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Fitting: Issues 
•  Previous strategies 
•  Line detection Hough transform  
•  Simple parametric model, two parameters m, b 

•  Voting strategy  
•  Hard to generalize to higher dimensions  
 
 
•  Now input is a set of points  
•  Noise in the measured feature locations 
•  Extraneous data: clutter (outliers), multiple lines 
•  Missing data: occlusions 
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Fitting: Overview 
•  If we know which points belong to the line, 

how do we find the “optimal” line parameters? 
•  Least squares 

 

•  What if there are outliers? 
•  Robust fitting, RANSAC 

 

•  What if there are many lines? 
•  Voting methods: RANSAC, Hough transform 

 

•  What if we’re not even sure it’s a line? 
•  Model selection 



Least squares line fitting 
Data: (x1, y1), …, (xn, yn) 
Line equation: yi = m xi + b 
Find (m, b) to minimize  
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Normal equations: least squares solution to 
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Problem with “vertical” least squares 
•  Not rotation-invariant 
•  Fails completely for vertical lines 



Total least squares 
Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d| 
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Unit normal: 

N=(a, b) 



Total least squares 
Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d| 
Find (a, b, d) to minimize the sum of 
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Total least squares 
Distance between point (xi, yi) and 
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Solution to (UTU)N = 0, subject to ||N||2 = 1: eigenvector of UTU 
associated with the smallest eigenvalue (least squares solution  
to homogeneous linear system UN = 0) 



Total least squares 
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second moment matrix 



Total least squares 
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Least squares: Robustness to noise 
Least squares fit to the red points: 



Least squares: Robustness to noise 
Least squares fit with an outlier: 

Problem: squared error heavily penalizes outliers 



Robust estimators 
•  General approach: find model parameters θ that minimize 

 
                                   
 
ri (xi, θ) – residual of i-th point w.r.t. model parameters θ 
ρ – robust function with scale parameter σ   

( )( )σθρ ;,iii xr∑

The robust function 
ρ behaves like 
squared distance for 
small values of the 
residual u but 
saturates for larger 
values of u 



Choosing the scale: Just right 

The effect of the outlier is minimized 



The error value is almost the same for every 
point and the fit is very poor 

Choosing the scale: Too small 



Choosing the scale: Too large 

Behaves much the same as least squares 



Robust estimation: Details 
•  Robust fitting is a nonlinear optimization 

problem that must be solved iteratively 
•  Least squares solution can be used for 

initialization 
•  Adaptive choice of scale: approx. 1.5 times 

median residual (F&P, Sec. 15.5.1) 



RANSAC 
•  Robust fitting can deal with a few outliers – 

what if we have very many? 
•  Random sample consensus (RANSAC):  

Very general framework for model fitting in 
the presence of outliers 

•  Outline 
•  Choose a small subset of points uniformly at random 
•  Fit a model to that subset 
•  Find all remaining points that are “close” to the model and 

reject the rest as outliers 
•  Do this many times and choose the best model 

M. A. Fischler, R. C. Bolles. 
Random Sample Consensus: A Paradigm for Model Fitting with Applications to 
Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 
381-395, 1981.  



RANSAC for line fitting example 

Source: R. Raguram 
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Source: R. Raguram 
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RANSAC for line fitting 
Repeat N times: 
•  Draw s points uniformly at random 
•  Fit line to these s points 
•  Find inliers to this line among the remaining 

points (i.e., points whose distance from the 
line is less than t) 

•  If there are d or more inliers, accept the line 
and refit using all inliers 



Choosing the parameters 
•  Initial number of points s 

•  Typically minimum number needed to fit the model 

•  Distance threshold t 
•  Choose t so probability for inlier is p (e.g. 0.95)  
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2 

•  Number of samples N 
•  Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e) 

Source: M. Pollefeys 
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proportion of outliers e 
s 5% 10% 20% 25% 30% 40% 50% 
2 2 3 5 6 7 11 17 
3 3 4 7 9 11 19 35 
4 3 5 9 13 17 34 72 
5 4 6 12 17 26 57 146 
6 4 7 16 24 37 97 293 
7 4 8 20 33 54 163 588 
8 5 9 26 44 78 272 1177 

Source: M. Pollefeys 
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Choosing the parameters 
•  Initial number of points s 

•  Typically minimum number needed to fit the model 

•  Distance threshold t 
•  Choose t so probability for inlier is p (e.g. 0.95)  
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2 

•  Number of samples N 
•  Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e) 

•  Consensus set size d 
•  Should match expected inlier ratio 

Source: M. Pollefeys 



Adaptively determining the number of samples 

•  Inlier ratio e is often unknown a priori, so pick 
worst case, e.g. 50%, and adapt if more 
inliers are found, e.g. 80% would yield e=0.2  

•  Adaptive procedure: 
•  N=∞, sample_count =0 
•  While N >sample_count 

– Choose a sample and count the number of inliers 
–  Set e = 1 – (number of inliers)/(total number of points) 
– Recompute N from e: 

 
 
 

–  Increment the sample_count by 1 

( ) ( )( )sepN −−−= 11log/1log

Source: M. Pollefeys 



RANSAC pros and cons 
•  Pros 

•  Simple and general 
•  Applicable to many different problems 
•  Often works well in practice 

•  Cons 
•  Lots of parameters to tune 
•  Doesn’t work well for low inlier ratios (too many iterations,  

or can fail completely) 
•  Can’t always get a good initialization  

of the model based on the minimum  
number of samples 


