
Motion Planning

Jana Kosecka
Department of Computer Science

•  Discrete planning, graph search, shortest path,
•  A* methods
•  Road map methods
•  Configuration space

Slides thanks to http://cs.cmu.edu/~motionplanning, Jyh-Ming Lien

Discrete Planning

•  Review of some discrete planning methods
•  Given state space and transition function and initial

state, find a set of states which lead to goal state
 (state space is discrete)
•  Use well developed search and graph traversal

algorithms to find the path
•  Path: set of vertices in the graph

•  For more details CS 583, CS 580

Previously

•  Reactive Navigation Strategies
•  Braitenberg vehicles no map of the world, no memory
•  Extensions to more complex behaviors and behavior

assemblages
•  Steering behaviors

Today:
•  Navigation with some memory
•  Map based approaches
•  More general motion planning methods

Bug Algorithms

•  Extensions of reactive strategies
•  Assumes local knowledge of the environment
•  And global knowledge of the goal

Bug Algorithms

•  Algorithm
•  Head towards the goal until you encounter obstacle
•  Follow obstacle until you can turn to goal again
•  Continue

Bug 1

•  Head towards the goal
•  Circumnavigate obstacle and
•  Remember how close you got to
•  The goal
•  Return to the closes point by
•  Wall following
•  Continue

Completeness

•  Algorithm is complete if in finite time will find the path
to the goal or declare failure if such path does not exist

•  Incomplete algorithm – never terminates, or does not
find the goal

Bug 2

•  Draw a line to the goal. Follow the line until obstacle,
then circumnavigate to obstacle until you reach the goal

•  heads towards the goal again

Potential problem

•  Follow the obstacle until you encounter line closer to the
goal

•  Leave the obstacle and continue

Bug 1 vs Bug 2

•  Bug 2 beats Bug 1 Bug 1 beats Bug2

Bug 1 vs Bug 2

•  Bug 1 is an exhaustive search algorithm
 - looks at all choices before committing

•  Bug 2 is a greedy algorithm, takes the first thing
 that looks better

•  Bug 2 in many cases out performs Bug 1, but Bug 1 is
 overall more reliable

Examples in practice
•  Example using zero range sensors

•  Example with finite range sensors

Map based planning

•  Consider a simple case of map
•  Grid with cells marked as occupied or empty
•  Formulate path finding problem as a search
•  What is the sequence of states you need to visit in
 order to reach the goal

Navigation functions - Discrete version

•  Useful potential functions – for any starting point you will
reach a goal: Navigation function (see previously how to
define these in continuous spaces)

•  In discrete state space – navigation function has to have
some value for each state, consider grid

•  Goal: will have zero potential
•  Obstacles have infinite potential
•  Example of useful navigation function: optimal cost to go to

goal G* (example) , assuming that for each state

€

l(x,u) =1

Wavefront planner

•  Zeros should exist only in unreachable regions exist
•  Ones for regions which cannot be reached
•  Other book keeping methods can be used

Finding the path

•  From any initial grid cell, move toward the cell
•  with the lowest number – follow the steepest
•  descent

Wavefront planner

•  Can be pre-computed using distance transform

Path Planning as search

•  Various performance measures of search:
•  Optimality, completeness, time and space complexity
•  Uninformed search – blind no information is gathered

from the environment (BFS, DFS)
•  Informed search - some evaluation function is used
•  Dijkstra algorithm – shortest path
•  A* algorithm – heuristics for pruning the search
•  D* dynamic version of A*

Generalization of occupancy grid

•  Occupancy grid – cells are occupied or empty
•  We can define more general notion of a cost
•  C(x,y) is infinite for obstacles
•  C(x,y) can be large for hard to traverse regions
•  i.e. cost is inversely proportional to traversability

•  You can also incorporate passenger comfort, related to
roughness of terrain.

A*

•  Complete provided finite boundary condition
•  Optimal in terms of path cost
•  Memory inefficient
•  Exponential growth of search space with respect to the

length of the solution
•  How can we use it in partially known, or dynamically

changing environment D*

•  Same as Dijkstra – different way of updating the cost of
each node

•  As long as heuristics under-estimates the cost to go –
A* is optimal

•  In may practical problems it is hard to find good
heuristics

A*
•  Extension to Dijkstra, tries to reduce the number of states
•  Using heuristic estimate of the cost to go
•  Evaluation function f(n) = g(n) + h(n)
•  Operating cost function g(n) – cost so far
•  Heuristic function h(n)
 information used to find promising node to take next
 heuristics is admissible if it never overestimates the actual

cost

A*

Start => A => E => goal

Nodes with higher or equal priority then goal can be pruned away
There can still be shorter path through the remaining nodes

A*

Keep on expanding nodes with the priority level lower then goal
Path: Start => C = > K => Goal

Classical Motion Planning

•  Given a continuous space with obstacles plan a path
between configuration A and configuration B

•  Given a point robot and a workspace described by
polygons

•  Large class of methods – transform continuous space to
discrete

•  Roadmap methods
–  Visibility graph
–  Cell decomposition
–  Retraction

Configuration Space

•  Well, most robot is not a point and can have arbitrary
shape

•  What should we do if our robot is not a point?

•  Convert rigid robots, articulated robots, etc. into points

•  Apply algorithms for moving points

Configuration Space

Workspace Configuration Space

x

y Robot

Obstacle C-obstacle

Robot

•  for now C-obstacle is a polygon.
•  how to compute C-space bit later

Roadmap Methods

roadmap

Capture the connectivity of Cfree with a roadmap (graph
or network) of one-dimensional curves

difficult
part

Roadmap Methods

Path Planning with a Roadmap
Input: configurations qinit and qgoal , and B
Output: a path in Cfree connecting qinit and qgoal

1. Build a roadmap in Cfree (preprocessing)
•  roadmap nodes are free configurations
•  two nodes connected by edge if can (easily) move between
them

2. Connect qinit and qgoal to roadmap nodes vinit and vgoal

3. Find a path in the roadmap between vinit and vgoal
 - directly gives a path in Cfree

Visibility Graph

•  A visibility graph of C-space for a given C-obstacle is an
undirected graph G where
–  nodes in G correspond to vertices of C-obstacle
–  nodes connected by edge in G if

•  they are connected by an edge in C-obstacle, or
•  the straight line segment connecting them lies entirely in

Cfree

–  (could add qinit and qgoal as roadmap nodes)

Visibility Graph

•  Brute Force Algorithm
–  add all edges in C-obstacle to G
–  for each pair of vertices (x, y) of C-obstacle, add the edge

(x, y) to G if the straight line segment connecting them lies
entirely in cl(C-free)
•  test (x; y) for intersection with all O(n) edges of C-

obstacle
• O(n2) pairs to test, each test takes O(n) time

Complexity: O(n3), n is number of vertices in C-obstacle

Visibility Graph

•  Visibility graphs – good news
–  are conceptually simple
–  shortest paths (if the query cannot see each other)
–  we have efficient algorithms if Workspace is

polygonal
•  O(n2), where n is number of vertices of C-obstacle
•  O(k + n log n), where k is number of edges in G

–  we can make a 'reduced' visibility graph (don't need
all edges)

CS633

Reduced Visibility Graph

•  we don't really need all the edges in the visibility graph
(even if we want shortest paths)

•  Definition: Let L be the line passing through an edge
(x; y) in the visibility graph G. The segment (x; y) is a
tangent segment iff L is tangent to C-obstacle at both
x and y.

•  Line segment is tangent if extending the line beyond
each of the end points would not intersect the obstacles

Reduced Visibility Graph

•  It turns out we need only keep
–  convex vertices of C-obstacle
–  non-CB edges that are tangent segments

Visibility Graph in 3-D

•  Visibility graphs don't necessarily contain shortest paths in
R3

–  in fact finding shortest paths in R3 is NP-hard [Canny
1988]

–  (1 + ε²) approximation algorithm [Papadimitriou 1985]

Bad news: Visibility graphs really only suitable for 2D C

Retraction Approach

•  Basic Idea: 'retract' Cfree onto a 1-dimensional subset of
itself (the roadmap).

•  a map ρ : Cfree → R, R ⊂ Cfree, is a retraction iff it is
continuous and its restriction to R is the identity map
(i.e., ρ (R) = R)
–  thus, ρ(x) ∈R for all x ∈ Cfree and ρ(y) = y for all y ∈

R
–  a retraction ρ : Cfree ⊂ R is connectivity preserving iff

for all x ⊂ Cfree, x and ρ(x) belong to the same
connected component of Cfree

Retraction Approach

Fact: There exists a free path from qinit to qgoal iff there exists a
path in
R between ρ (qinit) and ρ (qgoal).

This is why retractions make good roadmaps.

Retraction Approach

•  Retraction Example: Generalized Voronoi Diagrams (or
Medial axis)

Generalized Voronoi Diagram
Vor(Cfree) = { q ∈ Cfree | card(near(q))
> 1 }
i.e., points in Cfree with at least two
nearest neighbors in Cfree's boundary

Voronoi Diagram for Point Sets
•  Voronoi diagram of point set X consists of straight line

segments, constructed by
–  computing lines bisecting each pair of points and their

intersections
–  computing intersections of these lines
–  keeping segments with more than one nearest neighbor

•  segments of Vor(X) have largest clearance from X and
regions identify closest point of X

Voronoi Diagram for Point Sets

•  When C = R2 and polygonal C-obstacle, Vor(Cfree)
consists of a finite collection of straight line segments
and parabolic curve segments (called arcs)
–  straight arcs are defined by two vertices or two

edges of C-obstacle, i.e., the set of points equally
close to two points (or two line segments) is a line

–  parabolic arcs are defined by one vertex and one
edge of C-obstacle, i.e., the set of points equally
close to a point and a line is a parabola

Voronoi Diagram for Point Sets
•  Naive Method of Constucting V or (Cfree)

–  compute all arcs (for each vertex-vertex, edge-edge, and
vertex-edge pair)

–  compute all intersection points (dividing arcs into
segments)

–  keep segments which are closest only to the vertices/
edges that defined them

Retraction

•  Retraction ρ : Cfree → Vor(Cfree)

To find a path:
1. compute Vor(Cfree)
2. find paths from qinit and qgoal to ρ(qinit) and ρ(qgoal), respectively
3. search Vor(Cfree) for a set of arcs connecting ρ(qinit) and ρ(qgoal)

Cell Decomposition

•  Idea: decompose Cfree into a collection K of non-
overlapping cells such that the union of all the cells
exactly equals the free C-space

•  Cell Characteristics:
•  geometry of cells should be simple so that it is easy to

compute a path between any two configurations in a cell
•  it should be pretty easy to test the adjacency of two cells,

i.e., whether they share a boundary
•  it should be pretty easy to find a path crossing the portion

of the boundary shared by two adjacent cells

•  Thus, cell boundaries correspond to 'criticalities' in C,
i.e., something changes when a cell boundary is
crossed. No such criticalities in C occur within a cell.

Difficult

•  Preprocessing:
–  represent Cfree as a collection of cells (connected regions of Cfree)

•  planning between configurations in the same cell should be
'easy'

–  build connectivity graph representing adjacency relations between
cells

•  cells adjacent if can move directly between them
•  Query:

–  locate cells kinit and kgoal containing start and goal configurations
–  search the connectivity graph for a 'channel' or sequence of adjacent

cells connecting kinit and kgoal
–  find a path that is contained in the channel of cells

•  Two major variants of methods:
–  exact cell decomposition:

•  set of cells exactly covers Cfree
•  complicated cells with irregular boundaries (contact constraints)
•  harder to compute

–  approximate cell decomposition:
•  set of cells approximately covers Cfree
•  simpler cells with more regular boundaries
•  easier to compute

Cell Decomposition

Trapezoidal Decomposition

•  Basic Idea: at every vertex of C-obstacle, extend a
vertical line up and down in Cfree until it touches a C-
obstacle or the boundary of Cfree

trapezoid

Trapezoidal Decomposition

•  Sweep line
algorithm
–  Add vertical lines as we

sweep from left to right
–  Events need to be

handled accordingly

trapezoidal decomposition can be built in O(n log n) time

Approx. Cell Decomposition

•  Construct a collection of non-overlapping cells such that
the union of all the cells approximately covers the free
C-space!

•  Cell characteristics
–  Cell should have simple shape
–  Easy to test adjacency of two cells
–  Easy to find path across two adjacent cells

Approx. Cell Decomposition

•  Each cell is
–  Empty
–  Full
–  Mixed

•  Different resolution
–  Different roadmap

Approx. Cell Decomposition

•  Higher resolution around CBs

Approx. Cell Decomposition

•  Hierarchical approach
–  Find path using empty and mixed cells
–  Further decompose mixed cells into smaller cells

Approx. Cell Decomposition

•  Advantages:
–  simple, uniform decomposition
–  easy implementation
–  adaptive

•  Disadvantages:
–  large storage requirement
–  Lose completeness

•  Bottom line 1: We sacrifice exactness for simplicity and
efficiency

•  Bottom line 2: Approx. cell decomposition methods are
practically for lower dimension C, i.e., dof <5, b/c they
generate too many cells, i.e. (Nd) cells in d dimension

Configuration Space

•  Well, most robot is not a point and can have arbitrary
shape

•  What should we do if our robot is not a point?

•  Convert rigid robots, articulated robots, etc. into points

•  Apply algorithms for moving points

Configuration Space

•  Mapping between the workspace and configuration space

Workspace

α	

β	

Degree of freedom (DOF)

Configuration Space
C-Space

β=125

α	

β	

0

180

180 55

125

α=55

C-Space

β=100

α	

β	

0

180

180 75

100

C-Space

α=75

C-Space

α=85

α	

β	

0

180

180 85

80

C-Space

β=80

C-Space

α=90

α	

β	

0

180

180 90

55

C-Space

β=55

C-Space

α=110

α	

β	

0

180

180 110

30

C-Space

β=30

C-Space

α=135

α	

β	

0

180

180 55

 15

C-Space

β=15

Workspace

(4,5,45)

obstacle

Workspace

(x,y)

theta

Configuration (x,y,theta)

Workspace Obstacle

•  Th
et
a

C-Space Obstacle

C-Obstacle
Really look like this ? Every point in the C-obst
corresponds to the configuration where the robot would collide
with the obstacle

Initial

Goal

Finding a Path

Find a path in
workspace for a
robot

T
h
et

a

Find a path in
C-space for a point

robot

obst

obst

obst

obst

x
y

C-obst

C-obst C-obst

C-obst

robot

Path is swept volume

Motion Planning in C-space

Path is 1D curve

Workspace

C-space
Simple workspace obstacle transformed
Into complicated C-obstacle!!

C = S1 x S1

φ	

ϕ	

Topology of the configuration pace

•  The topology of C is usually not that of a
Cartesian space Rn.

0 2π	

2π	

φ	

ϕ	

Example: rigid robot in 2-D workspace

•  dim of configuration space = ???
•  Topology ???

R2 x SO(1)

Example: articulated robot

•  Number of DOFs?

•  What is the topology?

An articulated object is a set of rigid
bodies connected at the joints.

Example: Multiple robots

•  Given n robots in 2-D
•  What are the possible

representations?

•  What is the number of dofs?

J.J. Kuffner et al.

ROV, GAMMA group, UNC

5 articulated robots

Computing C-obstacles

•  For polygonal obstacles and polygonal translating
robots – how to compute C-obstacles

•  Minkowski sum allows us to solve problems with
translational robots

Minkowski sum of convex polygons

•  The Minkowski sum of two convex polygons P and Q of
m and n vertices respectively is a convex polygon P + Q
of m + n vertices.

–  The vertices of P + Q are the “sums” of vertices of P
and Q.

=

Minkowski Sum

•  Minkowski sum
•  P⊕Q={p+q | p∈P, q∈Q}

⊕	

P

Q

CS633

Minkowski Sum

•  Minkowski sum
•  P⊕Q={p+q | p∈P, q∈Q}

Minkowski Sum

•  Minkowski sum
•  P⊕Q={p+q | p∈P, q∈Q}

Minkowski Sum

•  Minkowski sum
•  P⊕Q={p+q | p∈P, q∈Q}

⊕	
 =

Algorithm

•  Sort normals to the edges of the polygon
•  Every edge of C-obst is either edge of the polygon or

edge of the robot. Every edge is used exactly once, we
need to determine the ordering of the edges

•  Sort inward angles on the robot counterclockwise
•  Sort outward angles of the obstacle normals
•  Use incrementally the edges which correspond to the

sorted normals in the order they are encountered

Compute Minkowski Sum

•  Convex object
–  Use Gaussian map
–  Compute convex hull of Point-based Minkowski sum

(slower)

2D

3D
[Fogel and Halperin 06]

P Q
P⊕Q

Polygonal robot translating in 2-D
workspace

workspace configuration
space

The complexity of the Minkowski sum is O(n2) in 2D

Robot with Rotations

•  If a robot is allowed rotation in addition to translation in
2D then it has 3 DOF

•  The configuration space is 3D: (x,y,φ) where φ is in the
range [0:360)

Polygonal robot translating & rotating in
2-D workspace

workspace configuration
space

Polygonal robot translating & rotating in
2-D workspace

x

y
θ	

Mapping to C-Space

•  The obstacles map to “twisted pillars” in C-Space
•  They are no longer polygonal but are composed of

curved faces and edges

Computing Free Space

•  Exact cell decomposition in 3D is really hard
•  Compute z: a finite number of slices for discrete

angular values
•  Each slice will be the representation of the free space

for a purely translational problem
•  Robot will either move within a slice (translating) or

between slices (rotating)

Hard Motion Planning

•  Configuration Space methods – complex even
for low dimensional configuration spaces

•  Plus – always guarantee finding a plan if it
exists in finite time (or answer no)

•  Idea behind sampling cased motion planning –
sacrifice completeness for efficiency – weaker
guarantee – notion on probabilistic
completeness

•  General motion planning problem is
•  PSPACE-hard [Reif 79, Hopcroft et al. 84 & 86]
•  PSPACE-complete [Canny 87]
The best deterministic algorithm known has
running time that is exponential in the dimension
of the robot’s C-space [Canny 86]
•  C-space has high dimension - 6D for rigid body in 3D
space
•  simple obstacles have complex C-obstacles impractical
to
 compute explicit representation of free space for
more
 than 4 or 5 dof

The Complexity of
Motion Planning PSPACE

NP

P

The Alpha Puzzle

Hard Motion Planning Problems

 Swapping Cubes Puzzle

•  Separate two shapes (one considered robot) – another obstacle
•  Exchange the positions of two cubes (one needs move to empty space)
•  All these planning problems are considered in continuous spaces

Probabilistic Methods

•  Resort to sampling based methods
•  Avoid computing C-obstacles

– Too difficult to compute efficiently

•  Idea: Sacrifice completeness to gain simplicity
and efficiency

•  Probabilistic Methods
– Graph based
– Tree based

Sampling Based Motion Planning

Geometric
Models S

Sampling Based Motion
Planner

Discrete
Search

C-space
planning

Idea : Generate random configurations
Check whether they are collision free
Connect them using Local planners

Probabilistic Motion Planning

•  First encounter with randomized techniques – in the
context of potential field based methods

•  Use random walk to escape local minima (May take long
time)

•  Idea – potential function gives as a cost to go g(q)
•  If local planner is not successful in reducing the cost to

go
•  Switch to random walk mode from current node,

terminate if node with lower g(q) is found or number of
iterations have been reached

•  If better node has not been found back-track – pick one
of the nodes encounteted in Random walk and restart
best first search

•  T
h
e
t
a

Probabilistic Roadmap Method
[Kavraki, Svestka, Latombe,Overmars 1996]

Explicit representation of the configuration space is unknown

1. Connect start and goal to roadmap

Query processing
start

goal

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap
 - simple, deterministic local planner
 (e.g., straightline)
 - discard paths that are invalid

1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid

C-obst

C-space

2. Find path in roadmap between start and goal
 - regenerate plans for edges in roadmap

Probabilistic Roadmap Method

•  Important sub-routines
–  Generate random configurations
–  Local planners
–  Distance metrics
–  Selecting k-nearest neighbors (becoming dominant

in high dimensional space)
–  Collision detection (>80% computation)

PRMs: Pros & Cons

PRMs: The Good News
1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional
C-space
3. PRMs support fast queries w/ enough
preprocessing

Many success stories where PRMs solve
previously unsolved problems

C-
obst

C-
obst

C-
obst

C-
obst

C-
obst

sta
rt

goa
l

PRMs: The Bad
News

1. PRMs don’t work as well for some problems:
–  unlikely to sample nodes in narrow passages
–  hard to sample/connect nodes on constraint
surfaces

sta
rt

go
al

C-
obst

C-
obst

C-
obst

C-
obst

Related Work (selected)

•  Probabilistic Roadmap Methods
•  Uniform Sampling (original) [Kavraki, Latombe, Overmars,
Svestka,
 92, 94, 96]
•  Obstacle-based PRM (OBPRM) [Amato et al, 98]
•  PRM Roadmaps in Dilated Free space [Hsu et al, 98]
•  Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]
•  Bridge test [Hsu et al 03]
•  Visibility Roadmaps [Laumond et al 99]
•  Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/
Amato/
 Stiller 99, 03, Lin et al 00]
•  Generating Contact Configurations [Xiao et al 99]
•  Using workspace clues

An Obstacle-Based PRM

start

goal

C-obst

C-obst

C-obst

C-obst

To Navigate Narrow Passages we must sample in them
•  most PRM nodes are where planning is easy (not needed)

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle
surfaces?
•  we cannot explicitly construct the C-obstacles...
•  we do have models of the (workspace) obstacles...

OBPRM Roadmap

1

3

2

4
5

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)
2. Select a random direction in C-
space
3. Find a free point in that direction
4. Find boundary point between
them
 using binary search (collision
checks)

Note: we can use more
sophisticated heuristics to try to
cover C-obstacle

C-obst

OBPRM

1

2

Gaussian Sampling PRM

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)

2. Find another point that is within
distance d to the first point, where d
is a random variable in a Gaussian
distribution

3. Keep the second point if it is
collision free

C-obst d

Note

•  Two paradigms: (1) OBPRM: Fix the samples (2) Gaussian PRM: Filter the
samples
•  None of these methods can (be proved to) provide guarantee that the samples
in the narrow passage will increase!

Gaussians

Related Work (selected)

•  Probabilistic Roadmap Methods
•  Uniform Sampling (original) [Kavraki, Latombe, Overmars, Svestka, 92, 94, 96]

•  Obstacle-based PRM (OBPRM) [Amato et al, 98]

•  PRM Roadmaps in Dilated Free space [Hsu et al, 98]

•  Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]

•  Bridge test [Hsu et al 03]

•  Visibility Roadmaps [Laumond et al 99]

•  Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al
00]

•  Generating Contact Configurations [Xiao et al 99]

•  Using workspace clues

Issues

•  How do we determine a random free configuration
•  We would like to sample nodes uniformly from C_free
•  Draw each of the coordinates from the interval of

corresponding DOF – use uniform probability per
interval

•  For each sample check for collision between the robot
 and obstacles and robot itself
•  If collision free add to V otherwise discard

•  Collision detection and sampling – large topics

Collision Detection
•  Treated as black box - takes most of the computation
•  In 2D convex robot and obstacle, there exist linear time

collision detection algorithms
•  For more complex non-convex bodies – hierarchical

methods (create bounded regions – to avoid checking
bodies which are far apart

 - have a quick way of computing whether two regions
intersect (Bound. Regions: spheres, axis aligned boxes),
the composite bounding regions are represented by trees

•  Check for free collision free configuration
•  Check for free collision free path segment
•  Consider that the path is a straight line, parametrized by

[0,1], sample the interval and check each sample whether
its collision free

•  There exist algorithms with guarantees trickier to
implement

Planning in high dimensional spaces

•  Single query planning (greedy technique can
take a long time)

•  Multiple query planning – spreads out
uniformly, requires lot of samples to cover the
space

•  Next incremental sampling and search
methods that yields good performance without
parameters tunning. Idea gradually construct
search tree, such that it densely covers the
space

Incremental Sampling and Searching

•  Single query model – given start and goal q find a path
•  Analogy with the discrete search algorithms
•  Samples are states, edges are paths connected them

(as opposed to actions previously)
•  Graphs are undirected; Ingredients
1.  Initialize the graph
2.  Select vertex for expansion
3.  Generate set of new vertices
4.  For some new vertices run a local planner and check

whether its collision free
5.  If yes insert an edge to the graph
6.  Keep on going until termination condition is satisfied

Incremental Search and Sample

•  Why not just discretizing configuration space ?
•  For high dimensions large number of states can be

wasted exploring various cavities of the C-space
•  For low dim spaces grid points them selves can serve as

roadmap points (need to be checked for collisions etc)

•  How to choose a resolution of the discretization
 (start coarse , iteratively refine)
•  Another option – abandon discretization and work with

continuous problem (like randomized potential fields) or
RRT’s

Rapidly-Exploring Random Tree (RRT)

•  Tree Based single shot planners – compute the
respresentation of C-free for single start and goal

•  RRTs: Rapidly-exploring Random Trees
•  Rapidly-exploring random trees: Progress and

prospects. S. M. LaValle and J. J. Kuffner. In Proceedings
Workshop on the Algorithmic Foundations of Robotics, 2000.)
–  Incrementally builds the roadmap tree

•  Extends to more advanced planning techniques
–  Integrates the control inputs to ensure that the

kinodynamic constraints are satisfied

Rapidly-Exploring Random Trees

RRT’s

RRT’s
Details:
Step length: how far to sample
Sample just at the end point
Sample all along, small steps

Naïve Random Tree

RRT’s are biased towards large Voronoi
cells

The nodes most likely to be closest to a randomly chosen point in state space
are those with the largest Voronoi regions. The largest Voronoi regions belong
to nodes along the frontier of the tree, so these frontier nodes are
automatically favored when choosing which node to expand.

Grow two RRT’s together

Two RRT’s

Two RRT’s

Two RRT’s

Two RRT’s

Two RRT’s

Two RRT’s

Two RRT’s

Taking actions into account

How it Works

•  Build a rapidly-exploring random tree in state
space (X), starting at sstart

•  Stop when tree gets sufficiently close to sgoal

Goal
Start

Building an RRT

•  To extend an RRT:
–  Pick a random point a in X
–  Find b, the node of the tree

closest to a
–  Find control inputs u to steer

the robot from b to a

a

b
u

Building an RRT
•  To extend an RRT (cont.)

–  Apply control inputs u for
time δ, so robot reaches
c

–  If no collisions occur in
getting from a to c, add c
to RRT and record u with
new edge

a

b
u

c

Executing the Path

•  Once the RRT reaches sgoal

–  Backtrack along tree to identify edges that lead
from sstart to sgoal

–  Drive robot using control inputs stored along edges
in the tree

Problem of Simple RRT Planner

•  Problem: ordinary RRT explores X uniformly
→  slow convergence

•  Solution: bias distribution towards the goal – once in a
while choose goal as new random configuration (5-10%)

•  If goal is choose 100% time then it is randomized potential
planner

Bidirectional Planners

•  Build two RRTs, from start and goal state

•  Complication: need to connect two RRTs
–  local planner will not work (dynamic constraints)
–  bias the distribution, so that the trees meet

Bidirectional RRT Example

Articulated Robot example

RRT’s

•  Link
•  http://msl.cs.uiuc.edu/rrt/gallery.html

•  Issues/problems
•  Metric sensitivity
•  Nearest neighbour efficiency
•  Optimal sampling strategy
•  Balance between greedy search and exploration

•  Applications in mobile robotics, manipulation,
humanoids, biology, drug design, areo-space, animation

•  Extensions – real-time RRT’s, anytime RRT’s dynamic
domains RRT’sm deterministic RRTs, hybrid RRT’s

Efficient nearest neighbour algorithms

•  How to find NN in high
 dimensional spaces

•  KD trees – recursively choose a plane P that splits the
set

 evenly in a coordinate direction
•  Store P at the node
•  Apply to children sets Sl and Sr
•  Requires O(dn) storage

•  Various hashing strategies

Expansion Space Tree (EST)

1. Grow two trees from Init position and Goal configurations.

2. Randomly sample nodes around existing nodes.

3. Connect a node in the tree rooted at Init to a node in the
tree rooted at the Goal.

Init Goal

Expansion + Connection

Path Planning in Expansive Configuration Spaces, D. Hsu, J.C.
Latombe, & R. Motwani, 1999.

1.  Pick a node x with probability 1/w(x).

Disk with radius d, w(x)=3

Expansion

root

2.  Randomly sample k points around x.

3.  For each sample y, calculate w(y) – number of samples in
neighbourhood d of y

4. which gives probability 1/w(y) with which the vertex will be
taken

1.  Pick a node x with probability 1/w(x).

Expansion

root

2.  Randomly sample k points around x.

3.  For each sample y, calculate w(y), which gives probability
1/w(y).

1 2

3

1/w(y1)=1/5

1.  Pick a node x with probability 1/w(x).

Expansion

root

2.  Randomly sample k points around x.

3.  For each sample y, calculate w(y), which gives probability
1/w(y).

1 2

3

1/w(y2)=1/2

1.  Pick a node x with probability 1/w(x).

Expansion

root

2.  Randomly sample k points around x.

3.  For each sample y, calculate w(y), which gives probability
1/w(y).

1 2

3

1/w(y3)=1/3

1.  Pick a node x with probability 1/w(x).

Expansion

root

2.  Randomly sample k points around x.

3.  For each sample y, calculate w(y), which gives probability
1/w(y). If y

1 2

3

 (a) has higher probability; (b) collision free; (c) can see x

 then add y into the tree.

Requires tunning of various parameters k, d, number of iter

Computed example

Conclusion

•  Motion planning is difficult (intractable)

•  Roadmap methods
– Probabilistic Motion Planners

We will return to planning when considering
partial information, dynamically changing
worlds, uncertainty

What is not covered?

•  Other types of motion planning

– With constraints
•  Close-chain constraint
•  Nonholonomic constraint
•  Differential constraints

–  Manipulate planning
–  Assembly planning
–  Planning with uncertainty
–  Planning for multiple robots, dynamic env
–  Planning for highly articulated objects
–  Planning for deformable objects
–  …

Little Seiko

CS633

Additional Readings

•  Gross motion planning—a survey, Y. K. Hwang
and N. Ahuja, ACM Computing Surveys, 1992
(survey paper)

•  Robot Motion Planning. J.C. Latombe. Kluwer
Academic Publishers, Boston, MA, 1991.

•  Motion Planning: A Journey of Robots,
Molecules, Digital Actors, and Other Artifacts.
Jean-Claude Latombe, IJRR, 1999 (survey paper)

•  Planning Algorithms, Steven LaValle, 2006,
Cambridge University Pres, (Free download at
http://planning.cs.uiuc.edu/)

