
5/3/12	

1	

Markov	 Decisions	 Processes	
Par4ally	 observable	 Markov	 decision	

Processes	

2

Value Iteration for Motion
Planning

3

Value Function and Policy
Iteration

•  Often the optimal policy has been reached
long before the value function has
converged.

•  Policy iteration calculates a new policy
based on the current value function and
then calculates a new value function based
on this policy.

•  This process often converges faster to the
optimal policy.

Previously	

•  Varia4ons	 of	 MDP’s	
•  Con4nuous	 state	 MDP’s	 –	 discrete	 set	 of	
ac4ons	 –	 Value	 func4on	 approxima4on	

•  Today	 –	 reinforcement	 learning	 	 	
•  finite	 horizon	 MDP’s	 	
•  LQR	 –	 con4nuous	 linear	 systems	 MDP’s	 	
•  Stochas4c	 Policy	 search	 	
•  POMDP’s	 	

5/3/12	

2	

Value Function Approximation

•  Avoid visiting every state - use machine
 learning methods to approximate value functions

•  Pick some function which is easy to compute
 approximate the value function with
 fewer parameters – (find the parameters such
 that the error will be minimized) e.g. linear
 regression

•  After each trial get the values – solve for parameters

Reinforcement Learning

•  Passive learning – policy is fixed (learn the
 utilities of states)
•  Active learning – learn what to do

(exploration/exploitation)
•  MDP’s know transition function and reward

function
•  Now: do not know either

Types of environments
-  deterministic
-  stochastic

Reinforcement Learning

•  All we can is
 1. act 2. perceive state 3. get reward
 Example trials, using some fixed policy

 (1,1) -0.04 -> (1,2) -0.04 -> (1,3) -0.04 -> …. -> (4,3) +1

 (1,1) -0.04 -> (1,2) -0.04 -> (1,3) -0.04 -> (2,3) -0.04 -> (3,3) …. -> (4,3) +1

 (1,1) -0.04 -> (2,1) -0.04 -> (3,1) -0.04 -> (3,2) -0.04 -> (4,2) -1

Use the information about rewards to learn the

expected utility of each state

Passive Reinforcement Learning

•  Learn the utility – expected sum of rewards

•  Direct utility estimation (Widrow, Hoff 1960)
•  At the end of each sequence calculate the

observed reward-to-go for each state and
update the utility – one sample

•  Keep track of the average utility – over all visits
 to a particular state
•  Does not exploit the information that the

utilities of neighboring states are related

5/3/12	

3	

Adaptive dynamic programming

•  How to update the utilities – such that they
 will be satisfy the Bellman equation
-  We need to know how the states are related
-  Need to learn at the same time the transition
 model
•  keep track of frequencies of reaching
 x’ from x by executing the action u

•  Use the Bellman equation to determine the next utility

value for each state – solve linear system of linear eq.

•  Learns the utility function faster, exploits correlations
between the states

10

Temporal Difference Learning

•  Another way how to use the Bellman
equation

•  Adjust the value function based on

difference between the utilities of
successive states

•  Simpler – instead of doing value

determination – just update the value

After few iterations the above constraint
is not satisfied

Active reinforcement learning

•  Decide what actions to take – no fixed policy
•  At each step – follow optimal policy given the

current estimate of the utility function
•  Greedy agents it mail fail to learn the correct
 utilities unless it explores also other states
•  Choosing always optimal actions can lead
 overall to suboptimal results
•  Fundamental trade-off exploitation (maximize
 its reward) and exploitation (maximize overall well
 being)
•  Choose random action 1/t times – otherwise follow
 optimal policy – alternatively design some function

which will tradeoff greed vs curiosity (taking an
action which yields lower utility – but has not been
tried often)

 12

Q-learning

•  Instead of learning utilities - learn
action value function Q(s,a)

•  Active TD Q-learning agent

•  TD learning – too expensive to store
the value functions

•  In large models it is very hard to learn
visit every state

5/3/12	

4	

13

Policy search

•  Policy - maps states to actions
•  We would like to learn directly the policy
•  Parameterize the policy by a collection of
 functions

Value of the policy

14

POMDPs
•  In POMDPs we apply the very same idea as in

MDPs.

•  Since the state is not observable, the agent has
to make its decisions based on the belief state
which is a posterior distribution over states.

•  Let b be the belief of the agent about the state
under consideration.

•  POMDPs compute a value function over belief
space:

15

Problems
•  Each belief is a probability distribution, thus,

each value in a POMDP is a function of an
entire probability distribution.

•  This is problematic, since probability
distributions are continuous.

•  Additionally, we have to deal with the huge
complexity of belief spaces.

•  For finite worlds with finite state, action, and
measurement spaces and finite horizons,
however, we can effectively represent the
value functions by piecewise linear
functions.

16

An Illustrative Example

2x1x 3u
8.0

2z
1z

3u

2.0

8.0
2.0

7.0

3.0

3.0

7.0

measurements action u3 state x2

payoff

measurements

1u 2u 1u 2u
100− 50−100 100

actions u1, u2

payoff

state x1

1z

2z

5/3/12	

5	

17

The Parameters of the Example
•  The actions u1 and u2 are terminal actions.
•  The action u3 is a sensing action that potentially leads

to a state transition.
•  The horizon is finite and γ=1.

18

Payoff in POMDPs

•  In MDPs, the payoff (or return) depended on
the state of the system.

•  In POMDPs, however, the true state is not
exactly known.

•  Therefore, we compute the expected payoff
by integrating over all states:

19

Payoffs in Our Example (1)
•  If we are totally certain that we are in state x1 and

execute action u1, we receive a reward of -100
•  If, on the other hand, we definitely know that we

are in x2 and execute u1, the reward is +100.
•  In between it is the linear combination of the

extreme values weighted by the probabilities

20

Payoffs in Our Example (2)

5/3/12	

6	

21

The Resulting Policy for T=1
•  Given we have a finite POMDP with T=1,

we would use V1(b) to determine the
optimal policy.

•  In our example, the optimal policy for
T=1 is

•  This is the upper thick graph in the
diagram.

22

Piecewise Linearity, Convexity
•  The resulting value function V1(b) is

the maximum of the three functions
at each point

•  It is piecewise linear and convex.

23

Pruning
•  If we carefully consider V1(b), we see

that only the first two components
contribute.

•  The third component can therefore
safely be pruned away from V1(b).

24

Increasing the Time Horizon
•  Assume the robot can make an observation before deciding on an

action.

•  To be continued in Special Topics Class …

V1(b)

5/3/12	

7	

Addi4onal	 topics	

•  LQR	 solving	 MDP’s	 exactlly	
•  Finite	 horizon	 problems	 	
•  Policy	 search	 ,	 Reinforce	 and	 Pegasus	 alg.	 	

•  Robo4cs	 Self	 Assembly	
hTp://www.youtube.com/ssrlab0/	

•  hTp://msl.cs.uiuc.edu/~lavalle/projects.html	
Weasle	 balls	 –	 sensorless	 control	
hTp://www.youtube.com/watch?
v=P7vfTzbpx5k&lr=1	

•  Petman	 Boston	 Dynamics	 hTp://
www.youtube.com/watch?
v=Dl40uEjcP3o&feature=fvst	

•  Sand	 Flea	 jumping	 robots	
hTp://www.youtube.com/watch?v=6b4ZZQkcNEo	

•  Sand	 swimming	 robot	
hTp://news.discovery.com/tech/snake-‐like-‐robot-‐
swims-‐rescue-‐110513.html	

	
•  hTp://youtu.be/_-‐p08o_oTO4	 Autonomous	
Helicopters	

•  Medical	 robo4cs	 –	 needle	 steering	 	
•  hTp://www.youtube.com/watch?
feature=endscreen&NR=1&v=yFbUvmsNXX4	

•  Laundry	 folding	
hTp://www.youtube.com/watch?v=gy5g33S0Gzo	

5/3/12	

8	

Wumpus World PEAS
description

•  Performance measure
–  gold +1000, death -1000
–  -1 per step, -10 for using the arrow

•  Environment
–  Squares adjacent to wumpus are smelly
–  Squares adjacent to pit are breezy
–  Glitter iff gold is in the same square
–  Shooting kills wumpus if you are facing it
–  Shooting uses up the only arrow
–  Grabbing picks up gold if in same square
–  Releasing drops the gold in same square

•  Sensors: Stench, Breeze, Glitter, Bump, Scream
•  Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization
•  Fully Observable No – only local

perception
•  Deterministic Yes – outcomes exactly

specified
•  Episodic No – sequential at the level of

actions
•  Static Yes – Wumpus and Pits do not

move
•  Discrete Yes
•  Single-agent? Yes

Exploring a wumpus world

No stench or breeze in [1 1], nearby states are ok

