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Markov	  Decisions	  Processes	  
Par4ally	  observable	  Markov	  decision	  

Processes	  
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Value Iteration for Motion 
Planning 

3 

Value Function and Policy 
Iteration 

•  Often the optimal policy has been reached 
long before the value function has 
converged.  

•  Policy iteration calculates a new policy 
based on the current value function and 
then calculates a new value function based 
on this policy. 

•  This process often converges faster to the 
optimal policy. 

Previously	  

•  Varia4ons	  of	  MDP’s	  
•  Con4nuous	  state	  MDP’s	  –	  discrete	  set	  of	  
ac4ons	  –	  Value	  func4on	  approxima4on	  

•  Today	  –	  reinforcement	  learning	  	  	  
•  finite	  horizon	  MDP’s	  	  
•  LQR	  –	  con4nuous	  linear	  systems	  MDP’s	  	  
•  Stochas4c	  Policy	  search	  	  
•  POMDP’s	  	  
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Value Function Approximation 

•  Avoid visiting every state - use machine 
   learning methods to approximate value functions 
 
•  Pick some function which is easy to compute  
    approximate the value function with  
    fewer parameters – (find the parameters such  
    that the error will be minimized) e.g. linear  
    regression 
 
 
 
•  After each trial get the values – solve for parameters 

Reinforcement Learning 

•  Passive learning – policy is fixed (learn the  
   utilities of states) 
•  Active learning – learn what to do 

(exploration/exploitation) 
•  MDP’s know transition function and reward 

function  
•  Now:  do not know either 
 
Types of environments  
-  deterministic  
-  stochastic  

Reinforcement Learning 

  
•  All we can is  
   1. act   2. perceive state  3. get reward 
   Example trials, using some fixed policy  
 
    (1,1) -0.04 -> (1,2) -0.04 -> (1,3) -0.04 -> …. -> (4,3) +1 

 
    (1,1) -0.04 -> (1,2) -0.04 -> (1,3) -0.04 -> (2,3) -0.04 -> (3,3) …. -> (4,3) +1  
 

    (1,1) -0.04 -> (2,1) -0.04 -> (3,1) -0.04 -> (3,2) -0.04 -> (4,2) -1  
 
Use the information about rewards to learn the 

expected utility of each state 
  
 

Passive Reinforcement Learning 

•  Learn the utility – expected sum of rewards 

•  Direct utility estimation (Widrow, Hoff 1960) 
•  At the end of each sequence calculate the 

observed reward-to-go for each state and 
update the utility – one sample  

•  Keep track of the average utility – over all visits  
   to a particular state  
•  Does not exploit the information that the 

utilities of neighboring states are related 
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Adaptive dynamic programming 

•  How to update the utilities – such that they 
   will be satisfy the Bellman equation 
-  We need to know how the states are related 
-  Need to learn at the same time the transition 
   model  
•  keep track of frequencies of reaching  
    x’ from x by executing the action u 
 
•  Use the Bellman equation to determine the next utility 

value for each state – solve linear system of linear eq.  

•  Learns the utility function faster, exploits correlations 
between the states 

10 

Temporal Difference Learning 

•  Another way how to use the Bellman 
equation  

 
 
 
 
 
•  Adjust the value function based on 

difference between the utilities of 
successive states 

 
 
 
•  Simpler – instead of doing value 

determination – just update the value  

After few iterations the above constraint  
is not satisfied    

Active reinforcement learning 

•  Decide what actions to take – no fixed policy 
•  At each step – follow optimal policy given the 

current estimate of the utility function 
•  Greedy agents it mail fail to learn the correct  
    utilities unless it explores also other states 
•  Choosing always optimal actions can lead 
    overall to suboptimal results 
•  Fundamental trade-off exploitation (maximize  
    its reward) and exploitation (maximize overall well 
    being) 
•  Choose random action 1/t times – otherwise follow 
   optimal policy – alternatively design some function 

which will tradeoff greed vs curiosity (taking an 
action which yields lower utility – but has not been 
tried often) 

 12 

Q-learning 

•  Instead of learning utilities - learn 
action value function Q(s,a) 

 
 
•  Active TD Q-learning agent 

•  TD learning – too expensive to store 
the value functions 

•  In large  models it is very hard to learn 
visit every state 
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Policy search 

•  Policy  - maps states to actions 
•  We would like to learn directly the policy 
•  Parameterize the policy by a collection of  
   functions 

Value of the policy 

14 

POMDPs 
•  In POMDPs we apply the very same idea as in 

MDPs. 

•  Since the state is not observable, the agent has 
to make its decisions based on the belief state 
which is a posterior distribution over states. 

•  Let b be the belief of the agent about the state 
under consideration. 

•  POMDPs compute a value function over belief 
space: 

15 

Problems 
•  Each belief is a probability distribution, thus, 

each value in a POMDP is a function of an 
entire probability distribution. 

•  This is problematic, since probability 
distributions are continuous. 

•  Additionally, we have to deal with the huge 
complexity of belief spaces. 

•  For finite worlds with finite state, action, and 
measurement spaces and finite horizons, 
however, we can effectively represent the 
value functions by piecewise linear 
functions.  

16 

An Illustrative Example 
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The Parameters of the Example 
•  The actions u1 and u2 are terminal actions. 
•  The action u3 is a sensing action that potentially leads 

to a state transition. 
•  The horizon is finite and γ=1. 

18 

Payoff in POMDPs 

•  In MDPs, the payoff (or return) depended on 
the state of the system. 

•  In POMDPs, however, the true state is not 
exactly known. 

•  Therefore, we compute the expected payoff 
by integrating over all states:  

19 

Payoffs in Our Example (1) 
•  If we are totally certain that we are in state x1 and 

execute action u1, we receive a reward of -100 
•  If, on the other hand, we definitely know that we 

are in x2 and execute u1, the reward is +100. 
•  In between it is the linear combination of the 

extreme values weighted by the probabilities 

20 

Payoffs in Our Example (2) 
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The Resulting Policy for T=1 
•  Given we have a finite POMDP with T=1, 

we would use V1(b) to determine the 
optimal policy. 

•  In our example, the optimal policy for 
T=1 is 

•  This is the upper thick graph in the 
diagram. 

22 

Piecewise Linearity, Convexity 
•  The resulting value function V1(b) is 

the maximum of the three functions 
at each point 

•  It is piecewise linear and convex. 

23 

Pruning 
•  If we carefully consider V1(b), we see 

that only the first two components 
contribute.  

•  The third component can therefore 
safely be pruned away from V1(b). 

24 

Increasing the Time Horizon 
•  Assume the robot can make an observation before deciding on an 

action. 

•  To be continued in Special Topics Class …   

V1(b) 
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Addi4onal	  topics	  

•  LQR	  solving	  MDP’s	  exactlly	  
•  Finite	  horizon	  problems	  	  
•  Policy	  search	  ,	  Reinforce	  and	  Pegasus	  alg.	  	  

•  Robo4cs	  Self	  Assembly	  
hTp://www.youtube.com/ssrlab0/	  

•  hTp://msl.cs.uiuc.edu/~lavalle/projects.html	  
Weasle	  balls	  –	  sensorless	  control	  
hTp://www.youtube.com/watch?
v=P7vfTzbpx5k&lr=1	  

•  Petman	  Boston	  Dynamics	  hTp://
www.youtube.com/watch?
v=Dl40uEjcP3o&feature=fvst	  

•  Sand	  Flea	  jumping	  robots	  
hTp://www.youtube.com/watch?v=6b4ZZQkcNEo	  

•  Sand	  swimming	  robot	  
hTp://news.discovery.com/tech/snake-‐like-‐robot-‐
swims-‐rescue-‐110513.html	  

	  
•  hTp://youtu.be/_-‐p08o_oTO4	  Autonomous	  
Helicopters	  

•  Medical	  robo4cs	  –	  needle	  steering	  	  
•  hTp://www.youtube.com/watch?
feature=endscreen&NR=1&v=yFbUvmsNXX4	  

•  Laundry	  folding	  
hTp://www.youtube.com/watch?v=gy5g33S0Gzo	  
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Wumpus World PEAS 
description 

•  Performance measure 
–  gold +1000, death -1000 
–  -1 per step, -10 for using the arrow 

•  Environment 
–  Squares adjacent to wumpus are smelly 
–  Squares adjacent to pit are breezy 
–  Glitter iff gold is in the same square 
–  Shooting kills wumpus if you are facing it 
–  Shooting uses up the only arrow 
–  Grabbing picks up gold if in same square 
–  Releasing drops the gold in same square 

 

•  Sensors: Stench, Breeze, Glitter, Bump, Scream 
•  Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot 
 

Wumpus world characterization 
•  Fully Observable No – only local 

perception 
•  Deterministic Yes – outcomes exactly 

specified 
•  Episodic No – sequential at the level of 

actions 
•  Static  Yes – Wumpus and Pits do not 

move 
•  Discrete Yes 
•  Single-agent? Yes  
 

Exploring a wumpus world 

No stench or breeze in [1 1], nearby states are ok 


