian PRM: Filter the 
samples 
•  None of these methods can (be proved to) provide guarantee that the samples 
in the narrow passage will increase! 



Gaussians 



Related Work (selected)  

•  Probabilistic Roadmap Methods 
•  Uniform Sampling (original)  [Kavraki, Latombe, Overmars, Svestka, 92, 94, 96] 

•  Obstacle-based PRM (OBPRM) [Amato et al, 98] 

•  PRM Roadmaps in Dilated Free space [Hsu et al, 98] 

•  Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99] 

•  Bridge test [Hsu et al 03] 

•  Visibility Roadmaps [Laumond et al 99] 

•  Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 
00] 

•  Generating Contact Configurations [Xiao et al 99]  

•  Using workspace clues 



Issues 

•  How do we determine a random free configuration  
•  We would like to sample nodes uniformly from C_free 
•  Draw each of the coordinates from the interval of 

corresponding DOF – use uniform probability per 
interval 

•  For each sample check for collision between the robot 
    and obstacles and robot itself 
•  If collision free add to V otherwise discard  

•  Collision detection and sampling – large topics  



Collision Detection 
•  Treated as black box  - takes most of the computation 
•  In 2D convex robot and obstacle, there exist linear time 

collision detection algorithms  
•  For more complex non-convex bodies – hierarchical 

methods (create bounded regions – to avoid checking 
bodies which are far apart 

     - have a quick way of computing whether two regions 
intersect (Bound. Regions: spheres, axis aligned boxes), 
the composite bounding regions are represented by trees 

•  Check for free collision free configuration  
•  Check for free collision free path segment 
•  Consider that the path is a straight line, parametrized by 

[0,1], sample the interval and check each sample whether 
its collision free 

•  There exist algorithms with guarantees trickier to 
implement 



Planning in high dimensional spaces 

•  Single query planning (greedy technique can 
take a long time) 

•  Multiple query planning – spreads out 
uniformly, requires lot of samples to cover the 
space 

•  Next incremental sampling and search 
methods that yields good performance without 
parameters tunning. Idea gradually construct 
search tree, such that it densely covers the 
space 



Incremental Sampling and Searching 

•  Single query model – given start and goal q find a path 
•  Analogy with the discrete search algorithms 
•  Samples are states, edges are paths connected them 

(as opposed to actions previously) 
•  Graphs are undirected; Ingredients 
1.  Initialize the graph 
2.  Select vertex for expansion  
3.  Generate set of new vertices 
4.  For some new vertices run a local planner and check 

whether its collision free 
5.  If yes insert an edge to the graph 
6.  Keep on going until termination condition  is satisfied 



Incremental Search and Sample 

•  Why not just discretizing configuration space ?  
•  For high dimensions large number of states can be   

wasted exploring various cavities of the C-space 
•  For low dim spaces grid points them selves can serve as 

roadmap points (need to be checked for collisions etc)  

•  How to choose a resolution of the discretization  
    (start coarse , iteratively refine) 
•  Another option – abandon discretization and work with 

continuous problem (like randomized potential fields) or 
RRT’s 



Rapidly-Exploring Random Tree (RRT) 

•  Tree Based single shot planners – compute the 
respresentation of C-free for single start and goal 

•  RRTs: Rapidly-exploring Random Trees 
•  Rapidly-exploring random trees: Progress and 

prospects. S. M. LaValle and J. J. Kuffner. In Proceedings 
Workshop on the Algorithmic Foundations of Robotics, 2000.) 
–  Incrementally builds the roadmap tree 

•  Extends to more advanced planning techniques 
–  Integrates the control inputs to ensure that the 

kinodynamic constraints are satisfied 



Rapidly-Exploring Random Trees 



RRT’s 



RRT’s 
Details:  
Step length: how far to sample 
Sample just at the end point 
Sample all along, small steps 



Naïve Random Tree 



RRT’s are biased towards large Voronoi 
cells 

The nodes most likely to be closest to a randomly chosen point in state space 
are those with the largest Voronoi regions. The largest Voronoi regions belong 
to nodes along the frontier of the tree, so these frontier nodes are 
automatically favored when choosing which node to expand. 



Grow two RRT’s together 



Two RRT’s  



Two RRT’s 



Two RRT’s 



Two RRT’s 



Two RRT’s 



Two RRT’s 



Two RRT’s 



Taking actions into account 



How it Works 

•  Build a rapidly-exploring random tree in state 
space (X), starting at sstart 

•  Stop when tree gets sufficiently close to sgoal 

Goal 
Start 



Building an RRT 

•  To extend an RRT: 
–  Pick a random point a in X 
–  Find b, the node of the tree 

closest to a 
–  Find control inputs u to steer 

the robot from b to a 

a 

b 
u 



Building an RRT 
•  To extend an RRT (cont.) 

–  Apply control inputs u for 
time δ, so robot reaches 
c 

–  If no collisions occur in 
getting from a to c, add c 
to RRT and record u with 
new edge 

a 

b 
u 

c 



Executing the Path 

•  Once the RRT reaches sgoal 

–  Backtrack along tree to identify edges that lead 
from sstart to sgoal 

–  Drive robot using control inputs stored along edges 
in the tree 



Problem of Simple RRT Planner  

•  Problem: ordinary RRT explores X uniformly 
→  slow convergence 

•  Solution: bias distribution towards the goal – once in a 
while choose goal as new random configuration (5-10%)  

•  If goal is choose 100% time then it is randomized potential 
planner 



Bidirectional Planners 

•  Build two RRTs, from start and goal state 

•  Complication: need to connect two RRTs 
–  local planner will not work (dynamic constraints) 
–  bias the distribution, so that the trees meet 



Bidirectional RRT Example 



Articulated Robot example 



RRT’s 

•  Link 
•  http://msl.cs.uiuc.edu/rrt/gallery.html 

•  Issues/problems 
•  Metric sensitivity 
•  Nearest neighbour efficiency  
•  Optimal sampling strategy 
•  Balance between greedy search and exploration  

•  Applications in mobile robotics, manipulation, 
humanoids, biology, drug design, areo-space, animation  

•  Extensions – real-time RRT’s, anytime RRT’s dynamic 
domains RRT’sm deterministic RRTs, hybrid RRT’s 



Efficient nearest neighbour algorithms 

•  How to find NN in high 
    dimensional spaces 

•  KD trees – recursively choose a plane P that splits the 
set  

     evenly in a coordinate direction 
•  Store P at the node  
•  Apply to children sets Sl and Sr 
•  Requires O(dn) storage 

•  Various hashing strategies 



Expansion Space Tree (EST) 

1. Grow two trees from Init position and Goal configurations. 

2. Randomly sample nodes around existing nodes.  

3. Connect a node in the tree rooted at Init to a node in the 
tree rooted at the Goal. 

Init Goal 

Expansion + Connection 

Path Planning in Expansive Configuration Spaces, D. Hsu, J.C. 
Latombe, & R. Motwani, 1999. 



1.  Pick a node x with probability 1/w(x). 

Disk with radius d, w(x)=3 

Expansion 

root 

2.  Randomly sample k points around x. 

3.  For each sample y, calculate w(y) – number of samples in 
neighbourhood d of y 

4. which gives probability 1/w(y) with which the vertex will be 
taken 



1.  Pick a node x with probability 1/w(x). 

Expansion 

root 

2.  Randomly sample k points around x. 

3.  For each sample y, calculate w(y), which gives probability 
1/w(y). 

1 2 

3 

1/w(y1)=1/5 



1.  Pick a node x with probability 1/w(x). 

Expansion 

root 

2.  Randomly sample k points around x. 

3.  For each sample y, calculate w(y), which gives probability 
1/w(y). 

1 2 

3 

1/w(y2)=1/2 



1.  Pick a node x with probability 1/w(x). 

Expansion 

root 

2.  Randomly sample k points around x. 

3.  For each sample y, calculate w(y), which gives probability 
1/w(y). 

1 2 

3 

1/w(y3)=1/3 



1.  Pick a node x with probability 1/w(x). 

Expansion 

root 

2.  Randomly sample k points around x. 

3.  For each sample y, calculate w(y), which gives probability 
1/w(y). If y 

1 2 

3 

 (a) has higher probability; (b) collision free; (c) can see x 

 then add y into the tree. 

Requires tunning of various parameters k, d, number of iter 



Computed example 



Conclusion 

•  Motion planning is difficult (intractable) 

•  Roadmap methods 
– Probabilistic Motion Planners 

We will return to planning when considering 
partial information, dynamically changing 
worlds, uncertainty 



What is not covered? 

•  Other types of motion planning 

– With constraints 
•  Close-chain constraint 
•  Nonholonomic constraint 
•  Differential constraints 

–  Manipulate planning 
–  Assembly planning 
–  Planning with uncertainty 
–  Planning for multiple robots, dynamic env 
–  Planning for highly articulated objects 
–  Planning for deformable objects 
–  … 

Little Seiko 
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Additional Readings 

•  Gross motion planning—a survey, Y. K. Hwang 
and N. Ahuja, ACM Computing Surveys, 1992 
(survey paper) 

•  Robot Motion Planning. J.C. Latombe. Kluwer 
Academic Publishers, Boston, MA, 1991.  

•  Motion Planning: A Journey of Robots, 
Molecules, Digital Actors, and Other Artifacts. 
Jean-Claude Latombe, IJRR, 1999 (survey paper) 

•  Planning Algorithms, Steven LaValle, 2006, 
Cambridge University Pres, (Free download at 
http://planning.cs.uiuc.edu/) 


