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Image  Brightness values 

I(x,y) 



Local, meaningful, detectable parts of the image. 
•  Edge detection 
•  Line detection  
•  Corner detection 
Motivation 
•  Information content high 
•  Invariant to change of view point, illumination 
•  Reduces computational burden 
•  Uniqueness  
•  Can be tuned to a task at hand 



Given a noisy image  

How do we reduce noise ?  
How do we find useful features ? 

Today:  
•  Filtering  
•  Point-wise operations 
•  Edge detection   



  Let’s replace each pixel with a weighted average of its 
neighborhood 

  The weights are called the filter kernel 
  What are the weights for the average of a  

3x3 neighborhood? 

1 1 1 

1 1 1 

1 1 1 

“box filter” 

Source: D. Lowe 



f 

  Let f  be the image and g be the kernel. The output of 
convolving f with g is denoted f * g. 

Source: F. Durand 

•    MATLAB functions: conv2, filter2, imfilter 

Convention:  
kernel is “flipped” 



  What is the size of the output? 
  MATLAB: filter2(g, f, shape) 

  shape = ‘full’: output size is sum of sizes of f and g 
  shape = ‘same’: output size is same as f 
  shape = ‘valid’: output size is difference of sizes of f and g  

f 

g g 

g g 

f 

g g 

g g 

f 

g g 

g g 

full same valid 



  Linearity: filter(f1 + f2) = filter(f1) + filter(f2) 
  Shift invariance: same behavior regardless of pixel 

location: filter(shift(f)) = shift(filter(f)) 
  Theoretical result: any linear shift-invariant operator can 

be represented as a convolution 



Averaging filter 1-D example 

Box filter 

Averaging filter center pixel weighted more 

and 0 everywhere else 

Ex. cont. 



Original image  

Smoothed image  
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  The bigger the mask, 
   more neighbors contribute. 
   smaller  noise variance of the output. 
   bigger noise spread. 
  more blurring. 
  more expensive to compute. 
  In Matlab function conv, conv2 
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  A particular case of averaging 
  The coefficients are samples of a 1D Gaussian. 
  Gives more weight at the central pixel and less weights to the 

neighbors. 
  The further away the neighbors, the smaller the weight. 

Sample from the continuous Gaussian 
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  The std. dev of the Gaussian σ determines the amount of 
smoothing. 

  The samples should adequately represent a Gaussian  
  For a 98.76% of the area, we need 

   m = 5σ 
   5.(1/σ) ≤ 2π ⇒ σ ≥ 0.796, m ≥5 

g[x] = [0.136, 0.6065, 1.00, 0.606, 0.136]  

5-tap filter 



  Remove “high-frequency” components from the 
image (low-pass filter) 

  Convolution with self is another Gaussian 
  So can smooth with small-σ kernel, repeat, and 

get same result as larger-σ kernel would have 
  Convolving two times with Gaussian kernel with 

std. dev. σ  
is same as convolving once with kernel with std. 
dev.  

  Separable kernel 
  Factors into product of two 1D Gaussians 

Source: K. Grauman 



Source: D. Lowe 



* 

* 

= 

= 

2D convolution 
(center location only) 

Source: K. Grauman 

The filter factors 
into a product of 1D 

filters: 

Perform convolution 
along rows: 

Followed by convolution 
along the remaining column: 



  Convolution with a 2D Gaussian filter 

  Gaussian filter is separable, convolution can be accomplished 
as two 1-D convolutions 



  The bigger the mask, 
   more neighbors contribute. 
   smaller  noise variance of the output. 
   bigger noise spread. 
  more blurring. 
  more expensive to compute. 



  They happen at places where the image values exhibit sharp 
variation 
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Vertical edges 
First derivative - one column 

Horizontal edges 



•  Image Gradient  

•  Gradient Magnitude 

•  Gradient Orientation 



  Edge detection involves 3 steps: 
  Noise smoothing 
  Edge enhancement 
  Edge localization 

  J. Canny formalized these steps to design an optimal edge 
detector 

  How to go from derivatives to edges ? 

Horizontal edges 



•  Compute image derivatives  
•  if gradient magnitude > τ and the value is a local maximum along gradient 
  direction – pixel is an edge candidate 

Canny edge detector 
gradient magnitude original image 



  The input is image I; G is a zero mean Gaussian filter (std = σ) 

1.  J = I * G (smoothing) 
2.  For each pixel (i,j): (edge enhancement) 

  Compute the image gradient  
  ∇J(i,j) = (Jx(i,j),Jy(i,j))’ 

  Estimate edge strength  
  es(i,j) = (Jx

2(i,j)+ Jy
2(i,j))1/2 

  Estimate edge orientation  
  eo(i,j) = arctan(Jx(i,j)/Jy(i,j)) 

  The output are images Es - Edge Strength - Magnitude 
                                and Edge Orientation Eo -  



  Es has large values at edges: Find local maxima 

  … but it also may have wide ridges around the local 
maxima (large values around the edges) 



  The inputs are Es  & Eo (outputs of CANNY_ENHANCER) 

  Consider 4 directions D={ 0,45,90,135} wrt x 

  For each pixel (i,j) do: 
1.  Find the direction d∈D s.t. d≅ Eo(i,j) (normal to the edge) 

2.  If {Es(i,j) is smaller than at least one of its neigh. along d}  
    IN(i,j)=0 
  Otherwise, IN(i,j)= Es(i,j)  

  The output is the thinned edge image IN 





  Edges are found by thresholding the output of 
NONMAX_SUPRESSION 

  If the threshold is too high: 
  Very few (none) edges  

  High MISDETECTIONS, many gaps 
  If the threshold is too low: 

  Too many (all pixels) edges 
  High FALSE POSITIVES, many extra edges 





courtesy of G. Loy 

gap is gone 

Original 
image 

Strong 
edges 

only 

Strong + 
connected 
weak edges 

Weak 
edges 
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sigma=2 

sigma=4 

contrast=1 contrast=4 
LOG zero crossings 



•  How can we detect lines ? 
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  Applying a filter at some 
point can be seen as taking 
a dot-product between the 
image and some vector 

  Filtering the image is a set of 
dot products 

  Insight  
  filters look like the effects 

they are intended to find 
  filters find effects they look 

like 



-1    0   1 
-2    0   2  
-1    0   1 

 0    1    2 
-1    0    1  
-2   -1    0 

 1    2    1 
 0    0    0  
-1   -2   -1 

 2    1    0 
 1    0   -1  
 0   -1   -2 

 1    0   -1 
 2     0  -2  
 1     1  -1 

 0   -1   -2 
-1    0   -1  
 2    1    0 

-1   -2   -1 
 0    0    0  
 1    2    1 

-2   -1    0 
-1    0    1  
 0    1    2 



Positive responses 

Zero mean image, -1:1 scale Zero mean image, -max:max scale 

The filter is the small block at the top left corner 



Positive responses 

Zero mean image, -1:1 scale Zero mean image, -max:max scale 



Leung & Malik, Representing and Recognizing the Visual  
Apperance using 3D Textons, IJCV 2001 



  A point on a line is hard to match. 

Intuition:  

•  Right at corner, gradient is ill defined. 

•  Near corner, gradient has two different values.  
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We look at matrix: 

Sum over a small region, the 
hypothetical corner 

Gradient with respect to x, times 
gradient with respect to y 

Matrix is symmetric 
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First, consider case where: 

This means all gradients in neighborhood are: 

   (k,0)   or   (0, c)   or    (0, 0)  (or off-diagonals cancel). 

What is region like if: 

€ 

λ1,λ2
€ 

λ1 = 0, λ2 >> 0

€ 

λ1 = 0, λ2 = 0
Are both large 

€ 

λ1,λ2 Are both small 



From Linear Algebra, it follows that because C is 
symmetric: 

RRC ⎥
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0
0
λ

λ

With R a rotation matrix.  

So every case is like one on last slide. 



  Filter image. 
  Compute magnitude of the gradient everywhere. 
  We construct C in a window. 
  Use Linear Algebra to find λ1 and λ2.	


  If they are both big, we have a corner. 



  Filter image. 
  Compute magnitude of the gradient everywhere. 
  We construct C in a window. 
  Use Linear Algebra to find λ1 and λ2.	


  If they are both big, we have a corner. 

•  Key property: in the region around a corner, image gradient has 
two or more dominant directions 

•  Corners are repeatable and distinctive 



  We should easily recognize the point by looking through a 
small window 

  Shifting a window in any direction should give a large change 
in intensity 

“edge”: 
no change along the 
edge direction 

“corner”: 
significant change in 
all directions 

“flat” region: 
no change in all 
directions 

Source: A. Efros 



λ1 

λ2 

“Corner” 
λ1 and λ2 are large, 
 λ1 ~ λ2; 
E increases in all 
directions 

λ1 and λ2 are small; 
E is almost constant 
in all directions 

“Edge”  
λ1 >> λ2 

“Edge”  
λ2 >> λ1 

“Flat” 
region 

Classification of image points using eigenvalues of C: 



“Corner” 
R > 0 

“Edge”  
R < 0 

“Edge”  
R < 0 

“Flat” 
region 

|R| small 

α: constant (0.04 to 0.06) 
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Plotting elipsses corresponding the the ‘corner’ matrix’ 
(changing the area over which statistics is averaged) 



% Harris Corner detector - by Kashif Shahzad 
sigma=2; thresh=0.1; sze=11; disp=0; 

% Derivative masks 
dy = [-1 0 1; -1 0 1; -1 0 1]; 
dx = dy'; %dx is the transpose matrix of dy 

% Ix and Iy are the horizontal and vertical edges of image 
Ix = conv2(bw, dx, 'same'); 
Iy = conv2(bw, dy, 'same'); 

% Calculating the gradient of the image Ix and Iy 
g = fspecial('gaussian',max(1,fix(6*sigma)), sigma); 
Ix2 = conv2(Ix.^2, g, 'same');    % Smoothed squared image derivatives 
Iy2 = conv2(Iy.^2, g, 'same'); 
Ixy = conv2(Ix.*Iy, g, 'same'); 

% My preferred  measure according to research paper 
cornerness = (Ix2.*Iy2 - Ixy.^2)./(Ix2 + Iy2 + eps); 

% We should perform nonmaximal suppression and threshold 
mx = ordfilt2(cornerness,sze^2,ones(sze));                     % Grey-scale dilate 
cornerness = (cornerness==mx)&(cornerness>thresh); % Find maxima 
[rws,cols] = find(cornerness);                           

clf ; imshow(bw); hold on; 
p=[cols rws]; 
plot(p(:,1),p(:,2),'or'); title('\bf Harris Corners') 











•    Only derivatives are used => invariance to 
intensity shift I → I + b 

•    Intensity scaling: I → a I 

R 

x (image coordinate) 

threshold 

R 

x (image coordinate) 

Partially invariant to affine intensity change 

I → a I + b 



•   Derivatives and window function are shift-invariant 

Corner location is covariant w.r.t. translation 



Second moment ellipse rotates but its shape (i.e. eigenvalues) 
remains the same 

Corner location is covariant w.r.t. rotation 



All points will be 
classified as edges 

Corner 

Corner location is not covariant to scaling! 



  Consider regions of different size 
  Select regions to subtend the same content 

77 



  How to choose the size of the region independently 

CS 685l 78 
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Idea: design a function over region which remains constant as the size of the region 
Changes (e.g. average intensity) 



  Sharp local intensity changes are good functions for 
identifying relative scale of the region 

  Response of Laplacian of Gaussians (LoG) at a point 

CS 685l 80 
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Want to find 
… in here 
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 Distinctive image features from scale-invariant 
keypoints. David G. Lowe, International Journal of 
Computer Vision, 60, 2 (2004), pp. 91-110. 

 SIFT = Scale Invariant Feature Transform 
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  Image content is transformed into local feature coordinates 
that are invariant to translation, rotation, scale, and other 
imaging parameters 

SIFT Features 
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  Locality: features are local, so robust to occlusion and 
clutter (no prior segmentation) 

  Distinctiveness: individual features can be matched to a 
large database of objects 

  Quantity: many features can be generated for even small 
objects 

  Efficiency: close to real-time performance 

  Extensibility: can easily be extended to wide range of 
differing feature types, with each adding robustness 
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1.  Enforce invariance to scale: Compute Gaussian difference max, for many 
different scales; non-maximum suppression, find local maxima: keypoint 
candidates 

2.  Localizable corner: For each maximum fit quadratic function. Compute 
center with sub-pixel accuracy by setting first derivative to zero. 

3.  Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which 
this ratio is larger than a threshold. 

4.  Enforce invariance to orientation: Compute orientation, to achieve rotation 
invariance, by finding the strongest second derivative direction in the 
smoothed image (possibly multiple orientations). Rotate patch so that 
orientation points up. 

5.  Compute feature signature: Compute a "gradient histogram" of the local 
image region in a 4x4 pixel region. Do this for 4x4 regions of that size. 
Orient so that largest gradient points up (possibly multiple solutions). 
Result: feature vector with 128 values (15 fields, 8 gradients). 

6.  Enforce invariance to illumination change and camera saturation: 
Normalize to unit length to increase invariance to illumination. Then 
threshold all gradients, to become invariant to camera saturation. 
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Idea: Find Corners, but scale invariance 

Approach: 
  Run linear filter (difference of Gaussians) 
  Do this at different resolutions of image pyramid 
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Minus 

Equals 

Approximates Laplacian (see filtering lecture) 
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  In D. Lowe’s paper image is decomposed 
to octaves (consecutively sub-sampled 
versions of the same image) 

  Instead of convolving with large kernels 
    within an octave kernels are kept the same 
  Detect maxima and minima of difference-

of-Gaussian in scale space 

  Look for 3x3 neighbourhood in scale  
     and space 

Blur 

Resample

Subtract
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(a) 233x189 image 
(b) 832 DOG extrema 
(c) 729 above threshold 
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1.  Enforce invariance to scale: Compute Gaussian difference max, for may 
different scales; non-maximum suppression, find local maxima: keypoint 
candidates 

2.  Localizable corner: For each maximum fit quadratic function. Compute 
center with sub-pixel accuracy by setting first derivative to zero. 

3.  Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which 
this ratio is larger than a threshold. 

4.  Enforce invariance to orientation: Compute orientation, to achieve rotation 
invariance, by finding the strongest second derivative direction in the 
smoothed image (possibly multiple orientations). Rotate patch so that 
orientation points up. 

5.  Compute feature signature: Compute a "gradient histogram" of the local 
image region in a 4x4 pixel region. Do this for 4x4 regions of that size. 
Orient so that largest gradient points up (possibly multiple solutions). 
Result: feature vector with 128 values (15 fields, 8 gradients). 

6.  Enforce invariance to illumination change and camera saturation: 
Normalize to unit length to increase invariance to illumination. Then 
threshold all gradients, to become invariant to camera saturation. 
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Threshold on value at DOG peak and on ratio of principle curvatures 
(Harris approach) 

(c) 729 left after peak value threshold (from 832) 
(d) 536 left after testing ratio of principle curvatures 
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1.  Enforce invariance to scale: Compute Gaussian difference max, for may 
different scales; non-maximum suppression, find local maxima: keypoint 
candidates 

2.  Localizable corner: For each maximum fit quadratic function. Compute 
center with sub-pixel accuracy by setting first derivative to zero. 

3.  Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which 
this ratio is larger than a threshold. 

4.  Enforce invariance to orientation: Compute orientation, to achieve rotation 
invariance, by finding the strongest second derivative direction in the 
smoothed image (possibly multiple orientations). Rotate patch so that 
orientation points up. 

5.  Compute feature signature: Compute a "gradient histogram" of the local 
image region in a 4x4 pixel region. Do this for 4x4 regions of that size. 
Orient so that largest gradient points up (possibly multiple solutions). 
Result: feature vector with 128 values (15 fields, 8 gradients). 

6.  Enforce invariance to illumination change and camera saturation: 
Normalize to unit length to increase invariance to illumination. Then 
threshold all gradients, to become invariant to camera saturation. 
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  Create histogram of local 
gradient directions computed at 
selected scale 

  Assign canonical orientation at 
peak of smoothed histogram 

  Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation) 

0 2π
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1.  Enforce invariance to scale: Compute Gaussian difference max, for may 
different scales; non-maximum suppression, find local maxima: keypoint 
candidates 

2.  Localizable corner: For each maximum fit quadratic function. Compute 
center with sub-pixel accuracy by setting first derivative to zero. 

3.  Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which 
this ratio is larger than a threshold. 

4.  Enforce invariance to orientation: Compute orientation, to achieve rotation 
invariance, by finding the strongest second derivative direction in the 
smoothed image (possibly multiple orientations). Rotate patch so that 
orientation points up. 

5.  Compute feature signature: Compute a "gradient histogram" of the local 
image region in a 4x4 pixel region. Do this for 4x4 regions of that size. 
Orient so that largest gradient points up (possibly multiple solutions). 
Result: feature vector with 128 values (15 fields, 8 gradients). 

6.  Enforce invariance to illumination change and camera saturation: 
Normalize to unit length to increase invariance to illumination. Then 
threshold all gradients, to become invariant to camera saturation. 
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  Thresholded image gradients are sampled over 16x16 array of 
locations in scale space 

  Create array of orientation histograms 
  8 orientations x 4x4 histogram array = 128 dimensions 
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  Hypotheses are generated by approximate nearest 
neighbor matching of each feature to vectors in the database  

  SIFT use best-bin-first (Beis & Lowe, 97) 
modification to k-d tree algorithm 

  Use heap data structure to identify bins in order 
by their distance from query point 

  Result: Can give speedup by factor of 1000 while finding 
nearest neighbor (of interest) 95% of the time 
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  Extract outlines with 
background 
subtraction 
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  Only 3 keys are needed for 
recognition, so extra keys 
provide robustness 

  Affine model is no longer as 
accurate 
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  Same image under differing illumination 

273 keys verified in final match 
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  Invariances: 
  Scaling 
  Rotation 
  Illumination 
  Perspective Projection 

  Provides 
  Good localization 

Yes 
Yes 

Yes 

Maybe 
 Yes 
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Run 
 sift_compile 
 sift_demo2 



  Motivation: panorama stitching 
  We have two images – how do we combine them? 

Step 1: extract features 

Step 2: match features 



108 



109 

  Same image under differing illumination 

273 keys verified in final match 
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•  Compute image derivatives  
•  if gradient magnitude > τ and the value is a local maximum along gradient 
  direction – pixel is an edge candidate 

Canny edge detector 
gradient magnitude original image 



ρ 

θ 
x 

y 

•  Edge detection, non-maximum suppression 
  (traditionally Hough Transform – issues of resolution,  threshold 
    selection and search for peaks in Hough space) 
•   Connected components on edge pixels with similar orientation 
   - group pixels with common orientation 

Non-max suppressed gradient magnitude 



•  Line fitting  lines determined from eigenvalues and eigenvectors of A 
•  Candidate line segments  - associated line quality 

second moment matrix 
associated with each 
connected component 
v1 - eigenvector of  A 



Correspondence Problem:  

•  How to find corresponding areas of two camera images 
(points, line segments, curves, regions) 

•  In feature-based matching, the idea is to pick a feature type (e.g. 
edges), define a matching criteria (e.g. orientation and contrast 
sign), and then look for matches within a disparity range 
•  Feature Matching later 
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  With the advent of inexpensive color imagery and processing, 
color information can be used effectively for machine vision. 

  Color provides multiple information per pixel, often enabling 
complex classification. 

  Perception of Color depends on three factors: 
  The spectrum of energy in various wavelengths illuminating 

the object surface, 
  The spectral reflectance of the object surface, which 

determines how the surface changes the received spectrum 
into the radiated spectrum, 

  The spectral sensitivity of the sensor irradiated by the 
object’s surface. 



Jana Kosecka 

Color Image 
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  Color Consider the problem of locating/segmenting faces from images 
using color. 

  First we need to identify the range of colors that could be associated 
with a face. 

  The lighting conditions would play a significant role. 
  Even under uniform illumination, other objects could fall into that 

color space. In this case we could use shape information for the 
purpose of segmentation. 
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T4 – primary face color, t-5 and t-6 secondary face clusters 
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  Three major steps are involved in the face segmentation 
procedure 

  First we need to create a labeled image based on the 
training data for identifying the color space that would 
represent the face. 

  Connected component is used to merge regions that 
would be part of the face. 

  The face is identified as the largest component and areas 
close to the components are merged.  



Jana Kosecka 
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 Motion estimation of ball and robot for 
soccer playing using color tracking 
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Motion detector Skin color detector 

Acquisition 

Decimation by factor 5 

Validation 

Event creation 

Narrative-level output 

Motion presence 

Average travelled 
distance 

Adaptation 

Tracking 
Distance scoring 

Contour to target 
assignment 

RGB to HSV convers. 

Segmentation 

Grayscale convers. 

Image differencing Hue-saturat. Limiter 

Skin color binary im. 

Image closing 

Segmentation 

Continuous 
adaptation 

Motion history im. 

Motion initialization 

Big contour presence 
Skin color presence 
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Given an image point in left image, what is the (corresponding) point in the right 
image, which is the projection of the same 3-D point    
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Difficulties – ambiguities, large changes of appearance, due to change 
Of viewpoint, non-uniquess 
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Correspondence 

Lambertian assumption 

Rigid body motion 

radiance 
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  Translational model 

  Affine model 

  Transformation of the intensity values taking into account occlusions 
     and noise 
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•  Translational model 

•  RHS approximation by the first two terms of Taylor series  

•  Small baseline 

•  Brightness constancy constraint 
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•  Normal flow  

Given brightness constancy constraint at single point –  
all we can recover is normal flow  
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•  Integrate around over image patch 

•  Solve   

Optical Flow 
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rank(G) = 0  blank wall problem 
rank(G) = 1   aperture problem  
rank(G) = 2  enough texture – good feature candidates 

Conceptually:  

In reality:  choice of threshold is involved  

Optical Flow, Feature Tracking 
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•  Qualitative properties of the motion fields 

•  Previous method - assumption locally constant flow  

•  Alternative regularization techniques (locally smooth flow fields, 
   integration along contours)  

Optical Flow 
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•  Compute eigenvalues of G 
•  If smalest eigenvalue σ of G is bigger than τ - mark pixel as candidate 
  feature point 

•  Alternatively feature quality function (Harris Corner Detector)   
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Harris Corner Detector - Example 
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  Compute Image Gradient 
  Compute Feature Quality  measure for each pixel 

  Search for local maxima    

Feature Quality Function Local maxima of feature quality function 
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•   Translational motion model 

•   Closed form solution 

•  Build an image pyramid  
•  Start from coarsest level  
•  Estimate the displacement at the coarsest level  
•  Iterate until finest level 
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1.   compute  
2.   warp the window           in the second image by   
3.   update the displacement           
4.   go to finer level  
5.   At the finest level repeat for several iterations      

0 

2 

1 



147 


