
SA-1
1

Probabilistic Robotics

Planning and Control:

Markov Decision Processes

2

Problem Classes

•  Deterministic vs. stochastic actions

•  Full vs. partial observability

•  Today how to make decisions under uncertainty

Uncertainty and decisions

•  Previously how to do state estimation under uncertainty
•  Uncertainty can affect how the robot makes decisions
•  How to encode preferences, between different outcomes of

the planes (e.g. going to the airport – lots of options, risks)
•  Utility theory – reasoning about preferences (utility – quality

of being useful)
•  Every state has some utility

•  Decision theory = probability theory + utility theory

•  Principle of maximum expected utility – agent is rational if it
chooses an action with the highest expected utility

3

Designing control systems
•  Often in addition to stability, observability, controllability, we

want to have some optimality
•  Such that the goal it that the trajectory will maximize certain

performance index (e.g. time travelled, fuel cost, quadratic
cost for trajectory tracking …)

•  Using techniques from calculus of variations to solve for
functions which maximize the performance index V

•  Special class of systems n-stage decision processes
•  Find such V and choices of action such that the V is maximal
•  Blackboard example: Recursive computation of V in

deterministic case (in case of grid world similar to waverfront
planner)

•  Principle of dynamic programming – decompose the problem
in n-stages; at each stage relaxation

4

•  Deterministic case: find such sequence of actions that the
performance is maximized

•  Consider simple performance index – sum of individual
rewards x – state, u- control, U – utility

•  Idea recursive computation of U for each state
•  or

•  , example:

5

€

U(x0,,xn ,u1,,un) = R(x0) ++ R(xn)

€

Un (x1) =maxu[R(u1,x1) +Un−1(x2)]

€

Un (x) =maxu[R(u,x) +Un−1(f (s,x))]

€

R(x) = 0

€

R(x) = −1
if s is goal otherwise

-1

0

-1 -1

-1

-1 -1 -1

-1

-1 -1

-1

0

-2 -3

-2

-1 -2 -3

-4

-5 -4
€

U(x)Desirability of a state

Optimal policy

•  Once we have the optimal value function
•  Policy: choose at each instance a state which with maximal

utility

6

-1

0

-2 -3

-2

-1 -2 -3

-4

-5 -4 €

π =maxuV (f (x,u))

€

π : X →U

up

0

->

->

-> ->
Down/up

-> ->

->

up

•  Next what if the outcomes of actions are uncertain

Markov decision processes

•  Framework for represention complex multi-stage decision
problems in the presence of uncertainty

•  Efficient solutions
•  Models the dynamics of the environment under different

actions
•  Outcomes of actions are uncertain – probabilistic model
•  Markov assumptions : next state depends in the previous

state, and action not the past

Markov Decision Process

•  Formal definition
•  4-tuple (X, U, T, R)
•  Set of states X - finite
•  Set of actions A – finite
•  Transition model
 Transition probability for each action, state
•  Reward model

•  Utility of a state under given policy – expected sum of
discounted rewards

•  Goal: find such policies which maximize sum of expected
rewards 8

€

T : X ×U × X → [0,1]

€

X ×U × X → R

€

Uπ (x) = E[γ t

t=0

∞

∑ Rt (xt) |π]

Types of rewards
•  Reward structure: additive rewards

•  Discounted rewards

•  Preference for current rewards over future rewards (good
model for human and animal preferences over time)

•  How to deal with the infinite rewards ? Make sure that the
utility of the infinite sequence is finite

•  Design proper policies which are guaranteed to reach the
final state

•  Compare policies based on average reward per step

U(x0, x1,..., xn) : R(x0)+ R(x1)+...+ R(xn)

U(x0, x1,..., xn) : R(x0)+γR(x1)+...+γ
nR(xn)

Utility of the state
•  How good the state is – defined in terms of sequence
•  Utility of the state is expected utility of sequences

which may follow that state

•  Distinction between reward and utility
•  Goal: Find the best policy

 €

Uπ (x) = E[γ t

t=0

∞

∑ R (xt) |π,x0 = x]

€

π * : X → U

Optimal Payoff
•  Bellman equation: set of linear constraints, given a policy
•  We can compute the utility of each state (value function)

under policy

•  One equation per state, n states n equations, solve for U
•  Find such policy which maximizes the payoff

•  We know how to compute values function (solve linear eq.)
•  How to compute optimal policy – there are exponentially

many sequences of actions

U π (x) = R(x)+γ T (x,u, x ')U(x ')
s '
∑

€

U*(x) =maxπ U
π (x)

Value Iteration
•  Calculation of optimal policies
•  Calculate utility of each state and use state utilities to

select the next action
•  Given utility of a state

•  Reward in current state + value function for next state
•  Bellman equation

•  Example

€

Uπ (s) = E(γ t

t=0

∞

∑ R(xt))

€

Uπ (x) = E[R(x) +γ(R(x1) +γR(x2) +)]

U π (x) = R(s)+γmaxu T (x,u, x ')U(x ')
s '
∑

Value Iteration
•  Bellman equation

•  Recursive computation
•  Iterate while

•  If the consecutive iterations differ little, fix point is
reached

•  Value iteration converges

€

Un
π (x) = R(x) +γmaxu T(x,u,x')Un−1(x')

s'
∑

€

(Un
π (x) −Un−1(x)) > ε

Value iteration
•  Compute the optimal value function first, then the policy
•  N states – N Bellman equations, start with initial values,

iteratively update until you reach equilibrium
•  1. Initialize V; For each state x

•  If then
•  until

•  Return U
•  Optimal policy can be obtained before convergence of

value iteration

Un (x) = R(x)+γmaxa T (x,u, x ')Un−1(x ')
x '
∑

€

Un (x) −Un−1(x) > δ

€

δ < ε(1− γ) /γ

€

δ← Un (x) −Un−1(x)

Example
•  Adopted from Russell and Norvig AI
•  Robot navigating on the grid
•  4 actions – up, down, left, right
•  Effects of moves are stochastic, we may end up in other

state then indented with non-zero probability
•  Reward +1 for reaching the goal, -1 close to ditch, -0.04
 for other states
•  Goal: find the policy sequence of actions
•  First compute the utility of each state using value iteration

 Transition model:

T(x, u, x’)

Up = 0.8 up 0.1 left 0.1 right

Left = …

Right = …

Down = …

tt ux →:π

+1

-1

0.81 0.86 0.91

0.76 0.66

0.61 0.38 0.66 0.70

Utility of the states

Example
•  Robot navigating on the grid - up, down, left, right
•  Reward +1 for reaching the goal, -1 for going to (4,2)
•  R(s) = -0.04 small negative reward for visiting non-

goal states (penalize wandering around0
•  Goal: find the policy sequence of actions
•  Solution

•  Idea: calculate utilities of a state, select optimal action

in each state – one that maximizes utility

tt ux →:π

+1

-1

+1

-1

0.81 0.86 0.91

0.76 0.66

0.61 0.38 0.66 0.70

Example
•  4 actions – up, down, left, right
•  Reward +1 for reaching the goal, -1 close to ditch, -0.04
 for other states

+1

-1
Transition model:

T(x, u, x’)

Up = 0.8 up 0.1 left 0.1 right

Left = …

Right = …

Down = …

tt ux →:π0.81 0.86 0.91

0.76 0.66

0.61 0.38 0.66 0.70

Utility of the states

€

U(1,1) = −0.04 + γmax(
0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1),
0.9U(1,1) + 0.1U(1,2),
0.9U(1,1) + 0.1U(2,1),
0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)]

1 2 3 4

1

2

3

best action is up

Policy Iteration

•  Takes policy and computes its value
•  Iteratively improved policy, until it cannot be further

improved
•  1. Policy evaluation – calculate the utility of each state under

particular policy
•  2. Policy improvement – Calculate new MEU policy, using

one-step look-ahead based on
•  1. Initialize policy
•  2. Evaluate policy get V; For each state do if

•  Until unchanged

€

π i

€

π i+1

maxu T (x,u, x ')U(x ')> T (x,π (x), x ')U(x ')
s '
∑

x '
∑

π (s)← argmaxu T (x,u, x ')U(x ')
x '
∑

19

Deterministic, fully observable

20

Stochastic, Fully Observable

21

Stochastic, Partially Observable

