
Probabilistic Robotics  

•  Overview of probability, Representing uncertainty 
•  Propagation of uncertainty, Bayes Rule 
•  Application to Localization and Mapping 

Slides from Autonomous Robots (Siegwart and Nourbaksh), Chapter 5 
Probabilistic Robotics (S. Thurn et al. ) 



Probabilistic Robotics 

Key idea:  
Explicit representation of uncertainty using the calculus of probability 
theory 

 Perception  = state estimation 
 Action  = utility optimization 



Uncertainty 

Let action At = leave for airport t minutes before flight 
Will At get me there on time? 
Problems: 

1.  partial observability (road state, other drivers' plans, etc.) 
2.  noisy sensors (traffic reports) 
3.  uncertainty in action outcomes (flat tire, etc.) 
4.  immense complexity of modeling and predicting traffic 

Hence a purely logical approach either 
1.  risks falsehood: “A25 will get me there on time”, or 
2.  leads to conclusions that are too weak for decision making: 

“A25 will get me there on time if there's no accident on the bridge and it 
doesn't rain and my tires remain intact etc etc.” 

(A1440 might reasonably be said to get me there on time but I'd have to 
stay overnight in the airport …) 



Methods for handling uncertainty 

• Rules with fudge factors: 

 A25 |→0.3 get there on time 
 Sprinkler |→ 0.99 WetGrass 
 WetGrass |→ 0.7 Rain 

•  Issues: Problems with combination, e.g., Sprinkler causes Rain?? 

• Probability 
 Model agent's degree of belief 
 Given the available evidence, 
 A25 will get me there on time with probability 0.04 



Pr(A) denotes probability that proposition A is true. 

•    

•   

•    

Axioms of Probability Theory 



A Closer Look at Axiom 3 



Using the Axioms 



Syntax 
• Basic element: random variable 
• Similar to propositional logic: possible worlds defined by assignment 

of values to random variables. 
• Boolean random variables 

e.g., Cavity (do I have a cavity?) 

• Discrete random variables 
•  e.g., Weather is one of <sunny,rainy,cloudy,snow> 
• Domain values must be exhaustive and mutually exclusive 
• Elementary proposition constructed by assignment of a value to a 
•   random variable: e.g., Weather = sunny, Cavity = false 
•   (abbreviated as ¬cavity) 
• Complex propositions formed from elementary propositions and 

standard logical connectives e.g., Weather = sunny ∨ Cavity = false 



Syntax 

• Atomic event: A complete specification of the state of the world 
about which the agent is uncertain 

E.g., if the world consists of only two Boolean variables Cavity and 
Toothache, then there are 4 distinct atomic events: 

Cavity = false ∧Toothache = false 
Cavity = false ∧ Toothache = true 
Cavity = true ∧ Toothache = false 
Cavity = true ∧ Toothache = true 

• Atomic events are mutually exclusive and exhaustive 



Prior probability 

• Prior or unconditional probabilities of propositions 
e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 

correspond to belief prior to arrival of any (new) evidence 
• Probability distribution gives values for all possible assignments: 

P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)  
   

•  Joint probability distribution for a set of random variables gives the 
probability of every atomic event on those random variables 

P(Weather,Cavity) = a 4 × 2 matrix of values: 

 Weather =        sunny    rainy     cloudy   snow  
 Cavity = true      0.144      0.02      0.016     0.02 
 Cavity = false      0.576      0.08      0.064     0.08 



Joint Distribution 

 Weather =        sunny   rainy    cloud      snow  
 Cavity = true      0.144     0.02      0.016     0.02 
 Cavity = false      0.576     0.08      0.064     0.08 

• Every question about the domain can be answered from joint 
probability distribution 



Joint distribution 

• Example of joint probability distribution: 



Conditional probability 
• Definition of conditional probability: 

• Product rule gives an alternative formulation: 

• A general version holds for whole distributions, e.g., 
P(Weather,Cavity) = P(Weather | Cavity) P(Cavity) 

•  (View as a set of 4 × 2 equations, not matrix multiplication) 
• Chain rule is derived by successive product rule 

P(X1, …,Xn)  = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1) 
                  = P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)  = … 
                    

€ 

P(a |b) =
P(a∧b)
P(b)

€ 

P(a∧b) = P(a |b)P(b) = P(b | a)P(a)

  

€ 

= P(Xi | X1,K,Xi−1)
i=1

n

∏



Inference by enumeration 

• Start with the joint probability distribution: 

• For any proposition φ, sum the atomic events where it is true: P(φ) = 
Σω:ω╞φ P(ω) 



Inference by enumeration 

• Start with the joint probability distribution: 

• For any proposition φ, sum the atomic events where it is true: P(φ) = 
Σω:ω╞φ P(ω) 

• P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2 



Inference by enumeration 

• Start with the joint probability distribution: 

• For any proposition φ, sum the atomic events where it is true: P(φ) = 
Σω:ω╞φ P(ω) 

• P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2 



Inference by enumeration 

• Start with the joint probability distribution: 

• Can also compute conditional probabilities: 

€ 

P(¬cavity | toothache) =
P(¬cavity∧ toothache)

P(toothache)
=

(0.016 + 0.064)
0.108 + 0.012 + 0.016 + 0.064

= 0.4



Discrete Random Variables 

• X denotes a random variable. 

• X can take on a countable number of values in {x1, x2, …, xn}. 

• P(X=xi), or P(xi), is the probability that the random variable X 
takes on value xi.  

• P( ) is called probability mass function. 

• E.g. 

• This is just shorthand for  P(Room = office), P(Room = 
kitchen), P(Room = bedroom), P(Room = corridor) 



Continuous Random Variables 

• X takes on values in the continuum. 

• p(X=x), or p(x), is a probability density function. 

• E.g. 



Joint and Conditional Probability 

• P(X=x and Y=y) = P(x,y) 

• If X and Y are independent then  
  P(x,y) = P(x) P(y) 

• P(x | y) is the probability of x given y 
  P(x | y) = P(x,y) / P(y) 
  P(x,y)   = P(x | y) P(y) 

• If X and Y are independent then 
  P(x | y) = P(x)    (verify using definitions of  

                                                                  conditional probability and independence) 



Law of Total Probability, Marginals 

Discrete case Continuous case 
Law of total probability 

Marginalization 



Inference by enumeration 

• Start with the joint probability distribution: 

• For any proposition φ, sum the atomic events where it is true: P(φ) = 
Σω:ω╞φ P(ω) 



Bayes Formula 



Normalization 

Algorithm: 



Bayes Rule  
with Background Knowledge 



Conditional Independence 

• Equivalent to 

  and 

• But this does not necessarily mean 

    (independence/marginal independence) 



Simple Example of State Estimation 

• Suppose a robot obtains measurement z 
• What is P(open|z)? 



Causal vs. Diagnostic Reasoning 

• P(open|z) is diagnostic 
• P(z|open) is causal 
• Often causal knowledge is easier to obtain 
• Bayes rule allows us to use causal knowledge: count frequencies! 



Example 

• P(z|open) = 0.6   P(z|¬open) = 0.3 
• P(open) = P(¬open) = 0.5 

  z raises the probability that the door is open 



Combining Evidence 

• Suppose our robot obtains another observation z2 

• How can we integrate this new information? 

• More generally, how can we estimate  P(x| z1...zn )? 



Recursive Bayesian Updating 

Markov assumption:  
zn is independent of z1,...,zn-1 if we know x 



Example: Second Measurement  

• P(z2|open) = 0.5   P(z2|¬open) = 0.6 
• P(open|z1)=2/3 

•  z2 lowers the probability that the door is open 



Actions 

• Often the world is dynamic since 

 actions carried out by the robot, 
 actions carried out by other agents, 
 or just the time passing by 

 change the world 

• How can we incorporate such actions? 



Typical Actions 

• The robot turns its wheels to move 
• The robot uses its manipulator to grasp an object 
• Plants grow over time… 

• Actions are never carried out with absolute certainty 
•  In contrast to measurements, actions generally increase the 

uncertainty 



Modeling Actions 
• To incorporate the outcome of an action u into the current “belief”, 

we use the conditional pdf  

P(x|u,x’) 

• This term specifies the pdf that executing u changes the state from 
x’ to x. 



Example: Closing the door 



State Transitions 

P(x|u,x’) for u = “close door”: 

If the door is open, the action “close door” succeeds in 90% of all cases 



Integrating the Outcome of Actions 

Continuous case: 

Discrete case: 



Example: The Resulting Belief 



Bayes Filters: Framework 

• Given: 
 Stream of observations z and action data u: 

 Sensor model P(z|x) 
 Action model P(x|u,x’) 
 Prior probability of the system state P(x) 

• Wanted:  
 Estimate of the state X of a dynamical system 
 The posterior of the state is also called Belief: 



Markov Assumption 

Underlying Assumptions 
• Static world 
•  Independent noise 
• Perfect model, no approximation errors 



Bayes Filters 

Bayes 

z  = observation 
u  = action 
x  = state 

Markov 

Markov 

Total prob. 

Markov 



Bayes Filter Algorithm  

1.   Algorithm Bayes_filter( Bel(x),d ): 
2.   η=0	


3.   If d is a perceptual data item z then 
4.       For all x do 
5.    
6.    
7.       For all x do 
8.    

9.   Else if d is an action data item u then 
10.       For all x do 
11.    

12.   Return Bel’(x)       



Bayes Filters are Familiar! 

• Kalman filters 
• Particle filters 
• Hidden Markov models 
• Dynamic Bayesian networks 
• Partially Observable Markov Decision Processes (POMDPs) 



Summary 

• Bayes rule allows us to compute probabilities that are hard to assess 
otherwise. 

• Under the Markov assumption, recursive Bayesian updating can be 
used to efficiently combine evidence. 

• Bayes filters are a probabilistic tool for estimating the state of dynamic 
systems. 


