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Probabilistic Robotics 

 
Planning and Control: 

 
Markov Decision Processes 
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Problem Classes 

•  Deterministic vs. stochastic actions 

•  Full vs. partial observability 

•  Today how to make decisions under uncertainty 



Uncertainty and decisions 

•  Previously how to do state estimation under uncertainty 
•  Uncertainty can affect how the robot makes decisions  
•  How to encode preferences, between different outcomes of 

the planes (e.g. going to the airport – lots of options, risks) 
•  Utility theory – reasoning about preferences (utility – quality 

of being useful) 
•  Every state has some utility  

•  Decision theory = probability theory + utility theory 

•  Principle of maximum expected utility – agent is rational if it 
chooses an action with the highest expected utility  
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Designing control systems 
•  Often in addition to stability, observability, controllability, we 

want to have some optimality 
•  Such that the goal it that the trajectory will maximize certain 

performance index (e.g. time travelled, fuel cost, quadratic 
cost for trajectory tracking …) 

•  Using techniques from calculus of variations to solve for 
functions which maximize the performance index V  

•  Special class of systems n-stage decision processes 
•  Find such V and choices of action such that the V is maximal 
•  Blackboard example: Recursive computation of V in 

deterministic case (in case of grid world similar to waverfront 
planner) 

•  Principle of dynamic programming – decompose the problem 
in n-stages; at each stage relaxation  

4 



•  Deterministic case: find such sequence of actions that the 
performance is maximized 

•  Consider simple performance index – sum of individual 
rewards x – state, u- control, U – utility  

•  Idea recursive computation of U  for each state   
•                                                                or 

•                                                                  , example:  
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U(x0,,xn ,u1,,un ) = R(x0) ++ R(xn )

€ 

Un (x1) =maxu[R(u1,x1) +Un−1(x2)]

€ 

Un (x) =maxu[R(u,x) +Un−1( f (s,x))]

€ 

R(x) = 0

€ 

R(x) = −1
if s is goal otherwise 

-1 

0 

-1 -1 

-1 

-1 -1 -1 

-1 

-1 -1 

-1 

0 

-2 -3 

-2 

-1 -2 -3 

-4 

-5 -4 
€ 

U(x)Desirability of a state 



Optimal policy  

•  Once we have the optimal value function  
•  Policy: choose at each instance a state which with maximal 

utility 
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π =maxuV ( f (x,u))

€ 

π : X →U

up 

0 

-> 

-> 

-> -> 
Down/up 

-> -> 

-> 

up 

•  Next what if the outcomes of actions are uncertain  



Markov decision processes 

•  Framework for represention complex multi-stage decision 
problems in the presence of uncertainty 

•  Efficient solutions  
•  Models the dynamics of the environment under different 

actions  
•  Outcomes of actions are uncertain – probabilistic model 
•  Markov assumptions : next state depends in the previous 

state, and action not the past 



Markov Decision Process 

•  Formal definition  
•   4-tuple (X, U, T, R) 
•  Set of states X - finite 
•  Set of actions A – finite 
•  Transition model     
   Transition probability for each action, state  
•  Reward model  

•  Utility of a state under given policy – expected sum of 
discounted rewards 

•  Goal: find such policies which maximize sum of expected 
rewards  8 

€ 

T : X ×U × X → [0,1]

€ 

X ×U × X → R

€ 

Uπ (x) = E[ γ t

t=0

∞

∑ Rt (xt ) |π ]



Types of rewards 
•  Reward structure: additive rewards 

•  Discounted rewards 

•  Preference for current rewards over future rewards (good 
model for human and animal preferences over time) 

•  How to deal with the infinite rewards ? Make sure that the 
utility of the infinite sequence is finite 

•  Design proper policies which are guaranteed to reach the 
final state 

•  Compare policies based on average reward per step 

U(x0, x1,..., xn ) : R(x0 )+ R(x1)+...+ R(xn )

U(x0, x1,..., xn ) : R(x0 )+γR(x1)+...+γ
nR(xn )



Utility of the state 
•  How good the state is – defined in terms of sequence  
•  Utility of the state is expected utility of sequences 

which may follow that state 

•  Distinction between reward and utility 
•  Goal: Find the best policy  

 € 

Uπ (x) = E[ γ t

t=0

∞

∑ R (xt ) |π,x0 = x]

€ 

π * : X → U



Optimal Payoff 
•  Bellman equation: set of linear constraints, given a policy 
•  We can compute the utility of each state (value function) 

under policy 

•  One equation per state, n states n equations, solve for U 
•  Find such policy which maximizes the payoff 

•  We know how to compute values function (solve linear eq.)  
•  How to compute optimal policy – there are exponentially 

many sequences of actions  

U π (x) = R(x)+γ T (x,u, x ')U(x ')
s '
∑

€ 

U*(x) =maxπ U
π (x)



Value Iteration 
•  Calculation of optimal policies 
•  Calculate utility of each state and use state utilities to 

select the next action 
•  Given utility of a state 

 
 
•  Reward in current state + value function for next state 
•  Bellman equation  

•  Example  

€ 

Uπ (s) = E( γ t

t=0

∞

∑ R(xt ))

  

€ 

Uπ (x) = E[R(x) +γ(R(x1) +γR(x2) +)]

U π (x) = R(s)+γmaxu T (x,u, x ')U(x ')
s '
∑



Value Iteration 
•  Bellman equation 

•  Recursive computation 
•  Iterate while 

•  If the consecutive iterations differ little, fix point is 
reached  

•  Value iteration converges 

 

€ 

Un
π (x) = R(x) +γmaxu T(x,u,x')Un−1(x')

s'
∑

€ 

(Un
π (x) −Un−1(x)) > ε



Value iteration  
•  Compute the optimal value function first, then the policy 
•  N states – N Bellman equations, start with initial values, 

iteratively update until you reach equilibrium 
•  1. Initialize V; For each state x  
 

•  If                                          then 
•  until  

•  Return U 
•  Optimal policy can be obtained before convergence of 

value iteration   

Un (x) = R(x)+γmaxa T (x,u, x ')Un−1(x ')
x '
∑

€ 

Un (x) −Un−1(x) > δ

€ 

δ < ε(1− γ ) /γ

€ 

δ← Un (x) −Un−1(x)



Example 
•  Adopted from Russell and Norvig AI 
•  Robot navigating on the grid 
•  4 actions – up, down, left, right 
•  Effects of moves are stochastic, we may end up in other 

state then indented with non-zero probability 
•  Reward +1 for reaching the goal, -1 close to ditch, -0.04 
    for other states  
•  Goal: find the policy sequence of actions 
•  First compute the utility of each state using value iteration 
 
 Transition model:  

T(x, u, x’)   

Up = 0.8 up 0.1 left 0.1 right 

Left = … 

Right = … 

Down = …  

tt ux →:π

+1 

-1 

0.81 0.86 0.91 

0.76 0.66 

0.61 0.38 0.66 0.70 

Utility of the states 



Example 
•  Robot navigating on the grid -  up, down, left, right 
•  Reward +1 for reaching the goal, -1 for going to (4,2) 
•  R(s) = -0.04 small negative reward for visiting non-

goal states (penalize wandering around0  
•  Goal: find the policy sequence of actions  
•  Solution 

 
 
•  Idea: calculate utilities of a state, select optimal action 

in each state – one that maximizes utility 
 
 

tt ux →:π

+1 

-1 

+1 

-1 

0.81 0.86 0.91 

0.76 0.66 

0.61 0.38 0.66 0.70 



Example 
•  4 actions – up, down, left, right 
•  Reward +1 for reaching the goal, -1 close to ditch, -0.04 
    for other states  
 
 
 

+1 

-1 
Transition model:  

T(x, u, x’)   

Up = 0.8 up 0.1 left 0.1 right 

Left = … 

Right = … 

Down = …  

tt ux →:π0.81 0.86 0.91 

0.76 0.66 

0.61 0.38 0.66 0.70 

Utility of the states 

€ 

U(1,1) = −0.04 + γmax(
0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1),
0.9U(1,1) + 0.1U(1,2),
0.9U(1,1) + 0.1U(2,1),
0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)]
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best action is up 



Policy Iteration 

•  Takes policy and computes its value 
•  Iteratively improved policy, until it cannot be further 

improved 
•  1. Policy evaluation – calculate the utility of each state under 

particular policy  
•  2. Policy improvement – Calculate new MEU policy, using 

one-step look-ahead based on  
•  1. Initialize policy 
•  2. Evaluate policy get V; For each state do if 

•  Until unchanged   

€ 

π i

€ 

π i+1

maxu T (x,u, x ')U(x ')> T (x,π (x), x ')U(x ')
s '
∑

x '
∑

π (s)← argmaxu T (x,u, x ')U(x ')
x '
∑
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Deterministic, fully observable 
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Stochastic, Fully Observable 
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Stochastic, Partially Observable 


