Probabilistic Robotics

Bayes Filter Implementations

Gaussian filters

Kalman Filter Localization

Bayes Filter Reminder

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

- 1. Algorithm **Bayes_filter**(*Bel(x),d*):
- **2.** η=0
- 3. If *d* is a perceptual data item *z* then
- 4. For all *x* do
- 5. $Bel'(x) = P(z \mid x)Bel(x)$

$$\textbf{6.} \qquad \eta = \eta + Bel'(x)$$

7. For all x do

8.
$$Bel'(x) = \eta^{-1}Bel'(x)$$

- 9. Else if *d* is an action data item *u* then10. For all *x* do
- **11.** $Bel'(x) = \int P(x | u, x') Bel(x') dx'$

12. Return *Bel'(x)*

Bayes Filter Reminder

Prediction

$$bel(x_t) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$

Correction

$$bel(x_t) = \eta p(z_t \mid x_t) bel(x_t)$$

Kalman Filter

- Bayes filter with **Gaussians**
- Developed in the late 1950's
- Most relevant Bayes filter variant in practice
- Applications range from economics, wheather forecasting, satellite navigation to robotics and many more.
- The Kalman filter "algorithm" is a couple of matrix multiplications!

Gaussians

$$p(x) \sim N(\mu, \sigma^2):$$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

Univariate

$$p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}):$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

Multivariate

Gaussians

Properties of Gaussians

• Univariate

$$X \sim N(\mu, \sigma^2) \\ Y = aX + b$$
 $\Rightarrow Y \sim N(a\mu + b, a^2 \sigma^2)$

$$X_{1} \sim N(\mu_{1}, \sigma_{1}^{2}) \\ X_{2} \sim N(\mu_{2}, \sigma_{2}^{2}) \} \Rightarrow p(X_{1}) \cdot p(X_{2}) \sim N\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}} \mu_{1} + \frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}} \mu_{2}, \frac{1}{\sigma_{1}^{-2} + \sigma_{2}^{-2}}\right)$$

Multivariate

$$\left. \begin{array}{c} X \sim N(\mu, \Sigma) \\ Y = AX + B \end{array} \right\} \quad \Rightarrow \quad Y \sim N(A\mu + B, A\Sigma A^T)$$

$$X_{1} \sim N(\mu_{1}, \Sigma_{1}) \\ X_{2} \sim N(\mu_{2}, \Sigma_{2}) \} \Rightarrow p(X_{1}) \cdot p(X_{2}) \sim N\left(\frac{\Sigma_{2}}{\Sigma_{1} + \Sigma_{2}}\mu_{1} + \frac{\Sigma_{1}}{\Sigma_{1} + \Sigma_{2}}\mu_{2}, \frac{1}{\Sigma_{1}^{-1} + \Sigma_{2}^{-1}}\right)$$

 We stay in the "Gaussian world" as long as we start with Gaussians and perform only linear transformations

Introduction to Kalman Filter (1)

- Two measurements no dynamics $\hat{q}_1 = q_1$ with variance σ_1^2 $\hat{q}_2 = q_2$ with variance σ_2^2
- Weighted least-square $S = \sum_{i=1}^{n} w_i (\hat{q} - q_i)^2$
- Finding minimum error

$$\frac{\partial S}{\partial \hat{q}} = \frac{\partial}{\partial \hat{q}} \sum_{i=1}^{n} w_i (\hat{q} - q_i)^2 = 2 \sum_{i=1}^{n} w_i (\hat{q} - q_i) = 0$$

After some calculation and rearrangements

$$\hat{q} = q_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (q_2 - q_1)$$

Another way to look at it – weigthed mean

Discrete Kalman Filter

• Estimates the state x of a discrete-time controlled process that is governed by the linear stochastic difference equation

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

• with a measurement

$$z_t = C_t x_t + \delta_t$$

Matrix (nxn) that describes how the state evolves from t to t-1 without controls or noise.

Matrix (nxl) that describes how the control u_t changes the state from t to t-1.

Matrix (kxn) that describes how to map the state x_t to an observation z_t .

Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance R_t and Q_t respectively.

Kalman Filter Updates in 1D

Kalman Filter Updates in 1D

$$bel(x_t) = \begin{cases} \mu_t = \overline{\mu}_t + K_t(z_t - \overline{\mu}_t) \\ \sigma_t^2 = (1 - K_t)\overline{\sigma}_t^2 \end{cases} \quad \text{with} \quad K_t = \frac{\overline{\sigma}_t^2}{\overline{\sigma}_t^2 + \overline{\sigma}_{obs,t}^2} \end{cases}$$

$$bel(x_t) = \begin{cases} \mu_t = \overline{\mu}_t + K_t(z_t - C_t \overline{\mu}_t) \\ \Sigma_t = (I - K_t C_t) \overline{\Sigma}_t \end{cases} \quad \text{with} \quad K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1} \end{cases}$$

Kalman Filter Updates in 1D

$$\overline{bel}(x_t) = \begin{cases} \overline{\mu}_t = a_t \mu_{t-1} + b_t u_t \\ \overline{\sigma}_t^2 = a_t^2 \sigma_t^2 + \sigma_{act,t}^2 \end{cases}$$

$$\overline{bel}(x_t) = \begin{cases} \overline{\mu}_t = A_t \mu_{t-1} + B_t u_t \\ \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t \end{cases}$$

Kalman Filter Updates

Linear Gaussian Systems: Initialization

• Initial belief is normally distributed:

$$bel(x_0) = N(x_0; \mu_0, \Sigma_0)$$

Linear Gaussian Systems: Dynamics

 Dynamics are linear function of state and control plus additive noise:

$$\begin{aligned} x_{t} &= A_{t} x_{t-1} + B_{t} u_{t} + \varepsilon_{t} \\ p(x_{t} \mid u_{t}, x_{t-1}) &= N(x_{t}; A_{t} x_{t-1} + B_{t} u_{t}, R_{t}) \end{aligned}$$

Linear Gaussian Systems: Dynamics

Linear Gaussian Systems: Observations

 Observations are linear function of state plus additive noise:

Linear Gaussian Systems: Observations

Kalman Filter Algorithm

- 1. Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- 2. Prediction:
- $3. \qquad \mu_t = A_t \mu_{t-1} + B_t u_t$

$$\mathbf{4.} \qquad \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$$

5. Correction:

6.
$$K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$$

7.
$$\mu_t = \mu_t + K_t(z_t - C_t \mu_t)$$

- $\mathbf{8.} \qquad \boldsymbol{\Sigma}_t = (I K_t C_t) \boldsymbol{\Sigma}_t$
- 9. Return μ_t , Σ_t

Kalman Filter Algorithm

Kalman Filter Algorithm

The Prediction-Correction-Cycle

The Prediction-Correction-Cycle

The Prediction-Correction-Cycle

26

Kalman Filter Summary

- Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: $O(k^{2.376} + n^2)$
- Optimal for linear Gaussian systems!
- Most robotics systems are nonlinear!

Nonlinear Dynamic Systems

• Most realistic robotic problems involve nonlinear functions

$$x_t = g(u_t, x_{t-1})$$

$$z_t = h(x_t)$$

• To be continued

Linearity Assumption Revisited

Non-linear Function

EKF Linearization (1)

EKF Linearization (2)

EKF Linearization (3)

Depends on uncertainty

EKF Linearization: First Order Taylor Series Expansion

• Prediction:

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$
$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})$$

• Correction:

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$

EKF Algorithm

1. Extended_Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):

2. Prediction:
3.
$$\overline{\mu}_{t} = g(u_{t}, \mu_{t-1})$$
 $\overleftarrow{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}u_{t}$
4. $\overline{\Sigma}_{t} = G_{t}\Sigma_{t-1}G_{t}^{T} + R_{t}$ $\overleftarrow{\Sigma}_{t} = A_{t}\Sigma_{t-1}A_{t}^{T} + R_{t}$
5. Correction:
6. $K_{t} = \overline{\Sigma}_{t}H_{t}^{T}(H_{t}\overline{\Sigma}_{t}H_{t}^{T} + Q_{t})^{-1}$ $\overleftarrow{K}_{t} = \overline{\Sigma}_{t}C_{t}^{T}(C_{t}\overline{\Sigma}_{t}C_{t}^{T} + Q_{t})^{-1}$
7. $\mu_{t} = \overline{\mu}_{t} + K_{t}(z_{t} - h(\overline{\mu}_{t}))$ $\overleftarrow{\mu}_{t} = \overline{\mu}_{t} + K_{t}(z_{t} - C_{t}\overline{\mu}_{t})$
8. $\Sigma_{t} = (I - K_{t}H_{t})\overline{\Sigma}_{t}$ $\overleftarrow{\Sigma}_{t} = (I - K_{t}C_{t})\overline{\Sigma}_{t}$
9. Return $\mu_{tr} \Sigma_{t}$ $H_{t} = \frac{\partial h(\overline{\mu}_{t})}{\partial x_{t}}$ $G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}}$

Kalman Filter for Mobile Robot Localization Robot Position Prediction

 In a first step, the robots position at time step k+1 is predicted based on its old location (time step k) and its movement due to the control input u(k):

$$\hat{p}(k+1|k) = f(\hat{p}(k|k), u(k))$$
 f: Odometry function

$$\Sigma_{p}(k+1|k) = \nabla_{p}f \cdot \Sigma_{p}(k|k) \cdot \nabla_{p}f^{T} + \nabla_{u}f \cdot \Sigma_{u}(k) \cdot \nabla_{u}f^{T}$$

Kalman Filter for Mobile Robot Localization Robot Position Prediction: Example

$$\hat{p}(k+1|k) = \hat{p}(k|k) + u(k) = \begin{bmatrix} \hat{x}(k) \\ \hat{y}(k) \\ \hat{\theta}(k) \end{bmatrix} + \begin{bmatrix} \frac{\Delta s_r + \Delta s_l}{2} \cos(\theta + \frac{\Delta s_r - \Delta s_l}{2b}) \\ \frac{\Delta s_r + \Delta s_l}{2} \sin(\theta + \frac{\Delta s_r - \Delta s_l}{2b}) \\ \frac{\Delta s_r - \Delta s_l}{2} \end{bmatrix} \quad \text{Odometry}$$

$$\Sigma_p(k+1|k) = \nabla_p f \cdot \Sigma_p(k|k) \cdot \nabla_p f^T + \nabla_u f \cdot \Sigma_u(k) \cdot \nabla_u f^T$$

$$\Sigma_u(k) = \begin{bmatrix} k_r |\Delta s_r| & 0 \\ 0 & k_l |\Delta s_l| \end{bmatrix} \quad p(k+1)$$

Kalman Filter for Mobile Robot Localization Observation

- The second step it to obtain the observation Z(k+1) (measurements) from the robot's sensors at the new location at time k+1
- The observation usually consists of a set n₀ of single observations z_j(k+1) extracted from the different sensors signals. It can represent *raw data scans* as well as *features* like *lines*, *doors* or *any kind of landmarks*.
- The parameters of the targets are usually observed in the sensor frame {S}.
 - Therefore the observations have to be transformed to the world frame {W} or
 - the measurement prediction have to be transformed to the sensor frame {S}.
 - This transformation is specified in the function h_i (seen later) measurement prediction

Kalman Filter for Mobile Robot Localization Observation: *Example*

Kalman Filter for Mobile Robot Localization Measurement Prediction

- In the next step we use the predicted robot position $\hat{p} = (k + 1|k)$ and the map M(k) to generate multiple predicted observations z_t – what you should see
- They have to be transformed into the sensor frame

$$\hat{z}_i(k+1) = h_i(z_i, \hat{p}(k+1|k))$$

 We can now define the measurement prediction as the set containing all n_i predicted observations

$$\hat{Z}(k+1) = \left\{ \hat{z}_i(k+1) (1 \le i \le n_i) \right\}$$

- The function *h_i* is mainly the coordinate transformation between the world frame and the sensor frame
- Need to compute the measurement Jacobian to also predict uncertainties

Kalman Filter for Mobile Robot Localization Measurement Prediction: Example

Kalman Filter for Mobile Robot Localization Measurement Prediction: Example

 The generated measurement predictions have to be transformed to the robot frame {R}

$${}^{W}_{Z_{t,i}} = {}^{W} \begin{bmatrix} \alpha_{t,i} \\ r_{t,i} \end{bmatrix} \rightarrow {}^{R}_{Z_{t,i}} = {}^{R} \begin{bmatrix} \alpha_{t,i} \\ r_{t,i} \end{bmatrix}$$

 According to the figure in previous slide the transformation is given by

$$\hat{z}_{i}(k+1) = \begin{bmatrix} \alpha_{t,i} \\ r_{t,i} \end{bmatrix} = h_{i}(z_{t,i}, \hat{p}(k+1|k)) = \begin{bmatrix} w_{\alpha_{t,i}} - w_{\theta}(k+1|k) \\ w_{r_{t,i}} - (w_{x}(k+1|k)\cos(w_{\alpha_{t,i}}) + w_{y}(k+1|k)\sin(w_{\alpha_{t,i}})) \end{bmatrix}$$

and its Jacobian by

$$\nabla h_{i} = \begin{bmatrix} \frac{\partial \alpha_{t,i}}{\partial \hat{x}} & \frac{\partial \alpha_{t,i}}{\partial \hat{y}} & \frac{\partial \alpha_{t,i}}{\partial \hat{\theta}} \\ \frac{\partial r_{t,i}}{\partial \hat{x}} & \frac{\partial r_{t,i}}{\partial \hat{y}} & \frac{\partial r_{t,i}}{\partial \hat{\theta}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ -\cos^{W} \alpha_{t,i} & -\sin^{W} \alpha_{t,i} & 0 \end{bmatrix}$$

Kalman Filter for Mobile Robot Localization Matching

- Assignment from observations z_j(k+1) (gained by the sensors) to the targets z_t (stored in the map)
- For each measurement prediction for which an corresponding observation is found we calculate the innovation:

$$v_{ij}(k+1) = [z_j(k+1) - h_i(z_t, \hat{p}(k+1|k))]$$

= $\begin{bmatrix} \alpha_j \\ r_j \end{bmatrix} - \begin{bmatrix} W \alpha_{t,i} - W \hat{\theta}(k+1|k) \\ W r_{t,i} - (W \hat{x}(k+1|k) \cos(W \alpha_{t,i}) + W \hat{y}(k+1|k) \sin(W \alpha_{t,i})) \end{bmatrix}$

and its innovation covariance found by applying the error propagation law:

$$\Sigma_{IN,ij}(k+1) = \nabla h_i \cdot \Sigma_p(k+1|k) \cdot \nabla h_i^T + \Sigma_{R,i}(k+1)$$

• The validity of the correspondence between measurement and prediction can e.g. be evaluated through the Mahalanobis distance: $v_{ii}^{T}(k+1) \cdot \Sigma_{IN,ii}^{-1}(k+1) \cdot v_{ii}(k+1) \leq g^{2}$

Kalman Filter for Mobile Robot Localization Matching: *Example*

Kalman Filter for Mobile Robot Localization Matching: *Example*

• To find correspondence (pairs) of predicted and observed features we use the Mahalanobis distance

$$v_{ij}(k+1) \cdot \Sigma_{IN, ij}^{-1}(k+1) \cdot v_{ij}^{T}(k+1) \le g^{2}$$

$$v_{ij}(k+1) = [z_j(k+1) - h_i(z_t, \hat{p}(k+1|k))]$$

= $\begin{bmatrix} \alpha_j \\ r_j \end{bmatrix} - \begin{bmatrix} W \alpha_{t,i} - W \hat{\theta}(k+1|k) \\ W r_{t,i} - (W \hat{x}(k+1|k) \cos(W \alpha_{t,i}) + W \hat{y}(k+1|k) \sin(W \alpha_{t,i})) \end{bmatrix}$

 $\Sigma_{IN, ij}(k+1) = \nabla h_i \cdot \Sigma_p(k+1|k) \cdot \nabla h_i^T + \Sigma_{R, i}(k+1)$

Kalman Filter for Mobile Robot Localization Estimation: Applying the Kalman Filter

• Kalman filter gain:

 $K(k+1) = \Sigma_p(k+1|k) \cdot \nabla h^T \cdot \Sigma_{IN}^{-1}(k+1)$

• Update of robot's position estimate:

 $\hat{p}(k+1|k+1) = \hat{p}(k+1|k) + K(k+1) \cdot v(k+1)$

• The associate variance

$$\Sigma_{p}(k+1|k+1) = \Sigma_{p}(k+1|k) - K(k+1) \cdot \Sigma_{IN}(k+1) \cdot K^{T}(k+1)$$

Kalman Filter for Mobile Robot Localization Estimation: 1D Case

• For the one-dimensional case with $h_i(z_t, \hat{p}(k+1|k)) = z_t$ we can show that the estimation corresponds to the Kalman filter for one-dimension presented earlier.

$$K(k+1) = \frac{\sigma_p^2(k+1|k)}{\sigma_{IN}^2(k+1)} = \frac{\sigma_p^2(k+1|k)}{\sigma_p^2(k+1|k) + \sigma_R^2(k+1)}$$

$$\hat{p}(k+1|k+1) = \hat{p}(k+1|k) + K(k+1) \cdot v(k+1)$$

$$= \hat{p}(k+1|k) + K(k+1) \cdot [z_j(k+1) - h_i(z_t, \hat{p}(k+1|k))]$$

$$= \hat{p}(k+1|k) + K(k+1) \cdot [z_j(k+1) - z_t]$$

Kalman Filter for Mobile Robot Localization Estimation: *Example*

- Kalman filter estimation of the new robot position $\hat{p}(k|k)$:
 - By fusing the prediction of robot position (magenta) with the innovation gained by the measurements (green) we get the updated estimate of the robot position (red)

Localization

"Using sensory information to locate the robot in its environment is the most fundamental problem to providing a mobile robot with autonomous capabilities." [Cox '91]

• Given

- Map of the environment.
- Sequence of sensor measurements.

• Wanted

• Estimate of the robot's position.

• Problem classes

- Position tracking
- Global localization
- Kidnapped robot problem (recovery)

Landmark-based Localization

