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Fitting: Issues

* Previous strategies
Line detection Hough transform

Simple parametric model, two parameters m, b

y=mx+b

Voting strategy
Hard to generalize to higher dimensions
3

2
y=da,+ ax+ a,x" + d,x

* Now input is a set of points

* Noise in the measured feature locations

- Extraneous data: clutter (outliers), multiple lines
 Missing data: occlusions



Fitting: Overview

* |If we know which points belong to the line,

how do we find the “optimal” line parameters?
« Least squares

« \What if there are outliers?
« Robust fitting, RANSAC

* What if there are many lines?
* Voting methods: RANSAC, Hough transform

« What if we’re not even sure it's a line?
 Model selection



Least squares line fitting

Data: (x, »,), ..., (x,, »,)
Line equation: y, =mx, + b
Find (m, b) to minimize

L= E; (yi — mx, _b)2
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Normal equations: least squares solution to

XB=Y



Problem with “vertical” least squares

* Not rotation-invariant
 Fails completely for vertical lines



Total least squares

Distance between point (x;, y;) and

line ax+by=d (a*+b*=1): |ax, + by, — d ax+by=d

. Unit normal:
(xpy) N=(@ )
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Total least squares

Distance between point (x;, y;) and
line ax+by=d (a*+b*=1): |ax, + by, — d

Find (a, b, d) to minimize the sum of
squared perpendicular distances

E = E; (ax, +by, —d)’

ax+by=d

. Unit normal:
(x;, y;) N=(a D)
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Total least squares

Distance between point (x;, y;) and B
line ax-+by=d (@+b*=1): |ax, + by, — d ax+by=d
Find (a, b, d) to minimize the sum of . Unit normal:
squared perpendicular distances (x,y,) N=(a b)
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Solution to (UTU)N = 0, subject to ||N]|*= 1: eigenvector of U'U
associated with the smallest eigenvalue (least squares solution
to homogeneous linear system UN = 0)



Total least squares

X =X Y=Y

X,—=X Y,—)

U'U =
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second moment matrix



Total least squares

X =X Y=Y

U'U =
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second moment matrix




Least squares: Robustness to noise

Least squares fit to the red points:
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Least squares: Robustness to noise

Least squares fit with an outlier:

-10+

-12+
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-14 -12 -10 -8 -6 <4 -2 0 2 4 B

Problem: squared error heavily penalizes outliers



Robust estimators

« (General approach: find model parameters 6 that minimize

3 pli(x.0ko)
r;(x;, 0) — residual of i-th point w.r.t. model parameters 6
p — robust function with scale parameter ¢

The robust function
p behaves like
squared distance for
small values of the
residual u but
saturates for larger
values of u




Choosing the scale: Just right
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The effect of the outlier is minimized



Choosing the scale: Too small
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The error value is almost the same for every
point and the fit is very poor



Choosing the scale: Too large
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Behaves much the same as least squares



Robust estimation: Detalls

* Robust fitting is a nonlinear optimization
problem that must be solved iteratively

» |Least squares solution can be used for
initialization

» Adaptive choice of scale: approx. 1.5 times
median residual (F&P, Sec. 15.5.1)



RANSAC

* Robust fitting can deal with a few outliers —
what if we have very many?

 Random sample consensus (RANSAC):
Very general framework for model fitting in
the presence of outliers

Outllne

Choose a small subset of points uniformly at random

* Fit a model to that subset

* Find all remaining points that are “close” to the model and
reject the rest as outliers

* Do this many times and choose the best model

M. A. Fischler, R. C. Bolles.

Random Sample Consensus: A Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp
381-395, 1981.




RANSAC for line fitting example

Source: R. Raguram



RANSAC for line fitting example

Least-squares fit

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select
minimal subset
of points

Source: R. Raguram



RANSAC for line fitting example

Source: R. Raguram

. Randomly select

minimal subset
of points

. Hypothesize a

model



RANSAC for line fitting example

1. Randomly select
minimal subset
of points

w o g . 2. Hypothesize a
) . ’ model
» °, 3. Compute error
> function

Source: R. Raguram



RANSAC for line fitting example

Source: R. Raguram

Randomly select
minimal subset
of points
Hypothesize a
model

. Compute error

function

. Select points

consistent with
model



RANSAC for line fitting example

Source: R. Raguram

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

Select points
consistent with
model

Repeat
hypothesize-and-
verify loop



RANSAC for line fitting example

Source: R. Raguram

Randomly select
minimal subset
of points
Hypothesize a
model
Compute error
function
Select points
consistent with
model
Repeat
hypothesize-and-
verify loop

39



RANSAC for line fitting example

Source: R. Raguram

Uncontaminated sample

Randomly select
minimal subset
of points
Hypothesize a
model

. Compute error

function

. Select points

consistent with
model
Repeat
hypothesize-and-
verify loop

40



RANSAC for line fitting example

Source: R. Raguram

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

Select points
consistent with
model

Repeat
hypothesize-and-
verify loop



RANSAC for line fitting

Repeat N times:
« Draw s points uniformly at random
* Fitline to these s points

* Find inliers to this line among the remaining
points (i.e., points whose distance from the
line is less than ¢)

« |fthere are d or more inliers, accept the line
and refit using all inliers



Choosing the parameters

* Initial number of points s
« Typically minimum number needed to fit the model

 Distance threshold t

« Choose t so probability for inlier is p (e.g. 0.95)
 Zero-mean Gaussian noise with std. dev. o: 12=3.84072

 Number of samples N

« Choose N so that, with probability p, at least one random
sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys



Choosing the parameters

* Initial number of points s
« Typically minimum number needed to fit the model

 Distance threshold t

« Choose t so probability for inlier is p (e.g. 0.95)
 Zero-mean Gaussian noise with std. dev. o: 12=3.84072

 Number of samples N

« Choose N so that, with probability p, at least one random
sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

i-0-e)) =1-5

N =1log(l —p)/lOg(l -(1 ‘e)s)

proportion of outliers e
5% 10% 20% 25% 30% 40% 50%
3 6 7 11 17
7 9 11 19 35
9 13 17 34 72
12 17 26 57 146
16 24 37 97 293
20 33 54 163 588
26 44 /8 272 1177

Source: M. Pollefeys
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Choosing the parameters

* Initial number of points s
« Typically minimum number needed to fit the model

* Distance threshold t
« Choose t so probability for inlier is p (e.g. 0.95)

« Zero-mean Gaussian noise with std. dev. o: t2=3.8402
 Number of samples N

« Choose N so that, with probability p, at least one random
sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
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Source: M. Pollefeys



Choosing the parameters

* Initial number of points s
« Typically minimum number needed to fit the model

 Distance threshold t

« Choose t so probability for inlier is p (e.g. 0.95)
 Zero-mean Gaussian noise with std. dev. o: 12=3.84072

 Number of samples N

« Choose N so that, with probability p, at least one random
sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

 Consensus set size d
« Should match expected inlier ratio

Source: M. Pollefeys



Adaptively determining the number of samples

* |nlier ratio e is often unknown a priori, so pick
worst case, e.g. 50%, and adapt if more
inliers are found, e.g. 80% would yield e=0.2

« Adaptive procedure:
« N=<«, sample count =0
 While N >sample count
— Choose a sample and count the number of inliers
— Set e = 1 — (number of inliers)/(total number of points)
— Recompute N from e:

N =log(l - p)/log(l ~(1- e)s)

— Increment the sample count by 1

Source: M. Pollefeys



RANSAC pros and cons

* Pros
« Simple and general
« Applicable to many different problems
« Often works well in practice

e Cons

« Lots of parameters to tune

« Doesn’t work well for low inlier ratios (too many iterations,
or can fail completely)

« Can’t always get a good initialization
of the model based on the minimum
number of samples




