Linear Algebra
 Prerequisites - continued

Jana Kosecka
kosecka@cs.gmu.edu

Matrices

m points from n-dimensional space

$$
C=A A^{T}
$$

Example: Covariance matrix - symmetric Square matrix associated with The data points (after mean has been subtracted) in 2D

$$
C=\left[\begin{array}{cc}
\sum_{1}^{n} x_{i}^{2} & \sum_{1}^{n} x_{i} y_{i} \\
\sum_{1}^{n} x_{i} y_{i} & \sum_{1}^{n} y_{i}^{2}
\end{array}\right]
$$

transformation

$$
A \in \Re^{2 \times 2}
$$

$$
\mathrm{y}=A \mathrm{x}
$$

Special case matrix is square

Geometric interpretation

Lines in 2D space - row solution Equations are considered isolation

$$
\begin{aligned}
2 x-y & =1 \\
x+y & =5
\end{aligned}
$$

Linear combination of vectors in 2D
Column solution

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right] x+\left[\begin{array}{c}
-1 \\
1
\end{array}\right] y=\left[\begin{array}{l}
1 \\
5
\end{array}\right]
$$

We already know how to multiply the vector by scalar

Linear equations

In 3D

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2 \\
9
\end{array}\right]
$$

When is RHS a linear combination of LHS

$$
\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right] u+\left[\begin{array}{c}
1 \\
-6 \\
7
\end{array}\right] v+\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] w=\left[\begin{array}{c}
5 \\
-2 \\
9
\end{array}\right]
$$

Solving linear n equations with n unknows If matrix is invertible - compute the inverse Columns are linearly independent

$$
A \mathrm{x}=\mathrm{y}
$$

$$
\begin{aligned}
\operatorname{det}(A) & \neq 0 \\
A^{-1} A \mathrm{x} & =A^{-1} \mathbf{y} \\
\mathrm{x} & =A^{-1} \mathbf{y}
\end{aligned}
$$

Linear equations

Not all matrices are invertible

- inverse of a 2×2 matrix (determinant non-zero)
- inverse of a diagonal matrix

Computing inverse - solve for the columns Independently or using Gauss-Jordan method

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right]\left[\begin{array}{lll}
& & \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Vector spaces (informally)

- Vector space in n-dimensional space \Re^{n}
- n-dimensional columns with real entries
- Operations of addition, multiplication and scalar multiplication
- Additions of the vectors and multiplication of a vector by a scalar always produces vectors which lie in the space
- Matrices also make up vector space - e.g. consider all 3×3 matrices as elements of \Re^{9} space

Vector subspace

- A subspace of a vector space is a non-empty set Of vectors closed under vector addition and scalar multiplication
- Example: over constrained system - more equations then unknowns

$$
\left[\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

-The solution exists if b is in the subspace spanned by vectors u and v

$$
\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] x_{1}+\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] x_{2}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Linear Systems

1. When matrix is square and invertible
2. When the matrix is square and noninvertible
3. When the matrix is non-square with more constraints then unknowns

$$
A \mathbf{x}=\mathbf{b}
$$

Solution exists when b is in column space of A Special case

All the vectors which satisfy $A \mathbf{x}=0$ lie in the NULLSPACE of matrix A

Basis

$n \times n$ matrix A is invertible if it is of a full rank

- Rank of the matrix - number of linearly independent rows (see definition next page)
- If the rows of columns of the matrix A are linearly independent - the nullspace of contains only 0 vector
- Set of linearly independent vectors forms a basis of the vector space
- Given a basis, the representation of every vector is unique Basis is not unique (examples)

Linear independence

Definition A. 1 (A linear space). A set (of vectors) V is considered as a linear space over the field \mathbb{R}, if its elements, so-called vectors, are closed under two basic operations: scalar multiplication and vector summation. That is, given any two vectors $v_{1}, v_{2} \in V$ and any two scalars $\alpha, \beta \in \mathbb{R}$, the linear combination $v=\alpha v_{1}+\beta v_{2}$ is also a vector in V.
Definition A. 4 (Linearly independence). A set of vectors $S=\left\{v_{i}\right\}_{i=1}^{m}$ is said to be linearly independent if the equation

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{m} v_{m}=0
$$

implies

$$
\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0
$$

Definition A. 5 (Basis). A set of vectors $B=\left\{b_{i}\right\}_{i=1}^{n}$ of a linear space V is said to be a basis if B is a linearly independent set and B spans the entire space V (i.e. $V=\operatorname{span}(B)$).

Change of basis

Fact A. 6 (Properties of basis). Suppose B and B^{\prime} are two bases for a linear space V. Then
2. Let $B=\left\{b_{i}\right\}_{i=1}^{n}$ and $B^{\prime}=\left\{b_{i}^{\prime}\right\}_{i=1}^{n}$, then each base vector of B can be expressed as linear combination of those in B^{\prime}, i.e.

$$
\begin{equation*}
b_{j}=a_{1 j} b_{1}^{\prime}+a_{2 j} b_{2}^{\prime}+\cdots+a_{n j} b_{n}^{\prime}=\sum_{i=1}^{n} a_{i j} b_{i}^{\prime} \tag{A.2}
\end{equation*}
$$

for some $a_{i j} \in \mathbb{R}, i, j=1,2, \ldots, n$.
3. For any vector $v \in V$, it can be written as a linear combination of vectors in either of the bases

$$
\begin{equation*}
v=x_{1} b_{1}+x_{2} b_{2}+\cdots+x_{n} b_{n}=x_{1}^{\prime} b_{1}^{\prime}+x_{2}^{\prime} b_{2}^{\prime}+\cdots+x_{n}^{\prime} b_{n}^{\prime} \tag{A.3}
\end{equation*}
$$

where the coefficients $\left\{x_{i} \in \mathbb{R}\right\}_{i=1}^{n}$ and $\left\{x_{i}^{\prime} \in \mathbb{R}\right\}_{i=1}^{n}$ are uniquely determined and are called the coordinates of v with respect to each basis.

Change of basis (contd.)

$$
\begin{gathered}
{\left[b_{1}, b_{2}, \ldots, b_{n}\right]=\left[b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right]\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]} \\
v=\left[b_{1}, b_{2}, \ldots, b_{n}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right]\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \\
B^{\prime}=B A^{-1}, \quad x^{\prime}=A x .
\end{gathered}
$$

Linear Equations - Rank

In general

$$
A \in \Re^{n \times m}
$$

Four basic subspaces

- Column space of A - dimension of $C(A)$ number of linearly independent columns $r=\operatorname{rank}(A)$
- Row space of A - dimension of $R(A)$ number of linearly independent rows $r=\operatorname{rank}\left(A^{\top}\right)$
- Null space of A - dimension of $N(A) n-r$
- Left null space of A - dimension of $N\left(A^{\wedge} T\right) m-r$
- Maximal rank - $\min (n, m)$ - smaller of the two dimensions

Linear Equations

Vector space spanned by columns of $A\left[\begin{array}{c}2 \\ 4 \\ -2\end{array}\right]^{u+}\left[\begin{array}{c}1 \\ -6 \\ 7\end{array}\right] v+\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right] w=\left[\begin{array}{c}5 \\ -2 \\ 9\end{array}\right]$

In general $A \in \Re^{n \times m}$
Four basic possibilities, suppose that the matrix A has full rank Then:

- if $n<m$ number of equations is less then number of unknowns, the set of solutions is ($m-n$) dimensional vector subspace of $R^{\wedge} m$
- if $n=m$ there is a unique solution
- if $n>m$ number of equations is more then number of unknowns, there is no solution

Structure induced by a linear map

Linear Equations - Square Matrices

1. A is square and invertible
2. A is square and non-invertible
3. System $A x=b$ has at most one solution columns are linearly independent rank $=n$ - then the matrix is invertible $\mathrm{x}=A^{-1} \mathrm{y}$
4. Columns are linearly dependent rank < n

- then the matrix is not invertible

Linear Equations - non-square matrices

Long-tin matrix

over-constrained system

$$
\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

The solution exist when b is aligned with $[2,3,4]^{\wedge} T$
If not we have to seek some approximation - least squares Approximation - minimize squared error

Least squares solution - find such value of x that the error Is minimized (take a derivative, set it to zero and solve for x) Short for such solution

$$
e^{2}=\|a x-b\|^{2}
$$

$$
\begin{aligned}
a \mathbf{x} & =b \\
a^{T} a \mathbf{x} & =a^{T} b \\
\overline{\mathbf{x}} & =\frac{a^{T} b}{a^{T} a}
\end{aligned}
$$

Linear equations - non-squared matrices

Similarly when A is a matrix

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
1 & 3 \\
0 & 0
\end{array}\right] \mathrm{x} } & =\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] \\
A \mathrm{x} & =b \\
e^{2}=\|A \mathbf{x}-b\|^{2} \quad A^{T} A \mathrm{x} & =A^{T} b \\
\overline{\mathrm{x}} & =\left(A^{T} A\right)^{-1} A^{T} b
\end{aligned}
$$

- If A has linearly independent columns $A^{\top} A$ is square, symmetric and invertible

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

is so called pseudoinverse of matix A

Homogeneous Systems of equations

$A \mathrm{x}=0$

When matrix is square and non-singular, there a Unique trivial solution $x=0$

If $m>=n$ there is a non-trivial solution when rank of A is $\operatorname{rank}(A)<n$
We need to impose some constraint to avoid trivial Solution, for example

$$
\|\mathbf{x}\|=1
$$

Find such x that $\|A \mathbf{x}\|^{2}$ is minimized

$$
\|A \mathbf{x}\|^{2}=\mathbf{x} A^{T} A \mathbf{x}
$$

Solution: eigenvector associated with the smallest eigenvalue

Eigenvalues and Eigenvectors

- Motivated by solution to differential equations
- For square matrices $A \in \Re^{n \times n} \quad \dot{\mathbf{u}}=A \mathbf{u}$

$$
A=\left[\begin{array}{ll}
4 & -5 \\
2 & -3
\end{array}\right]
$$

For scalar ODE's
We look for the solutions of the following type exponentials

$$
\dot{u}=a u
$$

$u(t)=e^{a t} u(0)$

$$
\begin{aligned}
v(t) & =e^{\lambda t} y \\
w(t) & =e^{\lambda t} z
\end{aligned}
$$

Substitute back to the equation

$$
\begin{gathered}
\lambda e^{\lambda t} y=4 e^{\lambda t} y-5 e^{\lambda t} z \\
\lambda e^{\lambda t} z=2 e^{\lambda t} y-3 e^{\lambda t} z \\
\mathrm{x}=\left[\begin{array}{l}
y \\
z
\end{array}\right] \quad \lambda \mathrm{x}=\left[\begin{array}{ll}
4 & -5 \\
2 & -3
\end{array}\right] \mathrm{x}
\end{gathered}
$$

Eigenvalues and Eigenvectors

$$
\lambda \mathrm{x}=\left[\begin{array}{ll}
4 & -5 \\
2 & -3 \tag{1}
\end{array}\right] \mathrm{x} \quad A \mathrm{x}=\lambda \mathrm{x}
$$

Solve the equation: $\quad(A-\lambda I) \mathrm{x}=0$
x - is in the null space of $(A-\lambda I)$
λ is chosen such that $(A-\lambda I)$ has a null space
Computation of eigenvalues and eigenvectors (for $\operatorname{dim} 2,3$)

1. Compute determinant
2. Find roots (eigenvalues) of the polynomial such that determinant $=0$
3. For each eigenvalue solve the equation (1)

For larger matrices - alternative ways of computation

Eigenvalues and Eigenvectors

For the previous example

$$
\lambda_{1}=-1, x_{1}=[1,1]^{T} \quad \lambda_{2}=-2, x_{2}=[5,2]^{T}
$$

We will get special solutions to ODE $\dot{\mathbf{u}}=A \mathbf{u}$

$$
f \mathbf{u}=e^{\lambda_{1} t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \mathbf{u}=e^{\lambda_{2} t}\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

Their linear combination is also a solution (due to the linearity of $\dot{\mathbf{u}}=A \mathbf{u}$)

$$
\mathbf{u}=c_{1} e^{\lambda_{1} t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} e^{\lambda_{1} t}\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

In the context of diff. equations - special meaning Any solution can be expressed as linear combination Individual solutions correspond to modes

Eigenvalues and Eigenvectors

$$
A \mathrm{x}=\lambda \mathrm{x}
$$

Only special vectors are eigenvectors

- such vectors whose direction will not be changed by the transformation A (only scale)
- they correspond to normal modes of the system act independently

Examples
eigenvalues eigenvectors

$$
A=\left[\begin{array}{cc}
2 & 0 \\
0 & 3
\end{array}\right] \quad 2,3 \quad\left[\begin{array}{l}
0 \\
1
\end{array}\right] ;\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Whatever A does to an arbitrary vector is fully determined by its eigenvalues and eigenvectors

$$
A \mathbf{x}=2 \lambda_{1} v_{1}+5 \lambda_{2} v_{2}
$$

Eigenvalues and Eigenvectors - Diagonalization

- Given a square matrix A and its eigenvalues and eigenvectors - matrix can be diagonalized

$$
A=S \wedge S^{-1}
$$

Matrix of eigenvectors \quad Diagonal matrix of eigenvalues

$$
\begin{aligned}
A S & =\wedge S \\
A\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right] & =\left[\begin{array}{llll}
\lambda_{1} x_{1} & \lambda_{2} x_{2} & \ldots & \lambda_{n} x_{n}
\end{array}\right] \quad A \mathbf{x}=\lambda \mathbf{x} \\
{\left[\begin{array}{lllll}
\lambda_{1} x_{1} & \lambda_{2} x_{2} & \ldots & \lambda_{n} x_{n}
\end{array}\right] } & =\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & \ldots & \\
& & & \lambda_{n}
\end{array}\right] \\
& =S \wedge S^{-1}
\end{aligned}
$$

- If some of the eigenvalues are the same, eigenvectors are not independent

Trace

- Only defined for square matrices
- Sum of the elements on the main diagonal

$$
\operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}=\sum_{i=1}^{n} a_{i i}
$$

- Sum of eigenvalues $\operatorname{tr}(A)=\sum_{i=1} \lambda_{i}$

It is a linear operator with the following properties

- Additivity: $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
- Homogeneity: $\operatorname{tr}(c \cdot A)=c \cdot \operatorname{tr}(A)$
- Pairwise commutative: $\operatorname{tr}(A B)=\operatorname{tr}(B A), \quad \operatorname{tr}(A B C) \neq \operatorname{tr}(A C B)$

Trace is similarity invariant $\operatorname{tr}\left(P^{-1} A P\right)=\operatorname{tr}\left(\left(A P^{-1}\right) P\right)=\operatorname{tr}(A)$
Trace is transpose invariant $\operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right)$

Diagonalization

- If there are no zero eigenvalues - matrix is invertible
- If there are no repeated eigenvalues - matrix is diagonalizable
- If all the eigenvalues are different then eigenvectors are linearly independent

For Symmetric Matrices

If A is symmetric

$$
A=Q \wedge Q^{T}
$$

orthonormal matrix of eigenvectors
i.e. for a covariance matrix or some matrix $B=A^{\wedge} T A$

Symmetric matrices (contd.)

$$
\begin{gathered}
A^{T} A=V \operatorname{diag}\left\{\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{n}^{2}\right\} V^{T} \\
\|A\|_{f}=\sqrt{\sum_{i, j} a_{i j}^{2}} . \\
\|A\|_{f}=\sqrt{\operatorname{trace}\left(A^{T} A\right)}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2}} .
\end{gathered}
$$

Example - line fitting

Equation of a line

$$
a x+b y=d
$$

Line normal

$$
\mathbf{n}=[a, b]
$$

Distance to the origin d
Error function $e(a, b, d)=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}$
Differentiate with respect to a, b, d set the first derivative to 0 and solve for the parameters

