
Probabilistic Robotics 

Bayes Filter Implementations 

Discrete filters, Particle filters 
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Piecewise  
Constant 

•  Representation of 

  belief 
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Discrete Bayes Filter Algorithm  

1.   Algorithm Discrete_Bayes_filter( Bel(x),d ): 
2.   η=0	



3.   If d is a perceptual data item z then 
4.       For all x do 
5.    
6.    
7.       For all x do 
8.    

9.   Else if d is an action data item u then 

10.       For all x do 
11.    

12.   Return Bel’(x)       
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Piecewise Constant 
Representation 
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Implementation (1) 

•  To update the belief upon sensory input and to carry out 
the normalization one has to iterate over all cells of the 
grid. 

•  Especially when the belief is peaked (which is generally the 
case during position tracking), one wants to avoid 
updating irrelevant aspects of the state space. 

•  One approach is not to update entire sub-spaces of the 
state space. 

•  This, however, requires to monitor whether the robot is 
de-localized or not. 

•  To achieve this, one can consider the likelihood of the 
observations given the active components of the state 
space. 
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Implementation (2) 
•  To efficiently update the belief upon robot motions, one typically 

assumes a bounded Gaussian model for the motion uncertainty. 
•  This reduces the update cost from O(n2) to O(n), where n is the 

number of states. 
•  The update can also be realized by shifting the data in the grid 

according to the measured motion. 
•  In a second step, the grid is then convolved using a separable 

Gaussian Kernel. 
•  Two-dimensional example: 
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•  Fewer arithmetic operations 

•  Easier to implement 
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Grid-based Localization 
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Sonars and  
Occupancy Grid Map  
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Tree-based Representation 

Idea: Represent density using a variant of octrees 
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Tree-based Representations 

•  Efficient in space and time 
•  Multi-resolution 



11 

Xavier:   
Localization in a Topological Map 

[Courtesy of Reid Simmons] 



Sample-based Localization (sonar) 



Markov  Kalman Filter Localization 

•  Markov localization  
•  localization starting from 

any unknown position  
•  recovers from 

ambiguous situation.  
•  However, to update the 

probability of all 
positions within the 
whole state space at any 
time requires a discrete 
representation of the 
space (grid). The 
required memory and 
calculation power can 
thus become very 
important if a fine grid is 
used.  

•  Kalman filter localization  
•  tracks the robot and is 

inherently very precise 
and efficient.  

•  However, if the 
uncertainty of the robot 
becomes to large (e.g. 
collision with an object) 
the Kalman filter will fail 
and the position is 
definitively lost. 



Monte Carlo Localization 



  Represent belief by random samples 

  Estimation of non-Gaussian, nonlinear processes 

  Monte Carlo filter, Survival of the fittest, 
Condensation, Bootstrap filter, Particle filter 

  Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96] 

  Computer vision: [Isard and Blake 96, 98]  

  Dynamic Bayesian Networks: [Kanazawa et al., 95]d 

Particle Filters 



Markov Localization: Case Study 2 – Grid Map (3) 

• The 1D case 
1.  Start 

 No knowledge at start, thus we have  
an uniform probability distribution. 

2.  Robot perceives first pillar 
 Seeing only one pillar, the probability 

being at pillar 1, 2 or 3 is equal. 

3.  Robot moves 
 Action model enables to estimate the  

new probability distribution based  
on the previous one and the motion. 

4.  Robot perceives second pillar 
 Base on all prior knowledge the  

probability being at pillar 2 becomes 
dominant 



MCL: Importance Sampling 



MCL: Robot Motion  

motion 



MCL: Importance Sampling 



Weight samples: w = f / g  

Importance Sampling 

In particle filters f corresponds to Bel(x(t)) and g to predicted belief x(t) 



Importance Sampling with Resampling: 
Landmark Detection Example 
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Probabilistic Model 

1.  Algorithm landmark_detection_model(z,x,m): 

2.   	



3.    

4.    

5.  Return   

Computing likelihood of landmark measurement 

Landmark – distance, bearing and signature 



Landmark model 
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•  How to sample likely poses, given the 

  landmark measurement ?  

•  Given a landmark measurement, robot can  

  lie on a circle. Generate samples along the circle.  

•  Idea: use the inverse sensor model. Given distance  

  and bearing (possibly noisy), generate samples along  

  circle.  

•  Do it for every landmark  



Distributions 
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Distributions 

Wanted: samples distributed according to p
(x| z1, z2, z3) 



This is Easy! 
We can draw samples from p(x|zl) by adding 
noise to the detection parameters. 



Importance Sampling with 
Resampling 



Importance Sampling with 
Resampling 

Weighted samples After resampling 



Particle Filters 



Sensor Information: Importance Sampling 



Robot Motion 



Sensor Information: Importance Sampling 



Robot Motion 



1.   Algorithm particle_filter( St-1, ut-1 zt): 

2.   

3.  For                                                Generate new samples 

4.    Sample index j(i) from the discrete distribution given by wt-1 

5.   Sample     from                         using          and 

6.        Compute importance weight 

7.       Update normalization factor 
8.         Insert 
9.   For  

10.       Normalize weights 

Particle Filter Algorithm 



draw xi
t-1 from Bel(xt-1) 

draw xi
t from p(xt | xi

t-1,ut-1) 

Importance factor for xi
t: 

Particle Filter Algorithm 



Resampling 

• Given: Set S of weighted samples. 

• Wanted : Random sample, where the 
probability of drawing xi is given by wi. 

• Typically done n times with replacement to 
generate new sample set S’. 



w2 

w3 

w1 wn 

Wn-1 

Resampling 

w2 

w3 

w1 wn 

Wn-1 

•  Roulette wheel 

•  Binary search, n log n 

•  Stochastic universal sampling 

•  Systematic resampling 

•  Linear time complexity 

•  Easy to implement, low variance 



1.   Algorithm systematic_resampling(S,n): 

2.   
3.   For    Generate cdf 
4.       
5.       Initialize threshold 

6.   For    Draw samples … 
7.     While (            )  Skip until next threshold reached 
8.          
9.       Insert 
10.                                            Increment threshold 

11.  Return S’ 

Resampling Algorithm 

Also called stochastic universal sampling 



Start 

Motion Model  Reminder 



Proximity Sensor Model Reminder 

Laser sensor Sonar sensor 
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Sample-based Localization (sonar) 
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Initial Distribution 
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After Incorporating Ten 
Ultrasound Scans 
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After Incorporating 65 
Ultrasound Scans 
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Estimated Path 

http://www.youtube.com/watch?
v=MELYZ5r5V1c 
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Summary 

•  Particle filters are an implementation of 
recursive Bayesian filtering 

•  They represent the posterior by a set of 
weighted samples. 

•  In the context of localization, the particles 
are propagated according to the motion 
model. 

•  They are then weighted according to the 
likelihood of the observations. 

•  In a re-sampling step, new particles are 
drawn with a probability proportional to 
the likelihood of the observation.  



Using Ceiling Maps for Localization 



Vision-based Localization 

P(z|x) 

h(x) 

z 



Under a Light 

Measurement z: P(z|x): 



Next to a Light 

Measurement z: P(z|x): 



Elsewhere 

Measurement z: P(z|x): 



Global Localization Using Vision 
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Robots in Action: Albert 
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Application: Rhino and Albert 
Synchronized in Munich and 
Bonn 

[Robotics And Automation Magazine, to appear] 



Localization for AIBO 
robots 
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Limitations 

• The approach described so far is able 
to  
•  track the pose of a mobile robot and to 
• globally localize the robot. 

• How can we deal with localization 
errors (i.e., the kidnapped robot 
problem)? 
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Approaches 

• Randomly insert samples (the robot 
can be teleported at any point in 
time). 

• Insert random samples proportional 
to the average likelihood of the 
particles (the robot has been 
teleported with higher probability 
when the likelihood of its observations 
drops).  



76 

Random Samples 
Vision-Based Localization 
936 Images, 4MB, .6secs/image 
Trajectory of the robot: 
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Odometry Information 
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Image Sequence 
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Resulting Trajectories 

Position tracking: 
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Resulting Trajectories 

Global localization: 
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Global Localization 
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Kidnapping the Robot 



Recovery from Failure 



Importance Sampling with Resampling: 
Landmark Detection Example 
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Probabilistic Model 

1.  Algorithm landmark_detection_model(z,x,m): 

2.   	



3.    

4.    

5.  Return   

€ 

ˆ α = atan2(my (i) − y,mx (i) − x) −θ

Computing likelihood of landmark measurement 

Landmark – distance, bearing and signature 



Landmark model 
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•  How to sample likely poses, given the 

  landmark measurement ?  

•  Given a landmark measurement, robot can  

  lie on a circle. Generate samples along the circle.  

•  Idea: use the inverse sensor model. Given distance  

  and bearing (possibly noisy), generate samples along  

  circle.  

•  Do it for every landmark  



Distributions 
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Distributions 

Wanted: samples distributed according to p(x| z1, z2, z3) 



This is Easy! 
We can draw samples from p(x|zl) by adding 
noise to the detection parameters. 



Importance Sampling with 
Resampling 



Importance Sampling with 
Resampling 

Weighted samples After resampling 

http://www.youtube.com/watch?v=ABzzFMzFE3Y 


