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Markov  Kalman Filter Localization 

• Markov localization  
  localization starting from any 

unknown position  
  recovers from ambiguous 

situation.  
 However, to update the probability 

of all positions within the whole 
state space at any time requires a 
discrete representation of the 
space (grid). The required memory 
and calculation power can thus 
become very important if a fine 
grid is used.  

• Kalman filter localization  
  tracks the robot and is inherently 

very precise and efficient.  
 However, if the uncertainty of the 

robot becomes to large (e.g. 
collision with an object) the 
Kalman filter will fail and the 
position is definitively lost. 

Markov Localization (1) 

• Markov localization uses an  
explicit, discrete representation for the probability of  
all position in the state space.  

• This is usually done by representing the environment by a grid or a 
topological graph with a finite number of possible states (positions).  

• During each update, the probability for each state (element) of the 
entire space is updated. 
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Markov Localization (2): Applying probabilty theory to robot localization 

• P(A): Probability that A is true. 
 e.g. p(rt = l):  probability that the robot r is at position l at time t (prior) 

• We wish to compute the probability of each individual robot position 
given actions and sensor measures. 

• P(A|B): Conditional probability of A given that we know B. 
 e.g. p(rt = l| it): probability that the robot is at position l given the 

sensors input it. 
• Product rule: 

• Bayes rule: 
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Bayes rule example 

• Suppose a robot obtains measurement z 
• What is P(open|z)? 
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Bayes rule Causal vs. Diagnostic Reasoning 

• P(open|z) is diagnostic. 
• P(z|open) is causal. 
• Often causal knowledge is easier to obtain. 
• Bayes rule allows us to use causal knowledge: 

count frequencies! 

Bayes Formula aganin 
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Example 
• Consider that we have a random discrete random variable X, with two 

outcomes characterizing whether the door is open or not. Our initial 
belief (or prior probability) is 

                   bel(X = open) = 0.5  and bel(X = closed) = 0.5 
•   Now suppose that we have some noisy sensors trying make some 

measurements of the door. The characteristics of the sensors obtained 
in the training/learning stage are following – the sensor can have two 
outcomes, each with the following conditional probability 

                          P(z = sense_open | X = open) = 0.6 
                         P(z = sense_closed | X = open) = 0.4 
                         P(z = sense_open | X = closed) = 0.3 
                         P(z = sense_closed | X= closed) = 0.7  
• This suggests that detecting closed door is relatively reliable (only 0.3 

errors), but detecting open door is less reliable 
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Example 
• Suppose you get a measurement z = sense_open now 
• You want to compute probability that the door is open 
•   To shorten the notation : 

• P(z|open) = 0.6   P(z|¬open) = 0.3 
• P(open) = P(¬open) = 0.5 

•  z raises the probability that the door is open. 



11/16/09 5 

9 

Combining Evidence 

• Suppose our robot obtains another observation z2, from other sensing 
modality which has slightly different conditional probabilities 

• P(z2|open) = 0.5 P(z2|¬open) = 0.6  
• Which for example is more detail is 
 P(z2 = sense_open |X =open) = 0.5, P(z2 = sense_open |X =¬open) = 0.6 
P(z2 = sense_closed |X =open) = 0.5, P(z2 = sense_closed |X =¬open) = 0.4  
•    Given these conditional prob. and knowing the prior, you can compute the joint 

distribution (of z2  and X and convince your self that all entries sum up to 1 

• How can we integrate this new information? 
• More generally, how can we estimate 

P(x| z1...zn )? 
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Recursive Bayesian Updating 

Markov assumption: zn is independent of z1,...,zn-1 if we know x. 
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Example: Second Measurement  

• P(z2|open) = 0.5   P(z2|¬open) = 0.6 
• P(open|z1)=2/3 

•  z2 lowers the probability that the door is open. 

Actions 

• Often the world is dynamic since 
 actions carried out by the robot, 
 actions carried out by other agents, 
 or just the time passing by 

 change the world. 

• How can we incorporate such actions? 
• How to model them explicitely ?  
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Typical Actions 

• The robot turns its wheels to move 
• The robot uses its manipulator to grasp an object 
• Plants grow over time… 

• Actions are never carried out with absolute certainty. 
• In contrast to measurements, actions generally increase the 

uncertainty.  
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Modeling Actions 

• To incorporate the outcome of an action u into the current “belief”, 
we use the conditional pdf  

P(x|u,x’) 

• This term specifies the pdf that executing u changes the state from 
x’ to x. 
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State Transitions 

P(x|u,x’) for u = “close door”: 

If the door is open, the action “close door” succeeds in 90% of all cases. 
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Integrating the Outcome of Actions 

Continuous case: 

Discrete case: 

Given and action u, what will happen to the posterior 
Belief about state 
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Example: The Resulting Belief 
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General Bayes Filters: Framework 

• Putting actions and observations together 
• Given: 

 Stream of observations z and action data u: 

 Sensor model P(z|x) (actual models discussed later) 
 Action model P(x|u,x’) (actual models discussed later) 
 Prior probability of the system state P(x). 

• Wanted:  
 Estimate of the state X of a dynamical system. 
 The posterior of the state is also called Belief: 
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Markov Assumption 

Underlying Assumptions 
• Static world 
•  Independent noise 
• Perfect model, no approximation errors 
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Bayes Filters 

Bayes 

z  = observation 
u  = action 
x  = state 

Markov 

Markov 

  

€ 

=η P(zt | xt ) P(xt | u1,z1,K,ut ,xt−1)∫
P(xt−1 | u1,z1,K,ut ) dxt−1

Total prob. 

Markov 
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Bayes Filter Algorithm  

1.   Algorithm Bayes_filter( Bel(x),d ): 
2.   η=0

3.   If d is a perceptual data item z then 
4.       For all x do 
5.    
6.    
7.       For all x do 
8.    

9.   Else if d is an action data item u then 
10.       For all x do 
11.    

12.   Return Bel’(x)       
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Bayes Filters are Familiar! 

• Kalman filters 
• Particle filters 
• Hidden Markov models 
• Dynamic Bayesian networks 
• Partially Observable Markov Decision Processes (POMDPs) 
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Summary 

• Bayes rule allows us to compute probabilities that are hard to assess 
otherwise. 

• Under the Markov assumption, recursive Bayesian updating can be 
used to efficiently combine evidence. 

• Bayes filters are a probabilistic tool for estimating the state of dynamic 
systems. 


