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Matrices 

n x m matrix 

transformation m points from n-dimensional space 

meaning 

Example: Covariance matrix – symmetric 
Square matrix associated with  
The data points (after mean  
has been subtracted) in 2D  Special case  

matrix is square 



Geometric interpretation 

Lines in 2D space - row solution 
Equations are considered isolation 

Linear combination of vectors in 2D 
Column solution 

We already know how to multiply the vector by scalar 



Linear equations 

When is RHS a linear combination of LHS 

Solving linear n equations with n unknows 
If matrix is invertible - compute the inverse 
Columns are linearly independent 

In 3D 



Linear equations 

Not all matrices are invertible 

- inverse of a 2x2 matrix (determinant non-zero) 
-  inverse of a diagonal matrix  

Computing inverse - solve for the columns  
Independently or using Gauss-Jordan method 



Vector spaces (informally) 

•  Vector space in n-dimensional space  
•  n-dimensional columns with real entries  
•  Operations of addition, multiplication and scalar 

multiplication 
•  Additions of the vectors and multiplication of a 

vector by a scalar always produces vectors which 
lie in the space  

•  Matrices also make up vector space - e.g. consider 
all 3x3 matrices as elements of        space 



Vector subspace 
•  A subspace of a vector space is a non-empty set  
Of vectors closed under vector addition and scalar 
multiplication 
•  Example: over constrained system - more equations  
then unknowns 

• The solution exists if  b is in the subspace spanned  
 by vectors u and v 



Linear Systems  

1.  When matrix is square and invertible 
2.  When the matrix is square and noninvertible 
3.  When the matrix is non-square with more  
     constraints then unknowns 

Solution exists when b is in column space of A 
Special case  

All the vectors which satisfy                 lie in the 
NULLSPACE of matrix A 



Basis 

n x n matrix A is invertible if it is of a full rank  

•  Rank of the matrix - number of linearly  
independent rows  (see definition next page) 

•  If the rows of columns of the matrix A are linearly  
independent - the nullspace of contains only 0 vector 

•  Set of linearly independent vectors forms a basis of  
the vector space  

•  Given a basis, the representation of every vector is unique 
Basis is not unique ( examples)  



Linear independence 



Change of basis 



Change of basis (contd.) 



Linear Equations - Rank 

Vector space spanned by columns of A  

•  Column space of A – dimension of C(A)  
                                   number of linearly independent columns 
                                   r = rank(A)   
•  Row space of A     - dimension of R(A) 
                                  number of linearly independent rows 
                                  r = rank(AT) 
•  Null space of A     - dimension of N(A)  n - r 
•  Left null space of A – dimension of N(A^T)  m – r 
•  Maximal rank - min(n,m) – smaller of the two dimensions 

Four basic subspaces 
In general 



Linear Equations 

Vector space spanned by columns of A  

•  if n < m number of equations is less then number of 
unknowns, the set of solutions is (m-n) dimensional vector 
subspace of R^m  
•  if n = m there is a unique solution  
•  if n > m number of equations is more then number of 
unknowns, there is no solution 

Four basic possibilities, suppose that the matrix A has full rank 
Then: 

In general 



Nu(A ) 

Structure induced by a linear map 
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Linear Equations – Square Matrices 

1.   A is square and invertible 
2.   A is square and non-invertible 

3.  System Ax = b has at most one solution – 
columns are linearly independent rank = n 

    - then the matrix is invertible 
2. Columns are linearly dependent rank < n 
    - then the matrix is not invertible 



Linear Equations – non-square matrices 

The solution exist when b is aligned with [2,3,4]^T 
If not we have to seek some approximation – least squares  
Approximation – minimize squared error 

Least squares solution - find such value of x that the error  
Is minimized (take a derivative, set it to zero and solve for x) 

Long-tin matrix 
over-constrained  

system 

Short for such solution 



Linear equations – non-squared matrices 

•  If A has linearly independent columns ATA is square,   
symmetric and invertible 

Similarly when A is a matrix 

 is so called pseudoinverse of matix A 



Homogeneous Systems of equations 

When matrix is square and non-singular, there a 
Unique trivial solution x = 0 

If m >= n there is a non-trivial solution when rank of A 
is  rank(A) <  n  
We need to impose some constraint to avoid trivial  
Solution, for example   

Find such x that                 is minimized 

Solution: eigenvector associated with the smallest eigenvalue 



Eigenvalues and Eigenvectors 

•  For square matrices 

We look for the solutions  
of the following type exponentials 

•    Motivated by solution to differential equations 

For scalar ODE’s 

Substitute back to the equation 



Eigenvalues and Eigenvectors 

eigenvector 
eigenvalue 

Solve the equation: 

x – is in the null space of  
λ is chosen such that                       has a null space 

(1) 

For larger matrices – alternative ways of computation 

Computation of eigenvalues and eigenvectors (for dim 2,3) 
1.  Compute determinant 
2.  Find roots (eigenvalues) of the polynomial such that determinant = 0 
3.  For each eigenvalue solve the equation (1) 



Eigenvalues and Eigenvectors 
For the previous example 

We will get special solutions to ODE 

Their linear combination is also a solution (due to the linearity of             ) 

In the context of diff. equations – special meaning  
Any solution can be expressed as linear combination 

Individual solutions correspond to modes  



Eigenvalues and Eigenvectors 

Only special vectors are eigenvectors  
 - such vectors whose direction  will not be changed 
    by the transformation  A (only scale) 
-   they correspond to normal modes of the system 
    act independently 

Examples 

 2, 3 

eigenvalues eigenvectors 

Whatever A does to an arbitrary vector is fully  
determined by its eigenvalues and eigenvectors 



Eigenvalues and Eigenvectors - Diagonalization 

•  Given a square matrix A and its eigenvalues and 
eigenvectors – matrix can be diagonalized  

Matrix of eigenvectors Diagonal matrix of eigenvalues 

•  If some of the eigenvalues are the same, eigenvectors 
  are not independent 



Trace 

•  Only defined for square matrices 
•  Sum of the elements on the main diagonal 

•  Sum of eigenvalues   

€ 

tr(A) = λi
i=1

n

∑



Diagonalization 

•  If there are no zero eigenvalues – matrix is  invertible 
•  If there are no repeated eigenvalues – matrix is diagonalizable  
•  If all the eigenvalues are different then eigenvectors are linearly 

independent 

For Symmetric Matrices 

If A is symmetric 

orthonormal matrix of eigenvectors 

i.e. for a covariance matrix 

Diagonal matrix of eigenvalues 

or some matrix B = A^TA 



Symmetric matrices (contd.) 



              Example - line fitting  

Equation of a line  

Line normal  

Distance to the origin 

Error function 

Differentiate with respect to a,b,d 
set the first derivative to 0 and solve for the parameters 


