Probabilistic Robotics

Bayes Filter Implementations

Discrete filters, Particle filters

Piecewise Constant

 Representation of belief

Discrete Bayes Filter Algorithm

- 1. Algorithm **Discrete_Bayes_filter**(*Bel(x),d*):
- **2.** η=0
- 3. If *d* is a perceptual data item *z* then
- 4. For all *x* do
- 5. $Bel'(x) = P(z \mid x)Bel(x)$

$$6. \qquad \eta = \eta + Bel'(x)$$

7. For all x do

8.
$$Bel'(x) = \eta^{-1}Bel'(x)$$

- 9. Else if *d* is an action data item *u* then
- 10. For all x do

11.
$$Bel'(x) = \sum_{x'} P(x | u, x') Bel(x')$$

12. Return *Bel'(x)*

Piecewise Constant Representation

Implementation (1)

- To update the belief upon sensory input and to carry out the normalization one has to iterate over all cells of the grid.
- Especially when the belief is peaked (which is generally the case during position tracking), one wants to avoid updating irrelevant aspects of the state space.
- One approach is not to update entire sub-spaces of the state space.
- This, however, requires to monitor whether the robot is de-localized or not.
- To achieve this, one can consider the likelihood of the observations given the active components of the state space.

Implementation (2)

- To efficiently update the belief upon robot motions, one typically assumes a bounded Gaussian model for the motion uncertainty.
- This reduces the update cost from $O(n^2)$ to O(n), where *n* is the number of states.
- The update can also be realized by shifting the data in the grid according to the measured motion.
- In a second step, the grid is then convolved using a separable Gaussian Kernel.
- Two-dimensional example:

- Fewer arithmetic operations
- Easier to implement

Grid-based Localization

Sonars and Occupancy Grid Map

Robot position (A)

Tree-based Representation

Idea: Represent density using a variant of octrees

Tree-based Representations

- Efficient in space and time
- Multi-resolution

Xavier: Localization in a Topological Map

[Courtesy of Reid Simmons]

Sample-based Localization (sonar)

Markov \Leftrightarrow Kalman Filter Localization

Markov localization

- localization starting from any unknown position
- recovers from ambiguous situation.
- However, to update the probability of all positions within the whole state space at any time requires a discrete representation of the space (grid). The required memory and calculation power can thus become very important if a fine grid is used.

- Kalman filter localization
 - tracks the robot and is inherently very precise and efficient.
 - However, if the uncertainty of the robot becomes to large (e.g. collision with an object) the Kalman filter will fail and the position is definitively lost.

Monte Carlo Localization

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter, Particle filter
- Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
- Computer vision: [Isard and Blake 96, 98]
- Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Markov Localization: Case Study 2 – Grid Map (3)

- The 1D case
 - 1. Start
 - No knowledge at start, thus we have an uniform probability distribution.
 - 2. Robot perceives first pillar
 - Seeing only one pillar, the probability being at pillar 1, 2 or 3 is equal.
 - 3. Robot moves
 - Action model enables to estimate the new probability distribution based on the previous one and the motion.
 - 4. Robot perceives second pillar
 - Base on all prior knowledge the probability being at pillar 2 becomes dominant

Weight samples: w = f/g

In particle filters f corresponds to Bel(x(t)) and g to predicted belief x(t)

Importance Sampling with Resampling: Landmark Detection Example

Probabilistic Model

1. Algorithm landmark_detection_model(z,x,m): $z = \langle i, d, \alpha \rangle, x = \langle x, y, \theta \rangle$ 2. $\hat{d} = \sqrt{(m_x(i) - x)^2 + (m_y(i) - y)^2}$

3.
$$\hat{a} = \operatorname{atan2}(m_y(i) - y, m_x(i) - x) - \theta$$

4.
$$p_{det} = \operatorname{prob}(\hat{d} - d, \varepsilon_d) \cdot \operatorname{prob}(\hat{\alpha} - \alpha, \varepsilon_\alpha)$$

$$z_{\text{det}} p_{\text{det}} + z_{\text{fp}} P_{\text{uniform}}(z \mid x, m)$$

5. Return

Computing likelihood of landmark measurement Landmark – distance, bearing and signature

Landmark model

- How to sample likely poses, given the landmark measurement ?
- Given a landmark measurement, robot can lie on a circle. Generate samples along the circle.
- Idea: use the inverse sensor model. Given distance and bearing (possibly noisy), generate samples along circle.
- Do it for every landmark

Distributions

This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.

Importance Sampling with Resampling

Target distribution f : $p(x | z_1, z_2, ..., z_n) = \frac{\prod_k p(z_k | x) p(x)}{p(z_1, z_2, ..., z_n)}$

Sampling distribution
$$g: p(x | z_l) = \frac{p(z_l | x)p(x)}{p(z_l)}$$

Importance weights w:
$$\frac{f}{g} = \frac{p(x \mid z_1, z_2, ..., z_n)}{p(x \mid z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k \mid x)}{p(z_1, z_2, ..., z_n)}$$

Importance Sampling with Resampling

Weighted samples

After resampling

Particle Filters

Sensor Information: Importance Sampling

p(s)

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$

Sensor Information: Importance Sampling

Robot Motion

Particle Filter Algorithm

1. Algorithm **particle_filter**(S_{t-1} , $u_{t-1} z_t$):

$$2. \quad S_t = \emptyset, \quad \eta = 0$$

- *3.* For i = 1...n *Generate new samples*
- 4. Sample index j(i) from the discrete distribution given by w_{t-1} 5. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1} 6. $w_t^i = p(z_t | x_t^i)$ Compute importance weight 7. $\eta = \eta + w_t^i$ Update normalization factor 8. $S_t = S_t \cup \{ < x_t^i, w_t^i > \}$ Insert 9. For i = 1...n10. $w_t^i = w_t^i / \eta$ Normalize weights

Particle Filter Algorithm

Resampling

- **Given**: Set *S* of weighted samples.
- Wanted : Random sample, where the probability of drawing *x_i* is given by *w_i*.

• Typically done *n* times with replacement to generate new sample set *S'*.
Resampling

- Roulette wheel
- Binary search, n log n

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Resampling Algorithm

1. Algorithm **systematic_resampling**(*S*,*n*):

>

2. $S' = \emptyset, c_1 = w^1$ 3. For i = 2...n4. $c_i = c_{i-1} + w^i$ 5. $u_1 \sim U] 0, n^{-1}], i = 1$ Generate cdf Initialize threshold

6. For
$$j = 1...n$$

7. While $(u_i > c_i)$

8.
$$i = i + 1$$

9. $S' = S' \cup \{ x^i, n^{-1} \}$

10.
$$u_{j+1} = u_j + n^2$$

Draw samples ... Skip until next threshold reached

Insert Increment threshold

11. Return *S*'

Also called stochastic universal sampling

Motion Model Reminder

Proximity Sensor Model Reminder

Sample-based Localization (sonar)

Initial Distribution

After Incorporating Ten Ultrasound Scans

After Incorporating 65 Ultrasound Scans

Estimated Path

http://www.youtube.com/watch? v=MELYZ5r5V1c

Summary

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples.
- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.

Using Ceiling Maps for Localization

Vision-based Localization

Under a Light

Measurement z:

P(z|x):

Next to a Light

Measurement z:

Elsewhere

Measurement z:

Global Localization Using Vision

Robots in Action: Albert

Application: Rhino and Albert Synchronized in Munich and Bonn

[Robotics And Automation Magazine, to appear]
Localization for AIBO robots

Limitations

- The approach described so far is able to
 - track the pose of a mobile robot and to
 - globally localize the robot.
- How can we deal with localization errors (i.e., the kidnapped robot problem)?

Approaches

- Randomly insert samples (the robot can be teleported at any point in time).
- Insert random samples proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops).

Random Samples Vision-Based Localization 936 Images, 4MB, .6secs/image Trajectory of the robot:

Odometry Information

Image Sequence

Resulting Trajectories

Position tracking:

Resulting Trajectories

Global localization:

Global Localization

Kidnapping the Robot

Recovery from Failure

Importance Sampling with Resampling: Landmark Detection Example

Probabilistic Model

1. Algorithm landmark_detection_model(z,x,m): $z = \langle i, d, \alpha \rangle, x = \langle x, y, \theta \rangle$ 2. $\hat{d} = \sqrt{(m_x(i) - x)^2 + (m_y(i) - y)^2}$ 3. $\hat{\alpha} = \operatorname{atan2}(m_y(i) - y, m_x(i) - x) - \theta$ 4. $p_{det} = \operatorname{prob}(\hat{d} - d, \varepsilon_d) \cdot \operatorname{prob}(\hat{\alpha} - \alpha, \varepsilon_\alpha)$ $z_{det} p_{det} + z_{fp} P_{uniform}(z \mid x, m)$

5. Return

Computing likelihood of landmark measurement Landmark – distance, bearing and signature

Landmark model

- How to sample likely poses, given the landmark measurement ?
- Given a landmark measurement, robot can lie on a circle. Generate samples along the circle.
- Idea: use the inverse sensor model. Given distance and bearing (possibly noisy), generate samples along circle.
- Do it for every landmark

Distributions

This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.

Importance Sampling with Resampling

Target distribution f : $p(x | z_1, z_2, ..., z_n) = \frac{\prod_k p(z_k | x) p(x)}{p(z_1, z_2, ..., z_n)}$

Sampling distribution
$$g: p(x | z_l) = \frac{p(z_l | x)p(x)}{p(z_l)}$$

Importance weights w:
$$\frac{f}{g} = \frac{p(x \mid z_1, z_2, ..., z_n)}{p(x \mid z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k \mid x)}{p(z_1, z_2, ..., z_n)}$$

Importance Sampling with Resampling

Weighted samples

After resampling

http://www.youtube.com/watch?v=ABzzFMzFE3Y