Image Primitives and Correspondence

Brightness values

Image Features

Local, meaningful, detectable parts of the image.

- Edge detection
- Line detection
- Corner detection

Motivation

- Information content high
- Invariant to change of view point, illumination
- Reduces computational burden
- Uniqueness
- Can be tuned to a task at hand

Filetring and Image Features

Given a noisy image
How do we reduce noise ?
How do we find useful features ?

Today:

- Filtering
- Point-wise operations
- Edge detection

Moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the filter kernel
- What are the weights for the average of a 3×3 neighborhood?

"box filter"

Defining convolution

- Let f be the image and g be the kernel. The output of convolving f with g is denoted $f^{*} g$.

$$
(f * g)[m, n]=\sum_{k, l} f[m-k, n-l] g[k, l]
$$

- MATLAB functions: conv2, filter2, imfilter

Annoying details

- What is the size of the output?
- MATLAB: filter2(g, f, shape)
- shape = 'full': output size is sum of sizes of f and g
- shape = 'same': output size is same as f
- shape = 'valid': output size is difference of sizes of f and g

valid

Key properties

- Linearity: $\operatorname{filter}\left(f_{1}+f_{2}\right)=$ filter $\left(f_{1}\right)+\operatorname{filter}\left(f_{2}\right)$
- Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Averaging filter 1-D example

$$
\begin{aligned}
& g[x]=\sum_{k=-\infty}^{\infty} f[k] h[x-k] \\
& f[x]=[\ldots 0,0,2,-2,2,0,0, \ldots] \quad h[x]=\frac{1}{3}[1,1,1] \\
& h[-1]=\frac{1}{3}, h[0]=\frac{1}{3}, h[1]=\frac{1}{3} \quad \text { and } 0 \text { everywhere else } \\
& f[-1]=-2, f[0]=2, f[1]=-2
\end{aligned}
$$

Box filter $\quad g[x]=\sum_{k=-1}^{1} f[k] h[x-k]$
Ex. cont.

$$
\begin{aligned}
& g[-1]=f[-1] h[-1-1]+f[0] h[-1]+f[1] h[0] \\
& g[0]=f[-1] h[-1]+f[0] h[0]+f[1] h[1]
\end{aligned}
$$

Averaging filter center pixel weighted more

$$
h[x]=[0.25,0.5,0.25]
$$

Averaging filter

Gonvolution in 2D

Example:

I

10	11	10	0	0	1
9	10	11	1	0	1
10	9	10	0	2	1
11	10	9	10	9	11
9	10	11	9	99	11
10	9	9	11	10	10

1	1	1
1	1	1
1	1	1

x	x	x	x	x	x
x	10	7	4	1	x
x					x
x					x
x					x
X	x	x	x	x	x

1/9. $(10 x 1+0 x 1+0 x 1+11 \times 1+1 x 1+0 x 1+10 x 1+0 \times 1+2 x 1)=$ $1 / 9 .(34)=3.7778$

Example:

Example:

I

10	11	10	0	0	1
9	10	11	1	0	1
10	9	10	0	2	1
11	10	9	10	9	11
9	10	11	9	99	11
10	9	9	11	10	10

1	1	1
1	1	1
1	1	1

X	X	X	X	X	X
X	10	7	4	1	X
X					X
X			18		X
X				20	X
X	X	X	X	X	X

1/9.(10x1 $+0 \times 1+2 x 1+9 x 1+10 x 1+9 x 1+11 x 1+9 x 1+99 x 1)=$ $1 / 9 .(159)=17.6667$

How big should the mask be?

- The bigger the mask,
- more neighbors contribute.
- smaller noise variance of the output.
- bigger noise spread.
- more blurring.
- more expensive to compute.
- In Matlab function conv, conv2

Example: Smoothing by Averaging

Gaussian Filter

- A particular case of averaging
- The coefficients are samples of a 1D Gaussian.
- Gives more weight at the central pixel and less weights to the neighbors.
- The further away the neighbors, the smaller the weight.

$$
g(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-x^{2}}{2 \sigma^{2}}}
$$

Sample from the continuous Gaussian

Smoothing with a Gaussian

How big should the mask be?

- The std. dev of the Gaussian σ determines the amount of smoothing.
- The samples should adequately represent a Gaussian
- For a 98.76% of the area, we need

$$
\begin{aligned}
& m=5 \sigma \\
& 5 .(1 / \sigma) \leq 2 \pi \Rightarrow \sigma \geq 0.796, m \geq 5
\end{aligned}
$$

5-tap filter

$$
g[x]=[0.136,0.6065,1.00,0.606,0.136]
$$

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian
- So can smooth with small- σ kernel, repeat, and get same result as larger-o kernel would have
- Convolving two times with Gaussian kernel with std. dev. σ
is same as convolving once with kernel with std. dev. $\sigma \sqrt{2}$
- Separable kernel
- Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$
\begin{aligned}
\mathcal{G}_{\sigma}(x, y) & =\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& =\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{x^{2}}{2 \sigma^{2}}}\right)\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{y^{2}}{2 \sigma^{2}}}\right)
\end{aligned}
$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y In this case, the two functions are the (identical) 1D Gaussian

Separability example

2D convolution (center location only)

1	2	1
2	4	2
1	2	1

2	3	3
3	5	5
4	4	6

The filter factors
into a product of 1D filters:

Perform convolution along rows:

Followed by convolution along the remaining column:

Image Smoothing

- Convolution with a 2D Gaussian filter

$$
\tilde{I}(x, y)=I(x, y) * g(x, y)=I(x, y) * g(x) * g(y)
$$

- Gaussian filter is separable, convolution can be accomplished as two 1-D convolutions

$$
\tilde{I}[x, y]=I[x, y] * g[x, y]=\sum_{k=-\frac{w}{2}}^{\frac{w}{2}} \sum_{l=-\frac{w}{2}}^{\frac{w}{2}} I[k, l] g[x-k] g[y-l]
$$

How big should the mask be?

- The bigger the mask,
- more neighbors contribute.
- smaller noise variance of the output.
- bigger noise spread.
- more blurring.
- more expensive to compute.

Edges

- They happen at places where the image values exhibit sharp variation

Edge detection (1D)

Edge= sharp variation

Large first derivative

Digital Approximation of $1^{\text {st }}$ derivatives

$$
\begin{array}{r}
\frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
\frac{d f(x)}{d x} \cong \frac{f(x+1)-f(x-1)}{2}
\end{array}
$$

Convolve with:

Edge Detection (2D)

Vertical Edges:

Convolve with:

-1	0	1

Horizontal Edges:

-1
0
1

Noise cleaning and Edge Detection

We need to also deal with noise Combine Linear Filters

Noise Smoothing \& Edge Detection

Convolve with:

This mask is called the (vertical) Prewitt Edge Detector
Outer product of box filter $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$ and $\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]$

Noise Smoothing \& Edge Detection

Convolve with:

This mask is called the (horizontal) Prewitt Edge Detector

Gaussian and its derivative

$$
g(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-x^{2}}{2 \sigma^{2}}}, \quad g^{\prime}(x)=-\frac{x}{\sigma^{2} \sqrt{2 \pi} \sigma} e^{\frac{-x^{2}}{2 \sigma^{2}}}
$$

Vertical edges

$$
I_{x}(x, y)=\frac{\partial I}{\partial x}
$$

First derivative - one column

$I_{y}(x, y)=\frac{\partial I}{\partial y}$
Horizontal edges

Gradient orientation

- Image Gradient

$$
\nabla I=\left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right]
$$

- Gradient Magnitude

$$
m=\sqrt{\left(\frac{\partial I}{\partial x}\right)^{2}+\left(\frac{\partial I}{\partial y}\right)^{2}}
$$

- Gradient Orientation

$$
\theta=\tan ^{-1}\left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right)
$$

Canny Edqe Detector

- Edge detection involves 3 steps:
- Noise smoothing
- Edge enhancement
- Edge localization
- J. Canny formalized these steps to design an optimal edge detector
- How to go from derivatives to edges ?

Horizontal edges

Edge Detection

original image

gradient magnitude

Canny edge detector

- Compute image derivatives
- if gradient magnitude $>\tau$ and the value is a local maximum along gradient direction - pixel is an edge candidate

Algorithm Canny Edge detector

- The input is image I; G is a zero mean Gaussian filter (std $=\sigma$)

1. $\quad \mathrm{J}=\mathrm{I} * \mathrm{G}$ (smoothing)
2. For each pixel (i, j): (edge enhancement)

- Compute the image gradient
- $\quad \nabla J(i, j)=\left(J_{x}(i, j), J_{y}(i, j)\right)^{\prime}$
- Estimate edge strength

$$
=\quad e_{s}(i, j)=\left(J_{x}^{2}(i, j)+J_{y}^{2}(i, j)\right)^{1 / 2}
$$

- Estimate edge orientation

$$
\text { - } \quad e_{0}(i, j)=\arctan \left(J_{x}(i, j) / J_{y}(i, j)\right)
$$

- The output are images E_{s} - Edge Strength - Magnitude
- and Edge Orientation E_{0} -
- E_{s} has large values at edges: Find local maxima
- ... but it also may have wide ridges around the local maxima (large values around the edges)

NONMAX_SUPRESSION

The inputs are $E_{S} \& E_{0}$ (outputs of CANNY_ENHANCER)

- Consider 4 directions $D=\{0,45,90,135\}$ wrt x
- For each pixel (i, j) do:

1. Find the direction $d \in D$ s.t. $d \cong E_{0}(i, j)$ (normal to the edge)
2. If $\left\{E_{s}(i, j)\right.$ is smaller than at least one of its neigh. along $\left.d\right\}$

- $\quad I_{N}(i, j)=0$
- Otherwise, $I_{N}(i, j)=E_{s}(i, j)$
- The output is the thinned edge image I_{N}

Graphical Interpretation

Thresholding

- Edges are found by thresholding the output of NONMAX_SUPRESSION
- If the threshold is too high:
- Very few (none) edges
- High MISDETECTIONS, many gaps
- If the threshold is too low:
- Too many (all pixels) edges
- High FALSE POSITIVES, many extra edges

SOLUTION: Hysteresis Thresholding

Canny Edge Detection (Example)

LOG Filter

- First smooth (Gaussian filter),
- Then, find zero-crossings (Laplacian filter):
- $\mathrm{O}(\mathrm{x}, \mathrm{y})=\nabla^{2}(\mathrm{I}(\mathrm{x}, \mathrm{y}) * \mathrm{G}(\mathrm{x}, \mathrm{y}))$
- Using linearity:
- $\mathrm{O}(\mathrm{x}, \mathrm{y})=\nabla^{2} \mathrm{G}(\mathrm{x}, \mathrm{y}) * \mathrm{I}(\mathrm{x}, \mathrm{y})$
- This filter is called: "Laplacian of the Gaussian" (LOG)

1D Gaussian

$$
\begin{gathered}
g(x)=e^{-\frac{x^{2}}{2 \sigma^{2}}} \\
g^{\prime}(x)=-\frac{1}{2 \sigma^{2}} 2 x e^{-\frac{x^{2}}{2 \sigma^{2}}}=-\frac{x}{\sigma^{2}} e^{-\frac{x^{2}}{2 \sigma^{2}}}
\end{gathered}
$$

First Derivative of a Gaussian

As a mask, it is also computing a difference (derivative)

Second Derivative of a Gaussian

$$
g^{\prime \prime}(x)=\left(\frac{x^{2}}{\sigma^{3}}-\frac{1}{\sigma}\right) e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

"Mexican Hat"

An edge is not a line...

- How can we detect lines ?

Filters are templates

- Applying a filter at some point can be seen as taking a dot-product between the image and some vector
- Filtering the image is a set of dot products
- Insight
- filters look like the effects they are intended to find
- filters find effects they look like

Robinson Compass Masks

$$
\begin{aligned}
& \begin{array}{|r|r|r|}
\hline 1 & 0 & -1 \\
\hline 2 & 0 & -2 \\
\hline 1 & 1 & -1 \\
\hline
\end{array} \begin{array}{|r|r|r|}
\hline 0 & -1 & -2 \\
\hline-1 & 0 & -1 \\
\hline 2 & 1 & 0 \\
\hline
\end{array} \begin{array}{|r|r|r|}
\hline-1 & -2 & -1 \\
0 & 0 & 0 \\
\hline 1 & 2 & 1 \\
\hline
\end{array} \begin{array}{|r|r|r|}
\hline-2 & -1 & 0 \\
\hline-1 & 0 & 1 \\
\hline 0 & 1 & 2 \\
\hline
\end{array} \\
& \text { / }
\end{aligned}
$$

Positive responses
Zero mean image, $-1: 1$ scale
Zero mean image, -max:max scale

The filter is the small block at the top left corner

Positive responses
Zero mean image, -max:max scale

Filter Bank

Leung \& Malik, Representing and Recognizing the Visual Apperance using 3D Textons, IJCV 2001

Corner Detection

- A point on a line is hard to match.

Intuition:

- Right at corner, gradient is ill defined.
- Near corner, gradient has two different values.

Formula for Finding Corners

We look at matrix:
Gradient with respect to x , times
Sum over a small region, the hypothetical corner
 gradient with respect to y

Matrix is symmetric

First, consider case where:

$$
C=\left[\begin{array}{ll}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right]=\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

This means all gradients in neighborhood are:

$$
(k, 0) \text { or }(0, c) \text { or }(0,0) \text { (or off-diagonals cancel). }
$$

What is region like if:

$$
\begin{aligned}
& \lambda_{1}=0, \lambda_{2} \gg 0 \\
& \lambda_{1}=0, \lambda_{2}=0
\end{aligned}
$$

$\lambda_{1}, \lambda_{2} \quad$ Are both large
$\lambda_{1}, \lambda_{2} \quad$ Are both small

General Case:

From Linear Algebra, it follows that because C is symmetric:

$$
C=R^{-1}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] R
$$

With R a rotation matrix.
So every case is like one on last slide.

Corner detection

- Filter image.
- Compute magnitude of the gradient everywhere.
- We construct C in a window.
- Use Linear Algebra to find $\lambda 1$ and $\lambda 2$.
- If they are both big, we have a corner.

Corner detection

- Filter image.
- Compute magnitude of the gradient everywhere.
- We construct C in a window.
- Use Linear Algebra to find $\lambda 1$ and $\lambda 2$.
- If they are both big, we have a corner.
- Key property: in the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region:
no change in all directions

"edge":
no change along the edge direction

"corner":
significant change in all directions

Interpreting the eigenvalues

Classification of image points using eigenvalues of C :

Corner response function

$R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}$
α : constant (0.04 to 0.06)

Plotting elipsses corresponding the the 'corner' matrix' (changing the area over which statistics is averaged)

Computer Vision - A Modern
Approach
Set: Linear Filters Slides by D.A. Forsyth

```
% Harris Corner detector - by Kashif Shahzad
sigma=2; thresh=0.1; sze=11; disp=0;
% Derivative masks
dy = [-1 0 1; -1 0 1; -1 0 1];
dx = dy'; %dx is the transpose matrix of dy
% Ix and ly are the horizontal and vertical edges of image
lx = conv2(bw, dx, 'same');
ly = conv2(bw, dy, 'same');
% Calculating the gradient of the image Ix and ly
g = fspecial('gaussian',max(1,fix(6*sigma)), sigma);
1x2 = conv2(Ix.^2, g, 'same'); % Smoothed squared image derivatives
ly2 = conv2(ly.^2, g, 'same');
lxy = conv2(Ix.*ly, g, 'same');
% My preferred measure according to research paper
cornerness = (Ix2.*Iy2 - Ixy.^2)./(Ix2 + ly2 + eps);
% We should perform nonmaximal suppression and threshold
mx = ordfilt2(cornerness,sze^2,ones(sze)); % Grey-scale dilate
cornerness = (cornerness==mx)&(cornerness>thresh); % Find maxima
[rws,cols] = find(cornerness);
clf ; imshow(bw); hold on;
p=[cols rws];
plot(p(:,1),p(:,2),'or'); title('lbf Harris Corners')
```


Example ($\sigma=0.1$)

Example ($\sigma=0.01$)

Example ($\sigma=0.001$)

Harris Corner Detector - Example

Affine intensity change

$$
\square \quad I \rightarrow a I+b
$$

- Only derivatives are used $=>$ invariance to intensity shift $I \rightarrow I+b$
- Intensity scaling: $I \rightarrow a I$

Partially invariant to affine intensity change

Image translation

- Derivatives and window function are shift-invariant

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Scaling

All points will be classified as edges

Corner location is not covariant to scaling!

Scale Invariant Detection

- Consider regions of different size
- Select regions to subtend the same content

Scale Invariant detection

- How to choose the size of the region independently

Scale invariant detection

Idea: design a function over region which remains constant as the size of the region Changes (e.g. average intensity)

Important: this scale invariant region size is found in each image independently!

Scale Invariant detection

- Sharp local intensity changes are good functions for identifying relative scale of the region
- Response of Laplacian of Gaussians (LoG) at a point

Improved Invariance Handling

SIFT Reference

Distinctive image features from scale-invariant keypoints. David G. Lowe, International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.

SIFT = Scale Invariant Feature Transform

Invariant-Local-Features

- Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

SIFT Features

Advantages of invariant local features

- Locality: features are local, so robust to occlusion and clutter (no prior segmentation)
- Distinctiveness: individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects
- Efficiency: close to real-time performance
- Extensibility: can easily be extended to wide range of differing feature types, with each adding robustness

SIFT On-A-Slide

1. Enforce invariance to scale: Compute Gaussian difference max, for many different scales; non-maximum suppression, find local maxima: keypoint candidates
2. Localizable corner: For each maximum fit quadratic function. Compute center with sub-pixel accuracy by setting first derivative to zero.
3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which this ratio is larger than a threshold.
4. Enforce invariance to orientation: Compute orientation, to achieve rotation invariance, by finding the strongest second derivative direction in the smoothed image (possibly multiple orientations). Rotate patch so that orientation points up.
5. Compute feature signature: Compute a "gradient histogram" of the local image region in a 4×4 pixel region. Do this for 4×4 regions of that size. Orient so that largest gradient points up (possibly multiple solutions). Result: feature vector with 128 values (15 fields, 8 gradients).
6. Enforce invariance to illumination change and camera saturation: Normalize to unit length to increase invariance to illumination. Then threshold all gradients, to become invariant to camera saturation.

Finding "Keypoints" (Corners)

Idea: Find Corners, but scale invariance

Approach:

- Run linear filter (difference of Gaussians)
- Do this at different resolutions of image pyramid

Difference of Gaussians

Approximates Laplacian (see filtering lecture)

Key point localization

- In D. Lowe's paper image is decomposed to octaves (consecutively sub-sampled versions of the same image)
- Instead of convolving with large kernels within an octave kernels are kept the same
- Detect maxima and minima of difference-of-Gaussian in scale space
- Look for 3×3 neighbourhood in scale and space

Example of keypoint detection

(b)

(a) 233×189 image
(b) 832 DOG extrema
(c) 729 above threshold

SIFT On-A-Slide

1. Enforce invariance to scale: Compute Gaussian difference max, for may different scales; non-maximum suppression, find local maxima: keypoint candidates
2. Localizable corner: For each maximum fit quadratic function. Compute center with sub-pixel accuracy by setting first derivative to zero.
3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which this ratio is larger than a threshold.
4. Enforce invariance to orientation: Compute orientation, to achieve rotation invariance, by finding the strongest second derivative direction in the smoothed image (possibly multiple orientations). Rotate patch so that orientation points up.
5. Compute feature signature: Compute a "gradient histogram" of the local image region in a 4×4 pixel region. Do this for 4×4 regions of that size. Orient so that largest gradient points up (possibly multiple solutions). Result: feature vector with 128 values (15 fields, 8 gradients).
6. Enforce invariance to illumination change and camera saturation: Normalize to unit length to increase invariance to illumination. Then threshold all gradients, to become invariant to camera saturation.

Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle curvatures (Harris approach)

(c) 729 left after peak value threshold (from 832)
(d) 536 left after testing ratio of principle curvatures

SIFT On-A-Slide

1. Enforce invariance to scale: Compute Gaussian difference max, for may different scales; non-maximum suppression, find local maxima: keypoint candidates
2. Localizable corner: For each maximum fit quadratic function. Compute center with sub-pixel accuracy by setting first derivative to zero.
3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which this ratio is larger than a threshold.
4. Enforce invariance to orientation: Compute orientation, to achieve rotation invariance, by finding the strongest second derivative direction in the smoothed image (possibly multiple orientations). Rotate patch so that orientation points up.
5. Compute feature signature: Compute a "gradient histogram" of the local image region in a 4×4 pixel region. Do this for 4×4 regions of that size. Orient so that largest gradient points up (possibly multiple solutions). Result: feature vector with 128 values (15 fields, 8 gradients).
6. Enforce invariance to illumination change and camera saturation: Normalize to unit length to increase invariance to illumination. Then threshold all gradients, to become invariant to camera saturation.

Select canonical orientation

- Create histogram of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable 2D coordinates (x, y, scale, orientation)

SIFT On-A-Slide

1. Enforce invariance to scale: Compute Gaussian difference max, for may different scales; non-maximum suppression, find local maxima: keypoint candidates
2. Localizable corner: For each maximum fit quadratic function. Compute center with sub-pixel accuracy by setting first derivative to zero.
3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which this ratio is larger than a threshold.
4. Enforce invariance to orientation: Compute orientation, to achieve rotation invariance, by finding the strongest second derivative direction in the smoothed image (possibly multiple orientations). Rotate patch so that orientation points up.
5. Compute feature signature: Compute a "gradient histogram" of the local image region in a 4×4 pixel region. Do this for 4×4 regions of that size. Orient so that largest gradient points up (possibly multiple solutions). Result: feature vector with 128 values (15 fields, 8 gradients).
6. Enforce invariance to illumination change and camera saturation: Normalize to unit length to increase invariance to illumination. Then threshold all gradients, to become invariant to camera saturation.

SIFT vector formation

- Thresholded image gradients are sampled over 16×16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations $\times 4 \times 4$ histogram array $=128$ dimensions

Keypoint descriptor

Nearest-neighbor matching to feature database

- Hypotheses are generated by approximate nearest neighbor matching of each feature to vectors in the database
- SIFT use best-bin-first (Beis \& Lowe, 97) modification to k-d tree algorithm
- Use heap data structure to identify bins in order by their distance from query point
- Result: Can give speedup by factor of 1000 while finding nearest neighbor (of interest) 95% of the time

3D Obiect Recoanition

- Extract outlines with background subtraction

3D Object Recognition

- Only 3 keys are needed for recognition, so extra keys provide robustness
- Affine model is no longer as accurate

Recognition under occlusion

Test of illumination invariance

- Same image under differing illumination

273 keys verified in final match

Examples of view interpolation

Location recognition

SIFT

- Invariances:
- Scaling
- Rotation
- Illumination

Yes
Yes

- Perspective Projection Maybe
- Provides
- Good localization Yes

SOFTWARE for Matlab (at UCLA, Oxford) www.VLFeat.org

SIFT demos

Run

sift_compile sift demo2

Why extract features?

- Motivation: panorama stitching
- We have two images - how do we combine them?

Step 1: extract features
Step 2: match features

Recognition under occlusion

Test of illumination invariance

- Same image under differing illumination

273 keys verified in final match

Edge Detection

original image

gradient magnitude

Canny edge detector

- Compute image derivatives
- if gradient magnitude $>\tau$ and the value is a local maximum along gradient direction - pixel is an edge candidate

Line fitting

Non-max suppressed gradient magnitude

- Edge detection, non-maximum suppression (traditionally Hough Transform - issues of resolution, threshold selection and search for peaks in Hough space)
- Connected components on edge pixels with similar orientation - group pixels with common orientation

Line fitting

$$
A=\left[\begin{array}{cc}
\sum x_{i}^{2} & \sum x_{i} y_{i} \\
\sum x_{i} y_{i} & \sum y_{i}^{2}
\end{array}\right]
$$

second moment matrix associated with each connected component v_{1} - eigenvector of A

$$
\begin{aligned}
v_{1} & =[\cos (\theta), \sin (\theta)]^{T} \\
\theta & =\arctan \left(v_{1}(2) / v_{1}(1)\right) \\
\rho & =\bar{x} \sin (\theta)-\bar{y} \cos (\theta)
\end{aligned}
$$

- Line fitting lines determined from eigenvalues and eigenvectors of A
- Candidate line segments - associated line quality

Stereo Feature Based Reconstruction

Correspondence Problem:

- How to find corresponding areas of two camera images (points, line segments, curves, regions)

- In feature-based matching, the idea is to pick a feature type (e.g. edges), define a matching criteria (e.g. orientation and contrast sign), and then look for matches within a disparity range
- Feature Matching later

Results - Reconstruction

Color Vision

- With the advent of inexpensive color imagery and processing, color information can be used effectively for machine vision.
- Color provides multiple information per pixel, often enabling complex classification.
- Perception of Color depends on three factors:
- The spectrum of energy in various wavelengths illuminating the object surface,
- The spectral reflectance of the object surface, which determines how the surface changes the received spectrum into the radiated spectrum,
- The spectral sensitivity of the sensor irradiated by the object's surface.

Full color

Red

Green

Application

- Color Consider the problem of locating/segmenting faces from images using color.
- First we need to identify the range of colors that could be associated with a face.
- The lighting conditions would play a significant role.
- Even under uniform illumination, other objects could fall into that color space. In this case we could use shape information for the purpose of segmentation.

Color space analysis

T4 - primary face color, t-5 and t-6 secondary face clusters

- Three major steps are involved in the face segmentation procedure
- First we need to create a labeled image based on the training data for identifying the color space that would represent the face.
- Connected component is used to merge regions that would be part of the face.
- The face is identified as the largest component and areas close to the components are merged.

Color Tracking Sensors

-Motion estimation of ball and robot for soccer playing using color tracking

Adaptive Human-Motion Tracking

Jana Kosecka

Image Primitives and Correspondence

Given an image point in left image, what is the (corresponding) point in the right image, which is the projection of the same 3-D point

Image Primitives and Correspondence

Difficulties - ambiguities, large changes of appearance, due to change Of viewpoint, non-uniquess

Matching - Correspondence

Lambertian assumption
Rigid body motion
Correspondence

$$
\begin{gathered}
(R(t), T(t)) \quad \text { radiance } \\
I_{1}\left(\mathbf{x}_{1}\right)=\mathcal{R}(p)=I_{2}\left(\mathbf{x}_{2}\right)
\end{gathered}
$$

$$
\mathrm{x}_{2}=h\left(\mathrm{x}_{1}\right)=\frac{1}{\lambda_{2}(\mathrm{X})}\left(R \lambda_{1}(\mathbf{X}) \mathrm{x}_{1}+T\right)
$$

$$
I_{1}\left(\mathrm{x}_{1}\right)=I_{2}\left(h\left(\mathrm{x}_{1}\right)\right)
$$

Local Deformation Models

- Translational model

$$
h(\mathrm{x})=\mathbf{x}+d
$$

- Affine model

$$
h(\mathrm{x})=A \mathrm{x}+d
$$

- Transformation of the intensity values taking into account occlusions and noise

$$
I_{1}\left(\mathbf{x}_{1}\right)=f_{o}(\mathbf{X}, g) I_{2}\left(h\left(\mathbf{x}_{1}\right)+n\left(h\left(\mathbf{x}_{1}\right)\right)\right.
$$

Feature Tracking and Optical Flow

- Translational model

$$
I_{1}\left(\mathrm{x}_{1}\right)=I_{2}\left(\mathrm{x}_{1}+\Delta \mathrm{x}\right)
$$

- Small baseline

$$
I(\mathbf{x}(t), t)=I(\mathbf{x}(t)+\mathbf{u} d t, t+d t)
$$

- RHS approximation by the first two terms of Taylor series

$$
\nabla I(\mathrm{x}(t), t)^{T} \mathbf{u}+I_{t}(\mathrm{x}(t), t)=0
$$

- Brightness constancy constraint

Aperture Problem

- Normal flow

$$
\mathbf{u}_{n} \doteq \frac{\nabla I^{T} \mathbf{u}}{\|\nabla I\|} \cdot \frac{\nabla I}{\|\nabla I\|}=-\frac{I_{t}}{\|\nabla I\|} \cdot \frac{\nabla I}{\|\nabla I\|}
$$

Given brightness constancy constraint at single point all we can recover is normal flow

Optical Flow

- Integrate around over image patch

$$
E_{b}(\mathbf{u})=\sum_{W(x, y)}\left[\nabla I^{T}(x, y, t) \mathbf{u}(x, y)+I_{t}(x, y, t)\right]^{2}
$$

- Solve

$$
\begin{gathered}
\nabla E_{b}(\mathbf{u})=2 \sum_{W(x, y)} \nabla I\left(\nabla I^{T} \mathbf{u}+I_{t}\right) \\
=2 \sum_{W(x, y)}\left(\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right] \mathbf{u}+\left[\begin{array}{c}
I_{x} I_{t} \\
I_{y} I_{t}
\end{array}\right]\right) \\
{\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2} \\
\mathbf{G u}+\left[\begin{array}{l}
\sum I_{x} I_{t} \\
\sum I_{y} I_{t}
\end{array}\right]=0 \\
\mathbf{b}=0
\end{array}\right.}
\end{gathered}
$$

Optical Flow, Feature Tracking

$$
\begin{gathered}
\mathbf{u}=-G^{-1} \mathbf{b} \\
G=\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right]
\end{gathered}
$$

Conceptually:
$\operatorname{rank}(\mathrm{G})=0$ blank wall problem
$\operatorname{rank}(\mathrm{G})=1$ aperture problem
$\operatorname{rank}(\mathrm{G})=2$ enough texture - good feature candidates
In reality: choice of threshold is involved

Optical Flow

- Previous method - assumption locally constant flow

- Alternative regularization techniques (locally smooth flow fields, integration along contours)
- Qualitative properties of the motion fields

Point Feature Extraction

$$
G=\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right]
$$

- Compute eigenvalues of G
- If smalest eigenvalue σ of G is bigger than τ - mark pixel as candidate feature point
- Alternatively feature quality function (Harris Corner Detector)

$$
C(G)=\operatorname{det}(G)+k \cdot \operatorname{trace}^{2}(G)
$$

Harris Corner Detector - Example

Feature Selection

- Compute Image Gradient $\nabla I^{T}=\left[I_{x}, I_{y}\right]$
- Compute Feature Quality measure for each pixel
$C(\mathrm{x})=\operatorname{det}(G)+k . \operatorname{trace}^{2}(G) \quad G=\left[\begin{array}{cc}\sum I_{x}^{2} & \sum I_{x} I_{y} \\ \sum I_{x} I_{y} & \sum I_{y}^{2}\end{array}\right]$
Search for local maxima

Feature Quality Function

Local maxima of feature quality function

Feature Tracking

Translational motion model

$$
E(\mathrm{~d})=\min _{\mathrm{d}} \sum_{W(\mathrm{x})}\left[I_{2}(\tilde{\mathrm{x}}+\mathrm{d})-I_{1}(\tilde{\mathrm{x}})\right]^{2}
$$

- Closed form solution

$$
\begin{aligned}
\mathbf{d} & =-G^{-1} \mathbf{b} \\
G & =\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right] \\
\mathbf{b} & \doteq\left[\begin{array}{c}
\sum_{W(\mathrm{x})} I_{x} I_{t} \\
\sum_{W(\mathrm{x})} I_{y} I_{t}
\end{array}\right]
\end{aligned}
$$

- Build an image pyramid
- Start from coarsest level
- Estimate the displacement at the coarsest level
- Iterate until finest level ${ }_{\text {CS } 482}$

Coarse to fine feature tracking

0

2

1. compute $\mathbf{d}_{k}=-G \mathbf{b}$
2. warp the window $W(\mathbf{x})$ in the second image by
3. update the displacement $\mathbf{d} \leftarrow \mathbf{d}+2 \mathbf{d}_{k}$
4. go to finer level $k \leftarrow k-1$
5. At the finest level repeat for several iterations

Tracked Features

