
1

Image Brightness values

I(x,y)

Local, meaningful, detectable parts of the image.
•  Edge detection
•  Line detection
•  Corner detection
Motivation
•  Information content high
•  Invariant to change of view point, illumination
•  Reduces computational burden
•  Uniqueness
•  Can be tuned to a task at hand

Given a noisy image

How do we reduce noise ?
How do we find useful features ?

Today:
•  Filtering
•  Point-wise operations
•  Edge detection

  Let’s replace each pixel with a weighted average of its
neighborhood

  The weights are called the filter kernel
  What are the weights for the average of a

3x3 neighborhood?

1 1 1

1 1 1

1 1 1

“box filter”

Source: D. Lowe

f

  Let f be the image and g be the kernel. The output of
convolving f with g is denoted f * g.

Source: F. Durand

•  MATLAB functions: conv2, filter2, imfilter

Convention:
kernel is “flipped”

  What is the size of the output?
  MATLAB: filter2(g, f, shape)

  shape = ‘full’: output size is sum of sizes of f and g
  shape = ‘same’: output size is same as f
  shape = ‘valid’: output size is difference of sizes of f and g

f

g g

g g

f

g g

g g

f

g g

g g

full same valid

  Linearity: filter(f1 + f2) = filter(f1) + filter(f2)
  Shift invariance: same behavior regardless of pixel

location: filter(shift(f)) = shift(filter(f))
  Theoretical result: any linear shift-invariant operator can

be represented as a convolution

Averaging filter 1-D example

Box filter

Averaging filter center pixel weighted more

and 0 everywhere else

Ex. cont.

Original image

Smoothed image

CS223b, Jana
Kosecka

  The bigger the mask,
  more neighbors contribute.
  smaller noise variance of the output.
  bigger noise spread.
  more blurring.
  more expensive to compute.
  In Matlab function conv, conv2

Computer Vision - A
Modern Approach
Set: Linear Filters

Slides by D.A. Forsyth

  A particular case of averaging
  The coefficients are samples of a 1D Gaussian.
  Gives more weight at the central pixel and less weights to the

neighbors.
  The further away the neighbors, the smaller the weight.

Sample from the continuous Gaussian

Computer Vision - A
Modern Approach
Set: Linear Filters

Slides by D.A. Forsyth

  The std. dev of the Gaussian σ determines the amount of
smoothing.

  The samples should adequately represent a Gaussian
  For a 98.76% of the area, we need

 m = 5σ
 5.(1/σ) ≤ 2π ⇒ σ ≥ 0.796, m ≥5

g[x] = [0.136, 0.6065, 1.00, 0.606, 0.136]

5-tap filter

  Remove “high-frequency” components from the
image (low-pass filter)

  Convolution with self is another Gaussian
  So can smooth with small-σ kernel, repeat, and

get same result as larger-σ kernel would have
  Convolving two times with Gaussian kernel with

std. dev. σ
is same as convolving once with kernel with std.
dev.

  Separable kernel
  Factors into product of two 1D Gaussians

Source: K. Grauman

Source: D. Lowe

*

*

=

=

2D convolution
(center location only)

Source: K. Grauman

The filter factors
into a product of 1D

filters:

Perform convolution
along rows:

Followed by convolution
along the remaining column:

  Convolution with a 2D Gaussian filter

  Gaussian filter is separable, convolution can be accomplished
as two 1-D convolutions

  The bigger the mask,
  more neighbors contribute.
  smaller noise variance of the output.
  bigger noise spread.
  more blurring.
  more expensive to compute.

  They happen at places where the image values exhibit sharp
variation

x
xfxxf

dx
xdf

x Δ

−Δ+
=

→Δ

)()(lim)(
0

2
)1()1()(−−+

≅
xfxf

dx
xdf

Vertical edges
First derivative - one column

Horizontal edges

•  Image Gradient

•  Gradient Magnitude

•  Gradient Orientation

  Edge detection involves 3 steps:
  Noise smoothing
  Edge enhancement
  Edge localization

  J. Canny formalized these steps to design an optimal edge
detector

  How to go from derivatives to edges ?

Horizontal edges

•  Compute image derivatives
•  if gradient magnitude > τ and the value is a local maximum along gradient
 direction – pixel is an edge candidate

Canny edge detector
gradient magnitude original image

  The input is image I; G is a zero mean Gaussian filter (std = σ)

1.  J = I * G (smoothing)
2.  For each pixel (i,j): (edge enhancement)

  Compute the image gradient
  ∇J(i,j) = (Jx(i,j),Jy(i,j))’

  Estimate edge strength
  es(i,j) = (Jx

2(i,j)+ Jy
2(i,j))1/2

  Estimate edge orientation
  eo(i,j) = arctan(Jx(i,j)/Jy(i,j))

  The output are images Es - Edge Strength - Magnitude
  and Edge Orientation Eo -

  Es has large values at edges: Find local maxima

  … but it also may have wide ridges around the local
maxima (large values around the edges)

  The inputs are Es & Eo (outputs of CANNY_ENHANCER)

  Consider 4 directions D={ 0,45,90,135} wrt x

  For each pixel (i,j) do:
1.  Find the direction d∈D s.t. d≅ Eo(i,j) (normal to the edge)

2.  If {Es(i,j) is smaller than at least one of its neigh. along d}
  IN(i,j)=0
  Otherwise, IN(i,j)= Es(i,j)

  The output is the thinned edge image IN

  Edges are found by thresholding the output of
NONMAX_SUPRESSION

  If the threshold is too high:
  Very few (none) edges

  High MISDETECTIONS, many gaps
  If the threshold is too low:

  Too many (all pixels) edges
  High FALSE POSITIVES, many extra edges

courtesy of G. Loy

gap is gone

Original
image

Strong
edges

only

Strong +
connected
weak edges

Weak
edges

2

2

2)(σ

x

exg
−

=

2

2

2

2

2
2

2
2 22
1)(' σσ

σσ

xx

exxexg
−−

−=−=

2

2

2

2

2
2

2
2 22
1)(' σσ

σσ

xx

exxexg
−−

−=−=

2

2

2
3

2

)1()('' σ

σσ

x

exxg
−

−=

sigma=2

sigma=4

contrast=1 contrast=4
LOG zero crossings

•  How can we detect lines ?

Computer Vision - A Modern
Approach

Set: Linear Filters
Slides by D.A. Forsyth

  Applying a filter at some
point can be seen as taking
a dot-product between the
image and some vector

  Filtering the image is a set of
dot products

  Insight
  filters look like the effects

they are intended to find
  filters find effects they look

like

-1 0 1
-2 0 2
-1 0 1

 0 1 2
-1 0 1
-2 -1 0

 1 2 1
 0 0 0
-1 -2 -1

 2 1 0
 1 0 -1
 0 -1 -2

 1 0 -1
 2 0 -2
 1 1 -1

 0 -1 -2
-1 0 -1
 2 1 0

-1 -2 -1
 0 0 0
 1 2 1

-2 -1 0
-1 0 1
 0 1 2

Positive responses

Zero mean image, -1:1 scale Zero mean image, -max:max scale

The filter is the small block at the top left corner

Positive responses

Zero mean image, -1:1 scale Zero mean image, -max:max scale

Leung & Malik, Representing and Recognizing the Visual
Apperance using 3D Textons, IJCV 2001

  A point on a line is hard to match.

Intuition:

•  Right at corner, gradient is ill defined.

•  Near corner, gradient has two different values.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∑∑
∑∑

2

2

yyx

yxx

III
III

C

We look at matrix:

Sum over a small region, the
hypothetical corner

Gradient with respect to x, times
gradient with respect to y

Matrix is symmetric

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∑∑
∑∑

2

1
2

2

0
0
λ

λ

yyx

yxx

III
III

C

First, consider case where:

This means all gradients in neighborhood are:

 (k,0) or (0, c) or (0, 0) (or off-diagonals cancel).

What is region like if:

€

λ1,λ2
€

λ1 = 0, λ2 >> 0

€

λ1 = 0, λ2 = 0
Are both large

€

λ1,λ2 Are both small

From Linear Algebra, it follows that because C is
symmetric:

RRC ⎥
⎦

⎤
⎢
⎣

⎡
= −

2

11

0
0
λ

λ

With R a rotation matrix.

So every case is like one on last slide.

  Filter image.
  Compute magnitude of the gradient everywhere.
  We construct C in a window.
  Use Linear Algebra to find λ1 and λ2.	

  If they are both big, we have a corner.

  Filter image.
  Compute magnitude of the gradient everywhere.
  We construct C in a window.
  Use Linear Algebra to find λ1 and λ2.	

  If they are both big, we have a corner.

•  Key property: in the region around a corner, image gradient has
two or more dominant directions

•  Corners are repeatable and distinctive

  We should easily recognize the point by looking through a
small window

  Shifting a window in any direction should give a large change
in intensity

“edge”: 
no change along the
edge direction

“corner”: 
significant change in
all directions

“flat” region: 
no change in all
directions

Source: A. Efros

λ1

λ2

“Corner”
λ1 and λ2 are large,
 λ1 ~ λ2;
E increases in all
directions

λ1 and λ2 are small;
E is almost constant
in all directions

“Edge”
λ1 >> λ2

“Edge”
λ2 >> λ1

“Flat”
region

Classification of image points using eigenvalues of C:

“Corner”
R > 0

“Edge”
R < 0

“Edge”
R < 0

“Flat”
region

|R| small

α: constant (0.04 to 0.06)

Computer Vision - A Modern
Approach

Set: Linear Filters
Slides by D.A. Forsyth

Plotting elipsses corresponding the the ‘corner’ matrix’
(changing the area over which statistics is averaged)

% Harris Corner detector - by Kashif Shahzad
sigma=2; thresh=0.1; sze=11; disp=0;

% Derivative masks
dy = [-1 0 1; -1 0 1; -1 0 1];
dx = dy'; %dx is the transpose matrix of dy

% Ix and Iy are the horizontal and vertical edges of image
Ix = conv2(bw, dx, 'same');
Iy = conv2(bw, dy, 'same');

% Calculating the gradient of the image Ix and Iy
g = fspecial('gaussian',max(1,fix(6*sigma)), sigma);
Ix2 = conv2(Ix.^2, g, 'same'); % Smoothed squared image derivatives
Iy2 = conv2(Iy.^2, g, 'same');
Ixy = conv2(Ix.*Iy, g, 'same');

% My preferred measure according to research paper
cornerness = (Ix2.*Iy2 - Ixy.^2)./(Ix2 + Iy2 + eps);

% We should perform nonmaximal suppression and threshold
mx = ordfilt2(cornerness,sze^2,ones(sze)); % Grey-scale dilate
cornerness = (cornerness==mx)&(cornerness>thresh); % Find maxima
[rws,cols] = find(cornerness);

clf ; imshow(bw); hold on;
p=[cols rws];
plot(p(:,1),p(:,2),'or'); title('\bf Harris Corners')

•  Only derivatives are used => invariance to
intensity shift I → I + b

•  Intensity scaling: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

I → a I + b

•  Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Second moment ellipse rotates but its shape (i.e. eigenvalues)
remains the same

Corner location is covariant w.r.t. rotation

All points will be
classified as edges

Corner

Corner location is not covariant to scaling!

  Consider regions of different size
  Select regions to subtend the same content

77

  How to choose the size of the region independently

CS 685l 78

CS 685l 79

Idea: design a function over region which remains constant as the size of the region
Changes (e.g. average intensity)

  Sharp local intensity changes are good functions for
identifying relative scale of the region

  Response of Laplacian of Gaussians (LoG) at a point

CS 685l 80

81

Want to find
… in here

83

 Distinctive image features from scale-invariant
keypoints. David G. Lowe, International Journal of
Computer Vision, 60, 2 (2004), pp. 91-110.

 SIFT = Scale Invariant Feature Transform

84

  Image content is transformed into local feature coordinates
that are invariant to translation, rotation, scale, and other
imaging parameters

SIFT Features

85

  Locality: features are local, so robust to occlusion and
clutter (no prior segmentation)

  Distinctiveness: individual features can be matched to a
large database of objects

  Quantity: many features can be generated for even small
objects

  Efficiency: close to real-time performance

  Extensibility: can easily be extended to wide range of
differing feature types, with each adding robustness

86

1.  Enforce invariance to scale: Compute Gaussian difference max, for many
different scales; non-maximum suppression, find local maxima: keypoint
candidates

2.  Localizable corner: For each maximum fit quadratic function. Compute
center with sub-pixel accuracy by setting first derivative to zero.

3.  Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which
this ratio is larger than a threshold.

4.  Enforce invariance to orientation: Compute orientation, to achieve rotation
invariance, by finding the strongest second derivative direction in the
smoothed image (possibly multiple orientations). Rotate patch so that
orientation points up.

5.  Compute feature signature: Compute a "gradient histogram" of the local
image region in a 4x4 pixel region. Do this for 4x4 regions of that size.
Orient so that largest gradient points up (possibly multiple solutions).
Result: feature vector with 128 values (15 fields, 8 gradients).

6.  Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination. Then
threshold all gradients, to become invariant to camera saturation.

87

Idea: Find Corners, but scale invariance

Approach:
  Run linear filter (difference of Gaussians)
  Do this at different resolutions of image pyramid

88

Minus

Equals

Approximates Laplacian (see filtering lecture)

89

  In D. Lowe’s paper image is decomposed
to octaves (consecutively sub-sampled
versions of the same image)

  Instead of convolving with large kernels
 within an octave kernels are kept the same
  Detect maxima and minima of difference-

of-Gaussian in scale space

  Look for 3x3 neighbourhood in scale
 and space

Blur

Resample

Subtract

90

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 above threshold

91

1.  Enforce invariance to scale: Compute Gaussian difference max, for may
different scales; non-maximum suppression, find local maxima: keypoint
candidates

2.  Localizable corner: For each maximum fit quadratic function. Compute
center with sub-pixel accuracy by setting first derivative to zero.

3.  Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which
this ratio is larger than a threshold.

4.  Enforce invariance to orientation: Compute orientation, to achieve rotation
invariance, by finding the strongest second derivative direction in the
smoothed image (possibly multiple orientations). Rotate patch so that
orientation points up.

5.  Compute feature signature: Compute a "gradient histogram" of the local
image region in a 4x4 pixel region. Do this for 4x4 regions of that size.
Orient so that largest gradient points up (possibly multiple solutions).
Result: feature vector with 128 values (15 fields, 8 gradients).

6.  Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination. Then
threshold all gradients, to become invariant to camera saturation.

92

Threshold on value at DOG peak and on ratio of principle curvatures
(Harris approach)

(c) 729 left after peak value threshold (from 832)
(d) 536 left after testing ratio of principle curvatures

93

1.  Enforce invariance to scale: Compute Gaussian difference max, for may
different scales; non-maximum suppression, find local maxima: keypoint
candidates

2.  Localizable corner: For each maximum fit quadratic function. Compute
center with sub-pixel accuracy by setting first derivative to zero.

3.  Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which
this ratio is larger than a threshold.

4.  Enforce invariance to orientation: Compute orientation, to achieve rotation
invariance, by finding the strongest second derivative direction in the
smoothed image (possibly multiple orientations). Rotate patch so that
orientation points up.

5.  Compute feature signature: Compute a "gradient histogram" of the local
image region in a 4x4 pixel region. Do this for 4x4 regions of that size.
Orient so that largest gradient points up (possibly multiple solutions).
Result: feature vector with 128 values (15 fields, 8 gradients).

6.  Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination. Then
threshold all gradients, to become invariant to camera saturation.

94

  Create histogram of local
gradient directions computed at
selected scale

  Assign canonical orientation at
peak of smoothed histogram

  Each key specifies stable 2D
coordinates (x, y, scale,
orientation)

0 2π

95

1.  Enforce invariance to scale: Compute Gaussian difference max, for may
different scales; non-maximum suppression, find local maxima: keypoint
candidates

2.  Localizable corner: For each maximum fit quadratic function. Compute
center with sub-pixel accuracy by setting first derivative to zero.

3.  Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which
this ratio is larger than a threshold.

4.  Enforce invariance to orientation: Compute orientation, to achieve rotation
invariance, by finding the strongest second derivative direction in the
smoothed image (possibly multiple orientations). Rotate patch so that
orientation points up.

5.  Compute feature signature: Compute a "gradient histogram" of the local
image region in a 4x4 pixel region. Do this for 4x4 regions of that size.
Orient so that largest gradient points up (possibly multiple solutions).
Result: feature vector with 128 values (15 fields, 8 gradients).

6.  Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination. Then
threshold all gradients, to become invariant to camera saturation.

CS223b 96

  Thresholded image gradients are sampled over 16x16 array of
locations in scale space

  Create array of orientation histograms
  8 orientations x 4x4 histogram array = 128 dimensions

97

  Hypotheses are generated by approximate nearest
neighbor matching of each feature to vectors in the database

  SIFT use best-bin-first (Beis & Lowe, 97)
modification to k-d tree algorithm

  Use heap data structure to identify bins in order
by their distance from query point

  Result: Can give speedup by factor of 1000 while finding
nearest neighbor (of interest) 95% of the time

98

  Extract outlines with
background
subtraction

99

  Only 3 keys are needed for
recognition, so extra keys
provide robustness

  Affine model is no longer as
accurate

100

101

  Same image under differing illumination

273 keys verified in final match

102

103

104

  Invariances:
  Scaling
  Rotation
  Illumination
  Perspective Projection

  Provides
  Good localization

Yes
Yes

Yes

Maybe
 Yes

105

106

Run
 sift_compile
 sift_demo2

  Motivation: panorama stitching
  We have two images – how do we combine them?

Step 1: extract features

Step 2: match features

108

109

  Same image under differing illumination

273 keys verified in final match

CS 685l 110

•  Compute image derivatives
•  if gradient magnitude > τ and the value is a local maximum along gradient
 direction – pixel is an edge candidate

Canny edge detector
gradient magnitude original image

ρ

θ
x

y

•  Edge detection, non-maximum suppression
 (traditionally Hough Transform – issues of resolution, threshold
 selection and search for peaks in Hough space)
•  Connected components on edge pixels with similar orientation
 - group pixels with common orientation

Non-max suppressed gradient magnitude

•  Line fitting lines determined from eigenvalues and eigenvectors of A
•  Candidate line segments - associated line quality

second moment matrix
associated with each
connected component
v1 - eigenvector of A

Correspondence Problem:

•  How to find corresponding areas of two camera images
(points, line segments, curves, regions)

•  In feature-based matching, the idea is to pick a feature type (e.g.
edges), define a matching criteria (e.g. orientation and contrast
sign), and then look for matches within a disparity range
•  Feature Matching later

Jana Kosecka

  With the advent of inexpensive color imagery and processing,
color information can be used effectively for machine vision.

  Color provides multiple information per pixel, often enabling
complex classification.

  Perception of Color depends on three factors:
  The spectrum of energy in various wavelengths illuminating

the object surface,
  The spectral reflectance of the object surface, which

determines how the surface changes the received spectrum
into the radiated spectrum,

  The spectral sensitivity of the sensor irradiated by the
object’s surface.

Jana Kosecka

Color Image

Jana Kosecka

  Color Consider the problem of locating/segmenting faces from images
using color.

  First we need to identify the range of colors that could be associated
with a face.

  The lighting conditions would play a significant role.
  Even under uniform illumination, other objects could fall into that

color space. In this case we could use shape information for the
purpose of segmentation.

Jana Kosecka

T4 – primary face color, t-5 and t-6 secondary face clusters

Jana Kosecka

  Three major steps are involved in the face segmentation
procedure

  First we need to create a labeled image based on the
training data for identifying the color space that would
represent the face.

  Connected component is used to merge regions that
would be part of the face.

  The face is identified as the largest component and areas
close to the components are merged.

Jana Kosecka

Jana Kosecka

 Motion estimation of ball and robot for
soccer playing using color tracking

Jana Kosecka

Motion detector Skin color detector

Acquisition

Decimation by factor 5

Validation

Event creation

Narrative-level output

Motion presence

Average travelled
distance

Adaptation

Tracking
Distance scoring

Contour to target
assignment

RGB to HSV convers.

Segmentation

Grayscale convers.

Image differencing Hue-saturat. Limiter

Skin color binary im.

Image closing

Segmentation

Continuous
adaptation

Motion history im.

Motion initialization

Big contour presence
Skin color presence

Jana Kosecka

CS 482 132

Given an image point in left image, what is the (corresponding) point in the right
image, which is the projection of the same 3-D point

CS 482 133

Difficulties – ambiguities, large changes of appearance, due to change
Of viewpoint, non-uniquess

CS 482 134

Correspondence

Lambertian assumption

Rigid body motion

radiance

CS 482 135

  Translational model

  Affine model

  Transformation of the intensity values taking into account occlusions
 and noise

CS 482 136

•  Translational model

•  RHS approximation by the first two terms of Taylor series

•  Small baseline

•  Brightness constancy constraint

CS 482 137

•  Normal flow

Given brightness constancy constraint at single point –
all we can recover is normal flow

CS 482 138

•  Integrate around over image patch

•  Solve

Optical Flow

CS 482 139

rank(G) = 0 blank wall problem
rank(G) = 1 aperture problem
rank(G) = 2 enough texture – good feature candidates

Conceptually:

In reality: choice of threshold is involved

Optical Flow, Feature Tracking

CS 482 140

•  Qualitative properties of the motion fields

•  Previous method - assumption locally constant flow

•  Alternative regularization techniques (locally smooth flow fields,
 integration along contours)

Optical Flow

CS 482 141

•  Compute eigenvalues of G
•  If smalest eigenvalue σ of G is bigger than τ - mark pixel as candidate
 feature point

•  Alternatively feature quality function (Harris Corner Detector)

CS 482 142

Harris Corner Detector - Example

143

  Compute Image Gradient
  Compute Feature Quality measure for each pixel

  Search for local maxima

Feature Quality Function Local maxima of feature quality function

CS 482 144

•  Translational motion model

•  Closed form solution

•  Build an image pyramid
•  Start from coarsest level
•  Estimate the displacement at the coarsest level
•  Iterate until finest level

145

1.  compute
2.  warp the window in the second image by
3.  update the displacement
4.  go to finer level
5.  At the finest level repeat for several iterations

0

2

1

147

