Probabilistic Robotics

- Overview of probability, Representing uncertainty
- Propagation of uncertainty, Bayes Rule
- Application to Localization and Mapping

Slides from Autonomous Robots (Siegwart and Nourbaksh), Chapter 5
Probabilistic Robotics (S. Thurn et al.)

Probabilistic Robotics

Key idea:
Explicit representation of uncertainty using the calculus of probability theory
$\begin{array}{ll}>\text { Perception } & =\text { state estimation } \\ >\text { Action } & =\text { utility optimization }\end{array}$

Uncertainty

Let action $A_{t}=$ leave for airport ${ }_{\mathrm{t}}$ minutes before flight Will A_{t} get me there on time?
Problems:

1. partial observability (road state, other drivers' plans, etc.)
2. noisy sensors (traffic reports)
3. uncertainty in action outcomes (flat tire, etc.)
4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either

1. risks falsehood: " A_{25} will get me there on time", or
2. leads to conclusions that are too weak for decision making:
" A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."
(A_{1440} might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Methods for handling uncertainty

- Rules with fudge factors:
$>A_{25} \mid \rightarrow_{0.3}$ get there on time
$>$ Sprinkler $\mid \rightarrow{ }_{0.99}$ WetGrass
$>$ WetGrass $\mid \rightarrow{ }_{0.7}$ Rain
- Issues: Problems with combination, e.g., Sprinkler causes Rain??
- Probability
$>$ Model agent's degree of belief
$>$ Given the available evidence,
$>A_{25}$ will get me there on time with probability 0.04

Axioms of Probability Theory

$\operatorname{Pr}(A)$ denotes probability that proposition A is true.

$$
0 \leq \operatorname{Pr}(A) \leq 1
$$

$$
\operatorname{Pr}(\text { True })=1 \quad \operatorname{Pr}(\text { False })=0
$$

$$
\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \wedge B)
$$

A Closer Look at Axiom 3

$$
\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \wedge B)
$$

Using the Axioms

$$
\begin{array}{clc}
\operatorname{Pr}(A \vee \neg A) & = & \operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-\operatorname{Pr}(A \wedge \neg A) \\
\operatorname{Pr}(\text { True }) & = & \operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-\operatorname{Pr}(\text { False }) \\
1 & = & \operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-0 \\
\operatorname{Pr}(\neg A) & = & 1-\operatorname{Pr}(A)
\end{array}
$$

Syntax

- Basic element: random variable
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables
e.g., Cavity (do I have a cavity?)
- Discrete random variables
- e.g., Weather is one of <sunny, rainy,cloudy,snow>
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a
- random variable: e.g., Weather $=$ sunny, Cavity $=$ false
- (abbreviated as \neg cavity)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather $=$ sunny \vee Cavity $=$ false

Syntax

- Atomic event: A complete specification of the state of the world about which the agent is uncertain
E.g., if the world consists of only two Boolean variables Cavity and Toothache, then there are 4 distinct atomic events:

$$
\begin{aligned}
& \text { Cavity }=\text { false } \wedge \text { Toothache }=\text { false } \\
& \text { Cavity }=\text { false } \wedge \text { Toothache }=\text { true } \\
& \text { Cavity }=\text { true } \wedge \text { Toothache }=\text { false } \\
& \text { Cavity }=\text { true } \wedge \text { Toothache }=\text { true }
\end{aligned}
$$

- Atomic events are mutually exclusive and exhaustive

Prior probability

- Prior or unconditional probabilities of propositions

$$
\text { e.g., } P(\text { Cavity }=\text { true })=0.1 \text { and } P(\text { Weather }=\text { sunny })=0.72
$$

correspond to belief prior to arrival of any (new) evidence

- Probability distribution gives values for all possible assignments:

$$
\boldsymbol{P}(\text { Weather })=<0.72,0.1,0.08,0.1>\text { (normalized, i.e., sums to } 1)
$$

- Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables
$\boldsymbol{P}($ Weather, Cavity $)=a 4 \times 2$ matrix of values:

Weather $=$	sunny	rainy	cloudy	snow
Cavity $=$ true	0.144	0.02	0.016	0.02
Cavity $=$ false	0.576	0.08	0.064	0.08

Joint Distribution

Weather $=$	sunny	rainy	cloud	snow
Cavity $=$ true	0.144	0.02	0.016	0.02
Cavity $=$ false	0.576	0.08	0.064	0.08

- Every question about the domain can be answered from joint probability distribution

Joint distribution

- Example of joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	$\mathbf{. 0 1 2}$.072	.008
\neg cavity	$\mathbf{. 0 1 6}$	$\mathbf{. 0 6 4}$	$\mathbf{. 1 4 4}$	$\mathbf{. 5 7 6}$

Conditional probability

- Definition of conditional probability:

$$
P(a \mid b)=\frac{P(a \wedge b)}{P(b)}
$$

- Product rule gives an alternative formulation:

$$
P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)
$$

- A general version holds for whole distributions, e.g.,

$$
\boldsymbol{P}(\text { Weather }, \text { Cavity })=\boldsymbol{P}(\text { Weather } \mid \text { Cavity }) \boldsymbol{P}(\text { Cavity })
$$

- (View as a set of 4×2 equations, not matrix multiplication)
- Chain rule is derived by successive product rule

$$
\begin{aligned}
\boldsymbol{P}\left(X_{1}, \ldots, X_{n}\right) & =\boldsymbol{P}\left(X_{1}, \ldots, X_{n-1}\right) \boldsymbol{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
= & \boldsymbol{P}\left(X_{l}, \ldots, X_{n-2}\right) \boldsymbol{P}\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) \boldsymbol{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)=\ldots \\
= & \prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Inference by enumeration

- Start with the joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition φ, sum the atomic events where it is true: $\mathrm{P}(\varphi)=$ $\Sigma_{\omega: \omega \mid=\varphi} \mathrm{P}(\omega)$

Inference by enumeration

- Start with the joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition φ, sum the atomic events where it is true: $\mathrm{P}(\varphi)=$ $\Sigma_{\omega: \omega \mid \rho} \mathrm{P}(\omega)$
- $\mathrm{P}($ toothache $)=0.108+0.012+0.016+0.064=0.2$

Inference by enumeration

- Start with the joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition φ, sum the atomic events where it is true: $\mathrm{P}(\varphi)=$ $\Sigma_{\omega: \omega \mid=\varphi} P(\omega)$
- $\mathrm{P}($ toothache $)=0.108+0.012+0.016+0.064=0.2$

Inference by enumeration

- Start with the joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	$\mathbf{. 0 1 2}$.072	.008
\neg cavity	.016	.064	.144	$\mathbf{. 5 7 6}$

- Can also compute conditional probabilities:

$$
P(\neg \text { cavity } \mid \text { toothache })=\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })}=\frac{(0.016+0.064)}{0.108+0.012+0.016+0.064}=0.4
$$

Discrete Random Variables

- X denotes a random variable.
- X can take on a countable number of values in $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$.
- $P\left(X=x_{i}\right)$, or $P\left(x_{i}\right)$, is the probability that the random variable X takes on value x_{i}.
- $P(\cdot)$ is called probability mass function.
- E.g. $\quad P($ Room $)=\langle 0.7,0.2,0.08,0.02\rangle$
- This is just shorthand for $P($ Room $=$ office $), P($ Room $=$ kitchen $), P($ Room $=$ bedroom $), P($ Room $=$ corridor $)$

Continuous Random Variables

- X takes on values in the continuum.
- $p(X=x)$, or $p(x)$, is a probability density function.

$$
\operatorname{Pr}(x \in(a, b))=\int_{a}^{b} p(x) d x
$$

- E.g.

Joint and Conditional Probability

- $P(X=x$ and $Y=y)=P(x, y)$
- If X and Y are independent then

$$
P(x, y)=P(x) P(y)
$$

- $P(x \mid y)$ is the probability of x given y

$$
\begin{aligned}
& P(x \mid y)=P(x, y) / P(y) \\
& P(x, y)=P(x \mid y) P(y)
\end{aligned}
$$

- If X and Y are independent then

$$
\begin{array}{ll}
P(x \mid y)=P(x) & (\text { verify using definitions of } \\
& \text { conditional probability and independence })
\end{array}
$$

Law of Total Probability, Marginals

Discrete case

Law of total probability
$\sum_{x} P(x)=1$
Marginalization

$$
\begin{array}{ll}
P(x)=\sum_{y} P(x, y) & p(x)=\int p(x, y) d y \\
P(x)=\sum_{y} P(x \mid y) P(y) & p(x)=\int p(x \mid y) p(y) d y
\end{array}
$$

Inference by enumeration

- Start with the joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition φ, sum the atomic events where it is true: $\mathrm{P}(\varphi)=$ $\Sigma_{\omega: \omega \mid=\varphi} \mathrm{P}(\omega)$

Bayes Formula

$$
\begin{aligned}
P(x, y) & =P(x \mid y) P(y)=P(y \mid x) P(x) \\
& \Rightarrow
\end{aligned}
$$

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}
$$

Normalization

$$
\begin{aligned}
P(x \mid y) & =\frac{P(y \mid x) P(x)}{P(y)}=\eta P(y \mid x) P(x) \\
\eta & =P(y)^{-1}=\frac{1}{\sum_{x} P(y \mid x) P(x)}
\end{aligned}
$$

Algorithm:

$$
\begin{aligned}
& \forall x: \operatorname{aux}_{x \mid y}=P(y \mid x) P(x) \\
& \eta=\frac{1}{\sum_{x} \mathrm{aux}_{x \mid y}} \\
& \forall x: P(x \mid y)=\eta \text { aux }_{x \mid y}
\end{aligned}
$$

Bayes Rule with Background Knowledge

$$
P(x \mid y, z)=\frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}
$$

Conditional Independence

$$
P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

- Equivalent to

$$
P(x \mid z)=P(x \mid z, y)
$$

and

$$
P(y \mid z)=P(y \mid z, x)
$$

- But this does not necessarily mean

$$
P(x, y)=P(x) P(y)
$$

(independence/marginal independence)

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is $P(o p e n \mid z)$?

Causal vs. Diagnostic Reasoning

$\cdot P($ open $\mid z)$ is diagnostic
$\cdot P(z \mid o p e n)$ is causal

- Often causal knowledge is easier to obtain
- Bayes rule allows us to use count frequencies!

$$
P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z)}
$$

Example

- $P(z \mid$ open $)=0.6 \quad P(z \mid \neg$ open $)=0.3$
- $P($ open $)=P(\neg$ open $)=0.5$

$$
\begin{aligned}
P(\text { open } \mid z) & =\frac{P(z \mid \text { open }) P(\text { open })}{P(z \mid \text { open }) p(\text { open })+P(z \mid \neg \text { open }) p(\neg \text { open })} \\
P(\text { open } \mid z) & =\frac{0.6 \cdot 0.5}{0.6 \cdot 0.5+0.3 \cdot 0.5}=\frac{0.3}{0.3+0.15}=0.67
\end{aligned}
$$

- z raises the probability that the door is open

Combining Evidence

- Suppose our robot obtains another observation z_{2}
- How can we integrate this new information?
- More generally, how can we estimate $P\left(x \mid z_{1} \ldots z_{n}\right)$?

Recursive Bayesian Updating

$$
P\left(x \mid z_{1}, \ldots, z_{n}\right)=\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)}
$$

Markov assumption:

$\boldsymbol{z}_{\boldsymbol{n}}$ is independent of $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{n-1}$ if we know \boldsymbol{x}

$$
\begin{aligned}
P\left(x \mid z_{1}, \ldots, z_{n}\right) & =\frac{P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)} \\
& =\eta P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right) \\
& =\eta_{1 \ldots n} \prod_{i=1 \ldots n} P\left(z_{i} \mid x\right) P(x)
\end{aligned}
$$

Example: Second Measurement

- $P\left(z_{2} \mid\right.$ open $)=0.5$

$$
P\left(z_{2} \mid \neg \text { open }\right)=0.6
$$

- P(open $\left.\mid z_{l}\right)=2 / 3$

$$
\begin{aligned}
P\left(\text { open } \mid z_{2}, z_{1}\right) & =\frac{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)}{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)+P\left(z_{2} \mid \neg \text { open }\right) P\left(\neg \text { open } \mid z_{1}\right)} \\
& =\frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3}+\frac{3}{5} \cdot \frac{1}{3}}=\frac{\frac{1}{3}}{\frac{1}{3}+\frac{1}{5}}=\frac{\frac{1}{3}}{\frac{8}{15}}=\frac{5}{8}=0.625
\end{aligned}
$$

- z_{2} lowers the probability that the door is open

Actions

- Often the world is dynamic since
>actions carried out by the robot, $>$ actions carried out by other agents, $>$ or just the time passing by change the world
- How can we incorporate such actions?

Typical Actions

- The robot turms its wheels to move
- The robot uses iits manipulator to grasp an object
- Plants grow over time...
- Actions are never carried out with absollute certainty
- In contrast to measurements, actions generally increase the uncertainty

Modeling Actions

- To incorporate the outcome of an action u into the current "belief", we use the conditional pdf

$$
P\left(x \mid u, x^{\prime}\right)
$$

- This term specifies the pdf that executing u changes the state from x ' to x.

Example: Closing the door

State Transitions

$P(x \mid u, x$ ' $)$ for $u=$ "close door":

If the door is open, the action "close door" succeeds in 90% of all cases

Integrating the Outcome of Actions

Continuous case:

$$
P(x \mid u)=\int P\left(x \mid u, x^{\prime}\right) P\left(x^{\prime}\right) d x^{\prime}
$$

Discrete case:

$$
P(x \mid u)=\sum P\left(x \mid u, x^{\prime}\right) P\left(x^{\prime}\right)
$$

Example: The Resulting Belief

$$
\begin{aligned}
P(\text { closed } \mid u)= & \sum P\left(\text { closed } \mid u, x^{\prime}\right) P\left(x^{\prime}\right) \\
= & P(\text { closed } \mid u, \text { open }) P(\text { open }) \\
& +P(\text { closed } \mid u, \text { closed }) P(\text { closed }) \\
= & \frac{9}{10} * \frac{5}{8}+\frac{1}{1} * \frac{3}{8}=\frac{15}{16} \\
P(\text { open } \mid u)= & \sum P\left(\text { open } \mid u, x^{\prime}\right) P\left(x^{\prime}\right) \\
= & P(\text { open } \mid u, \text { open }) P(\text { open }) \\
& +P(\text { open } \mid u, \text { closed }) P(\text { closed }) \\
= & \frac{1}{10} * \frac{5}{8}+\frac{0}{1} * \frac{3}{8}=\frac{1}{16} \\
= & 1-P(\text { closed } \mid u)
\end{aligned}
$$

Bayes Filters: Framework

- Given:
> Stream of observations z and action data u :

$$
d_{t}=\left\{u_{1}, z_{1} \ldots, u_{t}, z_{t}\right\}
$$

$>$ Sensor model $P(z \mid x)$
$>$ Action model $P\left(x \mid u, x^{\prime}\right)$
$>$ Prior probability of the system state $P(x)$

- Wanted:
$>$ Estimate of the state X of a dynamical system
$>$ The posterior of the state is also called Belief:

$$
\operatorname{Bel}\left(x_{t}\right)=P\left(x_{t} \mid u_{1}, z_{1} \ldots, u_{t}, z_{t}\right)
$$

Markov Assumption

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

Bayes Filters

$$
\operatorname{Bel}\left(x_{t}\right)=P\left(x_{t} \mid u_{1}, z_{1} \quad, u_{t}, z_{t}\right)
$$

Bayes $\quad=\eta P\left(z_{t} \mid x_{t}, u_{1}, z_{1}, \cdot, u_{t}\right) P\left(x_{t} \mid u_{1}, z_{1},, u_{t}\right)$
Markov $\quad=\eta P\left(z_{t} \mid x_{t}\right) P\left(x_{t} \mid u_{1}, z_{1},, u_{t}\right)$
Total prob. $=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{1}, z_{1}, \quad, u_{t}, x_{t-1}\right)$

$$
P\left(x_{t-1} \mid u_{1}, z_{1}, \cdot, u_{t}\right) d x_{t-1}
$$

Markov

$$
=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) P\left(x_{t-1} \mid u_{1}, z_{1}, \cdot, u_{t}\right) d x_{t-1}
$$

Markov $\quad=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) P\left(x_{t-1} \mid u_{1}, z_{1}, \cdot, z_{t-1}\right) d x_{t-1}$

$$
=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

$$
\operatorname{Bel}\left(x_{t}\right)=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

1. Algorithm Bayes_fillter $(\operatorname{Bel}(x), d)$:
2. $\eta=0$
3. If d is a perceptual data item z then
4. For all x do
5. $\quad \operatorname{Bel}^{\prime}(x)=P(z \mid x) \operatorname{Bel}(x)$
6. $\quad \eta=\eta+\operatorname{Bel}^{\prime}(x)$
7. For all x do
8. $\quad \operatorname{Bel}^{\prime}(x)=\eta^{-1} \operatorname{Bel}^{\prime}(x)$
9. Else if d is an action data item u then
10. For all x do

11

$$
\operatorname{Bel}^{\prime}(x)=\int P\left(x \mid u, x^{\prime}\right) \operatorname{Bel}\left(x^{\prime}\right) d x^{\prime}
$$

12. Return Bel' (x)

Bayes Filters are Familiar!

$$
\operatorname{Bel}\left(x_{t}\right)=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Summary

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.

