Topological Mapping

Discrete Bayes Filter



Vision Based Localization

Given a image(s) acquired by moving camera
determine the robot’ s location and pose ?

Towards localization without odometry
What can be achieved using solely visual sensing ?

Applications toward agumenting human navigational
capabilities (indoors, outdoors)



Related Work

Vision-based SLAM - pose maitenance [Stephens’ 02, Se’ 02]
Landmark Based Methods [Sims,Dudek 2001, Taylor 1998]
Appearance Based SLAM [Rybski et. al " 03]

Appearance based Topological localization [Ulrich’ 00, Gaspar’ 00]

Approaches motivated by object recognition — given the image
determine which location that image came from

Approaches motivated by structure and motion estimation

Integrate information over several channels [Torralba et al’ 03]
Rotation invariant image descriptors [Wolf-Burgard’ 03]

PCA based approaches [Leonardis’ 01]

Omni-directional cameras [Artac2002, Gaspar2000]



Challenges

Metric and topological localization using only vision
Applicable to large scale self-similar environments
Robust to dynamic changes in the environment

Our Approach

Acquire video sequence during the exploration

Build the environment model in terms of locations

and spatial relationships between them

Topological localization by means of location recognition
Metric localization by means of relative positioning



Vision Based Localization
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Vision Based Localization

e Impose some discrete structure on the space of
continuous visual observations (associate semantic
labels with individual locations - corridor, hallway, office)

e Localization given the topological model
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Issues

e Representation of individual locations
e Learning the representative location features
e Learning neighborhood relationships between locations

e Each view is represented by a set of scale
invariant features or image histograms

e Locations correspond to sub-sequences across
which features can be matched successfully

e Spatial relationships between locations are
captured by Hidden Markov Model



Scale Invariant Features

Each image is characterized by a set of scale-invariant
keypoints and their associated descriptors [D. Lowe,2000]

Keypoints - extrema in DOG pyramid

D(LC, y70_) — (G($,y, ]{ZO') o G(QZ‘, y70_)) * I(QS‘, y)
L(LIZ‘,y,]{?O') o L(LU,y,O').

Descriptor — 8 bin orientation histograms computed
over 4 x 4 grid overlayed over pixel neighbourhood
and stacked together to form a 128 dim feature vector

Good repeatability across variations of scale and pose



Image Matching

10 - 500 features for each view of the sequence

e For each keypoint find the discriminative nearest neighbor
keypoint, based on Euclidean distance between two descriptors

e Image Distance (Score) - # of successfully matched features



Partitioning the video sequence

e Transitions between individual locations determined

during exploration

e Location sub-sequence across which features can be
matched successfully (# of successfully matched features
is lower then 2*minimal number of features needed for

pose estimation)

e Location Representation - set of representative views and
their associated keypoints

# of matched features 1st - i-th view
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Location Recognition

Given a single view what is the location this view came
from ?

Recognition - voting scheme
for each representative view selected in the exploration stage
1. Compute the number of matched features
2. The location with maximum number of matches is
the most likely location
e Recognition Rates

# of Training Test 1 Test 2
views sequence |sequence | sequence
one 84 % 46% 44°%%

two 97% 68% 66%
four 100% 82% 83%




Location Recognition

Large changes in the view point -> misclassification
Misclassification due to dynamic changes in the environment

Exploit spatial relationships between individual locations to
improve recognition



Markov Localization in the topological
model
Exploiting the spatial relationships between the locations

e S — discrete set of states L x {N, W, S, E} locations and
orientations

o A - discrete set of actions (N, W, S, E)
e T(S, S’) - transition function , Discrete Markov Model




Markov Localization in the topological
model

Given the sequences of views what is the most likely
Location the current view came from ?

P(L; = l;lo1:¢) o< P(o¢|Ly = ;) P(Ly = lj|o1:¢—1)

Location posterior Observation likelihood
P(location |observations) P(image|location)



Markov Localization in the topological
model

Given the sequences of views what is the most likely
Location the current view came from ?

P(L; = l;lo1:¢) o< P(o¢|Ly = ;) P(Ly = lj|o1:¢—1)

Location posterior Observation likelihood # of successfully
P(location |observations) P(image|location) matched features
Observation likelihood . C(@)
P(image|location) P(Ot|Lt — lz) — O
> C(7)
N

P(L¢ = lilo14—1) = Y _A(, j)P(Li—1 = lj]o1:¢—1)

J  Location transition probability matrix



e Slight digression



Time and uncertainty

The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step

X; = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents;, etc.

E; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodFaten;

This assumes discrete time; step size depends on problem

Notation: X, = X, X, 01,.... X1, X,



Markov Property

Construct a Bayes net from these variables: parents?
Markov assumption: X; depends on bounded subset of X, 1

First-order Markov process: P(X;|X,; 1) = P(X;|X; 1)
Second-order Markov process: P (X;|X; 1) = P(X;|X; 2, X;_ 1)

o —E D E DGO~ ED)—~ED

— S
s E—E )&
econd-order

Sensor Markov assumption: P(E;|X, Eg, 1) = P(E;|X})

Stationary process: transition model P(X;|X; ;) and
sensor model P (E;|X,;) fixed for all £



Inference Tasks

Filtering: P(X;|e)
belief state—input to the decision process of a rational agent

Prediction: P(X,; |e) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(X;|ey;) for 0 < k <t
better estimate of past states, essential for learning

Most likely explanation: arg maxy,, P(X1.¢|€1.)
speech recognition, decoding with a noisy channel



Filtering

Aim: devise a recursive state estimation algorithm:

P(Xt+1|elzt+1) = f(et+1, P(xt|elzt))

P(Xt+1|el:t+1) = P(Xt+1|91;z, et+1)
= QP(et+1|Xt+1ael:t)P(xt+1|elzt)
= aP(et+1|Xt+1)P(Xt+1|91:t)

|.e., prediction + estimation. Prediction by summing out X;:

P(Xt+1|elzt+1) = aP(et+1|Xt+1)Zx,P(xt+1|Xt, el:t)P(Xt|el:z)
= aP(et+1|xt+1)ExtP(xt+1|Xt)P(Xt|elzt)

f1:t~—l - FORWARD(fl:ta et+1) where f1:t - P(xt|elzt)
Time and space constant (independent of %)



Filtering Example

Umbrella Umbrella,



Smoothing

Divide evidence e;.; into 1.5, €3.1.4:

P(Xile1:) = P(Xkleik, €kr1:)
aP(Xi|e1r)P(eri1:4| Xk, e1:x)
aP(Xi|e1.r)P(exr1:( Xk)

= afi.i b

Backward message computed by a backwards recursion:
P(ek+1;t|Xk) — Exk._lp(ek+1:tlxkaxk+1)P(xk+1|X}€)
= Zxk._IP(ek+1:t|xk+1)P(xk+1|Xk)
= Yixy Pl€rs1|Xp1) P(€kso:t|Xps1) P (Xps1| Xi)



Smoothing

0.500 0.627
o.s‘oo 0.3’73
True  0.500 0.818 0.883 orurars
False 0.500 0.182 0.1 *17 s
0.883 0.883
0.117 0.117 SMDomed
0.690 1.000
0.410 1.000 EACH

Umbrella,

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(t|f))



Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x;.4
= most likely path to some x; plus one more step

= P(e41|X¢41) max (P(X¢i1|x:) mex P(xp,. .. X, Xi|e1.)

|dentical to filtering, except f;.; replaced by

mj.; = xfnf;g(( : P(Xls vy Xi1, Xr|elzz),

l.e., my,(7) gives the probability of the most likely path to state <.
Update has sum replaced by max, giving the Viterbi algorithm:

M1 = P(et+l|xt+1) I'I;(%X (P(Xz+1|xt.)m1:z)



Viterbi example

Rain | Rain, Rain, Rain, Rain
state
space
paths ) _ _ )

false false false false false
umbrella false
most
likely

paths




Hidden Markov Models

X, is a single, discrete variable (usually E; is too)
Domain of X, is {1,...,5}

Transition matrix T';; = P(X;=j|Xi-1=1), eg., o ]

0.3 0.7

\ J

Sensor matrix O; for each time step, diagonal elements P(e;|X; =1)

09 0 }

e.g., with Uy =true, O = ( 0 02

Forward and backward messages as column vectors:

fii1 = a0y T £y
bk+1:t — T0k+llbk‘.+‘2:t

Forward-backward algorithm needs time O(S*%t) and space O(St)



Recap: deformable contour

e A simple elastic snake is defined

by
— A set of n points,

- An internal energy term (tension,
bending, plus optional shape prior)

— An external energy term (gradient-
based)

e To use to segment an object:
— Initialize in the vicinity of the objec

— Modify the points to minimize the
total energy



Energy minimization:
greedy

e For each point, search window
around it and move to where
energy function is minimal

— Typical window size, e.g., 5 x 5 pixels

e Stop when predefined number of
points have not changed in last
iteration, or after max number of
iterations

e Note:

— Convergence not guaranteed
— Need decent initialization



Energy minimization:
dynamic programming

With this form of the energy function, we can
minimize using dynamic programming, with the
Viterbi algorithm.



Energy minimization:
dynamic programming

e Possible because snake energy can be
rewritten as a sum of pair-wise interaction

potentials:
. =
— >

« Or sum of triple-interaction potentials.

-




Snake energy: pair-wise
interactions

Re-writing the abowvees,
with i S

L= TSy +@'£Eﬂf




Viterbi algorithm

Main idea: determine optimal position (state) of
predecessor, for each possible position of self. Then
backtrack from best state for last vertex.

vertices

S
| ®
<<

@ V)

states

E(l)
E;‘(Z)

(3)
Eﬁﬂ

Complexity: €@z 72 vs. brute force search ?



The Viterbi Algorithm

Y ok =DE(,14)P.(x,5q,) i k>0,
kPr(qz‘ |90)L.(x,14;) if £ =0.

V(i k) = .

sequence > cee =2 J=1 k k+1 e

arg max .
Do = j V(i,L-1)P(q,|q,)
i,L-1

Duke



Viterbi: Traceback

rWZCDC ) .
V(i,k)=1 J (J (g | )P, |q) ifk>

P (q, 14" )P.(x, | 9,) ifhk=0.

rargmax - |
T(i,k)=1 ; V(j,k-DP(q |g)P.(x, |q) ifk>0,

0 ifk = 0.

T(T(T( ... T( TG, L-1), L-2) ..., 2), 1),0) = 0

/T T

A
/ \ 4=\ A

/ \ / TN

e \

Duke



Viterbi Algorithm in Pseudocode

Procedure viterbi (Q, a, P.,P., S, A'transl A'emit)

O ~J oy O WDN K

= O
[« ]

NNNNOMNNNRERRPRRRRRER R
D WNRE OW-UOo Ul b W N P

for k<0 up to |S|-1 do
for i<—0 up to |Q|-1 do
V[i][k]e—=2;
T[i][k]«NIL;
for i<1 up to |Q|-1 do
V[i][0]«1og (P. (g:|qo) ) +1log (P. (S[0]|q:) ) ;
if V[i][0]>-o then T[i][0]«O0;
for k<1 up to |S|-1 do
foreach qg.€A....[S[k]] do
foreach q.€A....[ q:] do
ve—V[j][k-1]+1log (P. (q:|q;) ) +
log (P. (S[k]la:)) ;
if v>V[i][k] then
V[i][k]«v;
T[i][k]<3
ye1;
push ¢,0;
for i<2 up to |Q|-1 do
if V[i][|s|-1]+1log (P. (qolq:)) >
V[yllls|-1]+1og (P. (qolq,) ) then y«i;
for k«|S|-1 down to 0 do
push ¢,vy;

y<T[yl[k];
push ¢,0;
return ¢;

\

J\

J\_

J\

Aransl@1719; | P(qilq)>0}
A’emit[s] - {qZ ‘ Pe(S‘Qi)>O}

> initialization

> fill out main part of DP
matrix

. choose best state from
last column in DP matrix

> traceback

Duke

UNIVERSITY



With HMM

Without HMM

location label

location label
=

HMM Recognition

HMM Location Recognition
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Metric Localization within Location

1. Given closest representative view of the location
2. Establish exact correspondences between keypoints
3. Matching combining (epipolar) geometry,

keypoint descriptors and intrinsic scale

4. Compute relative pose with respect to the reference view
(despite the unknown focal length)

. Recovered relative displacements
of new views

Representative view



Metric Localization within Location
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Conclusions and Future Work

Robust and effective categorization and automatic
segmentation of video into distinct locations and distinct
categories (indoors, outdoors, office, hallway, crossing)

Topological and metric localization using scale invariant
features

Extensions to outdoors environments (where the
orientation cannot be coarsely quantized)

Develop complete exploration strategies
Enhancing matching and pose recovery methods for
generic unstructured environments



imcodeCode1 imcodespCode1

3500 T T T 14000 T T T T T
3000 B 12000 - g
2500 . 10000 - -
2000 — 8000 [ |
1500 - - 6000 [ g
1000 |- — 4000 [~ =
500 e 2000 |- -

0 : ! ! ! ! 0 : . ! ! !

0 50 100 150 200 250 300 0 50 100 150 200 250 300
imcodespCode1 imcodeCode1

50

100

150

200

250

50 100 150 200 250 50 100 150 200 250



image 1100 (left), image 1101 (right), number of matches = 3




Pose Estimation

Two view epipolar geometry
Related Work [Sturm’ 01, Agapito’ 00, Ma et. al’ 03]
Calibrated case

ngRxl = xgExl = ()

Essential matrix — planar case R. € SO(3),T = [ts,0,t.]7

E = tzce —|_ thQ 0] tzSQ — tmce

0 te O

0 —t, 0 ]

Partially calibrated case - unknown focal length

F=K TErx1 with K =




Pose Estimation

Partially calibrated case - unknown focal length
Fundamental matrix

O f1 O
fa 0 f3
0 f4 O

F=K T K1

Calibration constraints (Kruppa’s equations)
FKKTF!' = X2exkTel

With the epipole e = [f4,0,—f1]1%
In the planar motion case Kruppa’s equations can be
renormalized with



Focal Length Estimation

e Planar Kruppa’s equations wie = [f1,0,—f1]7, A =1
FKKTFT =exKk'el

e Directly yields constraints on focal length
f3%+ 15 = fAf2 + 11

e can be estimated in the closed form

2 — f3




Robust Pose and Focal Length Estimation

Modified random sampling strategy
Incorporates the focal length constraint
(enables faster convergence)

Generate number of hypothesis by sampling 4 points
from the set of matches

Verify the which hypotheses satisfy the focal length
constraint

Select the hypothesis which minimizes the total
distance to the epipolar lines

Reject the matches with residual error above some
threshold



Rotation bias [degree]

Sensitivity of the motion estimates
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Metric Localization within Location

1. Given closest representative view of the location
2. Establish exact correspondences between keypoints
3. Matching combining (epipolar) geometry,

keypoint descriptors and intrinsic scale

4. Compute relative pose with respect to the reference view
(despite the unknown focal length)

. Recovered relative displacements
of new views

Representative view

f = 624.25



Metric Localization within Location
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f = 545.30



Conclusions and Future Work

Robust and effective categorization and automatic
segmentation of video into distinct locations and distinct
categories (indoors, outdoors, office, hallway, crossing)

Topological and metric localization using scale invariant
features

Exploit geometric relationships between features
Alternative features/feature descriptors
Extensions to outdoors environments

Develop complete exploration strategies
Improving the matching and pose recovery methods for
generic unstructured environments



