
1

Autonomous Robotic Systems

CS 685

Jana Kosecka, 4444 Research II
kosecka@gmu.edu , 3-1876

Office hours Tue 2-3pm

1

Logistics
• Grading: Homeworks + Project 65% Exam: 35%
• Prerequisites: basic statistical concepts, geometry, linear

algebra, calculus, CS 480, CS 580
• Course web page

https://cs.gmu.edu/~kosecka/cs685/

• Homeworks about every 2 weeks, Midterm, Final Project
• Choose from the list of projects, suggest your own
• Implement one of the covered methods on robot/robot simulator,

come up with new ideas of robotics tasks

• Write a report and prepare the final presentation

2

2

Recommended Text

• R. Siegwart and I. Nourbakhsh: Introduction to Autonomous Mobile Robots,
MIT Press, 2004

• [1] S. LaValle: Planning Algorithms, Cambridge Press,
http://planning.cs.uiuc.edu/

• [2] S. Thrun, W. Burghart, D. Fox: Probabilistic Robotics
http://robots.stanford.edu/probabilistic-robotics/

• [4] S. Russell and P. Norvig: Artificial Intelligence: A Modern Approach
• [5] R. Sutton and A. G. Barto: Introduction to Reinforcement Learning (on-

line materials see course www)

3

Overview of the topics
• Kinematics, Kinematic Chains, Mobile Robot kinematics
• Notion of state, sensing state, elementary control
• Motion planning, Graph Based Methods, Potential Field Based

methods, Sampling Based Methods, Configurations Space

• Robot Perception – Image Features, Stereo, Motion Estimation and
3D reconstruction, Object Detection, Semantic Segmentation

• Foundations of Probabilistic Robotics
• State estimation and Tracking
• Localization using Particle Filters
• Simultaneous Localization and Mapping using vision and RGB-D data

• Dynamic Programming and Markov Decision Processes
• Learning how to act – Reinforcement Learning

4

3

Course Logistics
• Required language Python
• Robot simulators, real robots

• Availability of robotics platforms
• Pioneers with range sensors, cameras

• Turtlebot Pyrobot open source robotics platform
http://pyrobot.com

• Humanoid – Small soccer league
• Simulators – AI Habitat AI-Thor https://ai2thor.allenai.org/
• CARLA Autonomous Driving Simulator https://carla.org/
• List of resources for mobile robotics http://www.mobilerobots.org//

• Possibilities of programming real robots equipped with range sensors,
RGB-D cameras

• Current trends and areas of robotic technologies

5

Gibson Environment

Habitat Challenge

Embodied AI

6

http://aihabitat.org/
https://ai2thor.allenai.org/
https://carla.org/
http://www.mobilerobots.org/

4

• House 3D (Facebook Research)
• Rich simulated environments
• Navigation, Perception, Visual Question Answering

7

Applications History - Robots in manufacturing/material handling

Manhattan project (1942) – handling and processing of radioactive
materials – Telemanipulation

Manufacturing
- storage, transport delivery
- table top tasks, material sorting, part feeding – conveyor belt
- microelectronics, packaging
- harbor transportation
- construction (automatic cranes)

Suitable for hard repetitive tasks – heavy handling or fine positioning
Successful in restricted environments, limited sensing is sufficient –
limited autonomy

Autonomous Robotic Systems
AGV’s - automated guided vehicles
AUV’s - automated unmanned vehicles

8

5

Applications History - Space Robotics

50-ties US space program, exploration of planets, collecting samples
Astronauts bulky space suits – difficult

NASA, JPL, DARPA – sponsoring agencies
Space programs, military application – surveillance, assistance

Planetary Rovers – initially controlled by humans
- large time delays,
- poor communication connections

Need for (semi) – autonomy

Teleoperation – Mars Rover

Human operator controls the robot
Local site – human views the sensory data, sends the commands
Remote site – sensors acquire the information

9

SKydio

WaymoAmazon Picking Challenge

IGQ REG GQ-Adv-Phys GQ-Adv GQ-S GQ

Success Rate (%) 60±13 52±14 68±13 74±12 72±12 80±11

Precision (%) N/A N/A 68 87 92 100

Robust Grasp Rate (%) N/A N/A 100 30 48 58

Planning Time (sec) 1.8 3.4 0.7 0.7 0.8 0.8

TABLE IV: Performance of grasp planning methods on our grasping bench-
mark with the test dataset of 10 household objects with 95% confidence
intervals for the success rate. Each method was tested for 50 trials, and
details on the methods used for comparison can be found in Section VI-C.
GQ performs best in terms of success rate and precision, with 100% precision
(zero false positives among 29 positive classifications). Performance decreases
with smaller training datasets, but the GQ-CNN methods outperform the
image-based grasp quality metrics (IGQ) and point cloud registration (REG).

Generalization Objects Order Fulfillment

Fig. 7: (Left) The test set of 40 household objects used for evaluating the
generalization performance of the Dex-Net 2.0 grasp planner. The dataset
contains rigid, articulated, and deformable objects. (Right) The experimental
setup for order fulfillment with the ABB YuMi. The goal is to grasp and
transport three target objects to a shipping container (box on right).

(CEM) [33], which iteratively samples a set of candidate
grasps and re-fits the candidate grasp distribution to the grasps
with the highest predicted robustness, in order to find better
maxima of the robust grasping policy. More details can be
found in the supplemental file. The CEM-augmented Dex-Net
2.0 grasp planner achieved 94% success and 99% precision
(68 successes out of 69 grasps classified as robust), and it
took an average of 2.5s to plan grasps.

H. Application: Order Fulfillment
To demonstrate the modularity of the Dex-Net 2.0 grasp

planner, we used it in an order fulfillment application with
the ABB YuMi. The goal was to grasp and transport a set
of three target objects to a shipping box in the presence of
three distractor objects when starting with the objects in a pile
on a planar worksurface, illustrated in Fig. 7. Since the Dex-
Net 2.0 grasp planner assumes singulated objects, the YuMi
first separated the objects using a policy learned from human
demonstrations mapping binary images to push locations [31].
When the robot detected an object with sufficient clearance
from the pile, it identified the object based on color and used
GQ-L-Adv to plan a robust grasp. The robot then transported
the object to either the shipping box or a reject box, depending
on whether or not the object was a distractor. The system
successfully placed the correct objects in the box on 4 out of
5 attempts and was successful in grasping on 93% of 27 total
attempts.

I. Failure Modes
Fig. 8 displays some common failures of the GQ-CNN

grasp planner. One failure mode occured when the RGB-D

RGB-D Sensor Noise Misclassified Collisions

+ + +

Execution

Planned
Grasp

Fig. 8: Four examples of failed grasps planned using the GQ-CNN from Dex-
Net 2.0. The most common failure modes were related to: (left) missing sensor
data for an important part of the object geometry, such as thin parts of the
object surface, and (right) collisions with the object that are misclassified as
robust.

sensor failed to measure thin parts of the object geometry,
making these regions seem accessible. A second type of failure
occured due to collisions with the object. It appears that the
network was not able to fully distinguish collision-free grasps
in narrow parts of the object geometry. This suggests that
performance could be improved with more accurate depth
sensing and using analytic methods to prune grasps in collsion.

VII. DISCUSSION AND FUTURE WORK

We developed a Grasp Quality Convolutional Neural Net-
work (GQ-CNN) architecture that predicts grasp robustness
from a point cloud and trained it on Dex-Net 2.0, a dataset
containing 6.7 million point clouds, parallel-jaw grasps, and
robust grasp metrics. In over 1,000 physical evaluations, we
found that the Dex-Net 2.0 grasp planner is as reliable and
3⇥ faster a method based on point cloud registration, and had
99% precision on a test set of 40 novel objects.

In future work, our goal is to approach 100% success on
known objects by using active learning to adaptively acquire
grasps using a policy initialized with a GQ-CNN. Additionally,
we plan to exend the method to grasp objects in clutter [16, 33]
by using simulated piles of rigid objects from Dex-Net and
by augmenting the grasping policy with an option to push and
separate objects when no robust grasp is available. We also
intend to extend the method to use point clouds from multiple
viewpoints and in grasping tasks with sequential structure,
such as regrasping for assembly. Furthermore, we plan to
release a subset of our code, dataset, and the trained GQ-CNN
weights to facilitate further research and comparisons.

ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC Berkeley in affiliation with the Berkeley AI Research (BAIR)

Lab, the Real-Time Intelligent Secure Execution (RISE) Lab, and the CITRIS People and Robots (CPAR) Initiative. The

authors were supported in part by the U.S. National Science Foundation under NRI Award IIS-1227536: Multilateral

Manipulation by Human-Robot Collaborative Systems, the Department of Defense (DoD) through the National Defense

Science & Engineering Graduate Fellowship (NDSEG) Program, the Berkeley Deep Drive (BDD) Program, and by donations

from Siemens, Google, Cisco, Autodesk, IBM, Amazon Robotics, and Toyota Robotics Institute. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the

views of the Sponsors. We thank our colleagues who provided helpful feedback, code, and suggestions, in particular Pieter

Abbeel, Ruzena Bajcsy, Brenton Chu, Roy Fox, David Gealy, Ed Johns, Sanjay Krishnan, Animesh Garg, Sergey Levine,

Pusong Li, Matt Matl, Stephen McKinley, Andrew Reardon, Vishal Satish, Sammy Staszak, and Nan Tian.

Dexnet

Google Arm farm

10

6

• Lasers, camera, radar, GPS, compass, antenna, IMU,
• Steer by wire system, PC’s with Ethernet for processing information

from sensors

Grand Challenges DARPA

2004, 2005, 2007

11

12

7

Learn policies

1
3

ot
at

1. run away
2. ignore
3. pet

Terminology & notation

Supervised learning paradigm
training data ot , at

Learn the policy

1. run away
2. ignore
3. pet

Terminology & notation Why did that work?

Bojarski et al. ‘16, NVIDIABojarski ‘16 NVIDIA End to End Learning for Self-
Driving Cars

13

End-to-end interpretable trainable motion
planner

Perception

Cost Volume

Trajectory Samples

+

+ Argmin Trajectory

Trajectory Sampler

Backbone Network

Figure 1. Our end-to-end interpretable neural motion planner. Backbone network takes LiDAR data and maps as inputs, and outputs

bounding boxes of other actors for future timesteps (perception), as well as a cost volume for planning with T filters. Next, for each

trajectory proposal from the sampler, its cost is indexed from different filters of the cost volume and summed together. The trajectory with

the minimal cost will be our final planning.

end learnable and interpretable motion planner. Our model
takes as input LiDAR point clouds and a HD map, and pro-
duces interpretable intermediate representations in the form
of 3D detections and their future trajectories. Our final out-
put representation is a space-time cost volume that repre-
sents the “goodness” of each location that the SDV can take
within a planning horizon. Our planner then samples a set
of diverse and feasible trajectories, and selects the one with
the minimum learned cost for execution. Importantly, the
non-parametric cost volume is able to capture the uncer-
tainty and multi-modality in possible SDV trajectories, e.g
changing lane v.s keeping lane.

We demonstrate the effectiveness of our approach in
real world driving data captured in several cities in North
America. Our experiments show that our model provides
good interpretable representations, and shows better perfor-
mance. Specifically for detection and motion forecasting,
our model outperforms recent neural architectures specif-
ically designed on these tasks. For motion planning, our
model generates safer planning compared to the baselines.

2. Related Work

Imitation Learning: Imitation learning (IL) uses expert
demonstrations to directly learn a policy that maps states to
actions. IL for self-driving vehicles was introduced in the
pioneering work of [24] where a direct mapping from the
sensor data to steering angle and acceleration is learned. [3]
follows the similar philosophy. In contrast, with the help of
a high-end driving simulator [9], Codevilla et al. [8] exploit
conditional models with additional high-level commands

such as continue, turn-left, turn-right. Muller et al. [21]
incorporate road segmentation as intermediate representa-
tions, which are then converted into steering commands. In
practice, IL approaches suffer from the compounding error
due to the nature of self-driving control being a sequential
decision problem. Furthermore, these approaches require
massive amount of data, and generalize poorly, e.g., to situ-
ations drifting out of lane.

RL & IRL: Reinforcement learning (RL) is a natural
fit for sequential decision problems as it considers the in-
teractions between the environment and the agent (a self-
driving car in this case). Following the success of Alpha
GO [29], RL has been applied to self-driving in [15, 23].
On the other hand, the inverse reinforcement learning (IRL)
looks at learning the reward function for a given task.
[31, 35] develop IRL algorithms to learn drivable region
for self-driving cars. [25] further infers possible trajec-
tories with a symmetrical cross-entropy loss. However,
all these approaches have only been tested on simulated
datasets or small real-world datasets, and it is unclear if RL
and IRL can scale to more realistic settings. Furthermore,
these methods do not produce interpretable representations,
which are desirable in safety critical applications.

Optimization Based Planners: Motion planning has
long been treated as an independent task that uses the out-
puts of perception and prediction modules to formulate an
optimization problem, usually by manually engineering a
cost function [4, 10, 20, 36]. The preferred trajectory is then
generated by minimizing this cost function. In practice,
to simplify the optimization problem, many approaches as-

8661

W. Zheng, W. Luo, S. Sua R. Urtasun et al.
End-to-end interpretable neural planner, CVPR 2019

Optimizing perception, motion planning and control jointly
integrating map data, predictions of the object detectors

14

8

Example 1:Building Virtual Models of
Mars

See http://schwehr.org/photoRealVR/example.html

Example of stereo pipeline, from raw data, preprocessing,
meshes, texture maps

15

Lunar Rovers

Apollo

Current NASA Prototype

16

9

Applications: Underwater robotics

• Sensor network • Remotely Operated
robot for ocean
exploration

18

Robots in the service of humans

• Robotic surgery - DaVinci robotic surgery robot – human
assisted

• http://www.intuitivesurgical.com/products/da_vinci_video
_overview.aspx

• Robotics in rehabilitation surgery (Hocomo Inc)

• Mobile Robots
- courier in buildings and hospitals, vacuum cleaners,

19

http://www.intuitivesurgical.com/products/da_vinci_video_overview.aspx

10

Variety of domains and tasks

20

Games and Entertainment

Aibo soccer league - RoboCup

Furbies
Aibos Latter & Macaron

21

11

Environment

percepts

actions

Models

25

Interface/Language

Task planner

Map Builder

Collision
Detection/Kinematics

Dynamics Control

Localization Path Planner

Perception Action

Perception Action

Semantic
Parser

Architecture

Deliberative decision making

Feedback/Reactive
control

26

12

Interface/Language

Task planner

Map Builder

Collision
Detection/Kinematics

Dynamics Control

Localization Path Planner

Perception Action

Perception Action

Semantic
Parser

Architecture

Feedback/Reactive
control

27

Interface/Language

Task planner

Map Builder

Collision
Detection/Kinematics

Dynamics Control

Localization Path Planner

Perception Action

Perception Action

Semantic
Parser

Architecture

Mapping
and localization

28

13

Interface/Language

Task planner

Map Builder

Collision
Detection/Kinematics

Dynamics Control

Localization Path Planner

Perception Action

Perception Action

Semantic
Parser

Architecture
Deliberative Control and
decision making

29

Robotics and AI
Knowledge representation
how to represent objects, humans, environments
symbol grounding problem

Computer Vision, Pattern Recognition, Perception
recognition, vision and motion, segmentation and grouping
representation

Natural Language Processing
provides better interfaces, symbol grounding problem

Planning and Decision Making
How to make optimal decision, actions give the current knowledge
of the state, currently available actions

Learning in Robotics
Learning to plan, learning to explore, learning to perceive, visual dialog
Learning to grasp, end-to-end learning, modular learning

30

14

Interface/Language

Task planner

Map Builder

Collision
Detection/Kinematics

Dynamics Control

Localization Path Planner

Perception Action

Perception Action

Semantic
Parser

Architecture
Deliberative Control and
decision making

NLP, Knowledge Representation

Computer Vision

Computer Vision – symbol grounding
Planning and Decision Making

Planning and Decision Making
Planning and Decision Making

31

Autonomous Robotic System

• Three Basic Components of the Robotic System
• SENSE – process information from the sensors
• PLAN – compute the right commands/directives
• ACT – produces actuator commands

• Different organization of these functionalities gives rise to
different robot architectures

32

15

Autonomous Driving

• DARPA Grand Challenge 2005
2004 CMU vehicle drove 7.36 miles out of 150
2005 5 teams finished, Stanford won

• DARPA Urban Challenge 2007
urban environment other vehicles present
6 teams finished

• Google Self-Driving Car
by July 2015 1M miles, 14 minor accidents

• Ernst Dickmans / Mercedes Benz 1987
1758 Km, 60 miles per hour

• Parking maneuvers, overtake maneuvers, skidding

33

Robotic Navigation

• Stanford Stanley Grand
Challenge

• Outdoors unstructured
env., single vehicle

• Urban Challenge
• Outdoors structured

env., mixed traffic,
traffic rules

34

16

Robot Components (Stanley)
• Sensors
• Actuators-Effectors
• Locomotion System
• Computer system – Architectures – (the brain)

• Lasers, camera, radar, GPS, compass, antenna, IMU,
• Steer by wire system
• Rack of PC’s with Ethernet for processing information

from sensors

35

Stanley Software System

36

17

• Terrain mapping using lasers

• Determining obstacle course

37

May 2020, New York Times

March 2018, Guardian

March 2018, BBC News

• Reduction of the number of accidents
• 5 million accidents and
• > 30,000 fatalities due to traffic accidents)
• Time recovered due to commuting,
• Improved parking in the cities,
• New models of personal mobility

Autonomous Driving

38

18

Mapping, Control, Planning for autonomous driving
• Navigation strategies
• trajectory following, planning, (overtake, lane change)

Data Driven, Machine Learning Techniques

39

Autonomous Helicopter Flight
[Abbeel, Coates & Ng]

Kalman filtering, model-predictive control, LQR, system ID, trajectory learning

Slide courtesy P. Abbeel

40

19

Four-legged locomotion

value iteration, receding horizon control, motion
planning, inverse reinforcement learning,
nolearning, learned

[Kolter, Abbeel & Ng]

Slide courtesy P. Abbeel

41

Mobile Manipulation
[Maitin-Shepard, Cusumano-Towner, Lei, Abbeel, 2010]

localization, motion planning for navigation and grasping,
grasp point selection, visual recognition

Slide courtesy P. Abbeel

42

file:////Users/pabbeel/Dropbox/work/Teaching/cs287-fa11/Lecture1/nolearning7.mp4
file:////Users/pabbeel/Dropbox/work/Teaching/cs287-fa11/Lecture1/learned_controller2.wmv

20

Visuomotor Learning
[Levine*, Finn*, Darrell, Abbeel, 2015]

Slide courtesy P. Abbeel

43

Learn policies

4
4

ot
at

1. run away
2. ignore
3. pet

Terminology & notation

Supervised learning paradigm
training data ot at

Learn the policy

1. run away
2. ignore
3. pet

Terminology & notation Why did that work?

Bojarski et al. ‘16, NVIDIABojarski ‘16 NVIDIA End to End Learning for Self-
Driving Cars

44

21

End-to-end interpretable trainable motion
planner

Perception

Cost Volume

Trajectory Samples

+

+ Argmin Trajectory

Trajectory Sampler

Backbone Network

Figure 1. Our end-to-end interpretable neural motion planner. Backbone network takes LiDAR data and maps as inputs, and outputs

bounding boxes of other actors for future timesteps (perception), as well as a cost volume for planning with T filters. Next, for each

trajectory proposal from the sampler, its cost is indexed from different filters of the cost volume and summed together. The trajectory with

the minimal cost will be our final planning.

end learnable and interpretable motion planner. Our model
takes as input LiDAR point clouds and a HD map, and pro-
duces interpretable intermediate representations in the form
of 3D detections and their future trajectories. Our final out-
put representation is a space-time cost volume that repre-
sents the “goodness” of each location that the SDV can take
within a planning horizon. Our planner then samples a set
of diverse and feasible trajectories, and selects the one with
the minimum learned cost for execution. Importantly, the
non-parametric cost volume is able to capture the uncer-
tainty and multi-modality in possible SDV trajectories, e.g
changing lane v.s keeping lane.

We demonstrate the effectiveness of our approach in
real world driving data captured in several cities in North
America. Our experiments show that our model provides
good interpretable representations, and shows better perfor-
mance. Specifically for detection and motion forecasting,
our model outperforms recent neural architectures specif-
ically designed on these tasks. For motion planning, our
model generates safer planning compared to the baselines.

2. Related Work

Imitation Learning: Imitation learning (IL) uses expert
demonstrations to directly learn a policy that maps states to
actions. IL for self-driving vehicles was introduced in the
pioneering work of [24] where a direct mapping from the
sensor data to steering angle and acceleration is learned. [3]
follows the similar philosophy. In contrast, with the help of
a high-end driving simulator [9], Codevilla et al. [8] exploit
conditional models with additional high-level commands

such as continue, turn-left, turn-right. Muller et al. [21]
incorporate road segmentation as intermediate representa-
tions, which are then converted into steering commands. In
practice, IL approaches suffer from the compounding error
due to the nature of self-driving control being a sequential
decision problem. Furthermore, these approaches require
massive amount of data, and generalize poorly, e.g., to situ-
ations drifting out of lane.

RL & IRL: Reinforcement learning (RL) is a natural
fit for sequential decision problems as it considers the in-
teractions between the environment and the agent (a self-
driving car in this case). Following the success of Alpha
GO [29], RL has been applied to self-driving in [15, 23].
On the other hand, the inverse reinforcement learning (IRL)
looks at learning the reward function for a given task.
[31, 35] develop IRL algorithms to learn drivable region
for self-driving cars. [25] further infers possible trajec-
tories with a symmetrical cross-entropy loss. However,
all these approaches have only been tested on simulated
datasets or small real-world datasets, and it is unclear if RL
and IRL can scale to more realistic settings. Furthermore,
these methods do not produce interpretable representations,
which are desirable in safety critical applications.

Optimization Based Planners: Motion planning has
long been treated as an independent task that uses the out-
puts of perception and prediction modules to formulate an
optimization problem, usually by manually engineering a
cost function [4, 10, 20, 36]. The preferred trajectory is then
generated by minimizing this cost function. In practice,
to simplify the optimization problem, many approaches as-

8661

W. Zheng, W. Luo, S. Sua R. Urtasun et al.
End-to-end interpretable neural planner, CVPR 2019

optimizing perception, motion planning and control jointly
integrating map data, predictions of the object detectors

45

Robots @ GMU

Pioneer, Pybot, Flockbots, RoboPatriots

49

22

• 100 Billion neurons
• On average, connected to 1 K others
• Neurons are slow. Firing rates < 100 Hz.
• Can be classified into

• Sensory – vision, somatic, audition, chemical
• Motor – locomotion, manipulation, speech
• Central – reasoning and problem solving

The Brain (analogy)

50

• 1 neuron = 1000 instructions/sec
• 1 synapse = 1 byte of information
• Human brain then processes 10^14 IPS and has

10^14 bytes of storage
• In 2000, we have 10^9 IPS and 10^9 bytes on a

desktop machine
• In 25 years, assuming Moore’s law we obtain human

level computing power

Trends in biological and machine evolution
Hans Moravec: Robot

51

23

52

Modeling Geometric transformation

• Modeling Rigid Body Motion
• Modeling Kinematic Chains

Course Overview – PART I

53

24

• Notion of state, state evolution
• Systems view vector denotes the state of the

system, vector types of controls/actions the
system can carry out we will discuss ways of
characterizing the motion of the system

x
u

xt+1 = f(xt,ut)
˙x(t) = f(x(t),u(t))

Modelling motion

54

Mobile Robot Kinematics

• Two wheels

• Three wheels

Omnidirectional Drive Synchro Drive

55

25

Motion Control: Open Loop Control

• trajectory (path) divided in motion
segments of clearly defined shape:
– straight lines and segments of a circle.

• control problem:
– pre-compute a smooth trajectory

based on line and circle segments

yI

xI

goal

56

yR

xR

goal

v(t)

w(t)

q

start e

Motion Control: Feedback Control,
Problem Statement

• Find a control matrix K, if exists

• with kij=k(t,e)
• such that the control of v(t) and
w(t)

• drives the error e to zero.

ú
û

ù
ê
ë

é
=

232221

131211

kkk
kkk

K

ú
ú
ú

û

ù

ê
ê
ê

ë

é
×=×=ú

û

ù
ê
ë

é

q
w

y
x

KeK
t
tv

R

)(
)(

0)(lim =
¥®
te

t

57

26

Single shortest path – single destination t (single source)
Given pair of vertices – what is the shortest path from

u to v

Example: 45

3

35 30

1050

10

s v1

v2 v3 v5

v4

15

15
20

20

Motion Planning: Graph Based Methods

58

Motion Planning: Grassfire algorithm
• Discretize the space
Create a queue Q of all pixels
at the boundary of obstacles
For each, set the boundary to 1
And the free space to 0.

• For each element in the Q
• If d(q) = 0 set d(q) = 1+min d(q’)
of the neighbours which differ
from 0

• Add all neighbours to the Q with
d(q) = 0

Resulting map – distance to the nearest obstacle

59

27

Motion Planning: Roadmap Methods

roadmap

Capture the connectivity of Cfreewith a roadmap (graph or
network) of one-dimensional curves

60

Configuration Space
Workspace Configuration Space

x
yRobot

Obstacle C-obstacle

Robot

p C-obstacle is a polygon.

61

28

Probabilistic Roadmap Methods

start

goal

C-obst

C-obst

C-obst

C-obst

To Navigate Narrow Passages we must sample in them
• most PRM nodes are where planning is easy (not needed)

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle
surfaces?
• we cannot explicitly construct the C-obstacles...
• we do have models of the (workspace) obstacles...

OBPRM Roadmap

62

Robot Perception: Feature Matching

Original
image

Strong +
connected
weak edges

Interest points

63

29

Perception: Mapping and localization

• Visual odometry

• 3D reconstruction

64

Visual Odometry

65

30

Perception: 3D mapping

http://www.cs.unc.edu/Research/urbanscape

66

68Car detections Semantic Segmentation

Drivable Areas Lane Markings

Perception for Autonomous Driving

68

31

ScanNet Challenge, Dai, Sava, Niessner, Chang, CVPR 2019

Localization from Semantic Observations via the Matrix
Permanent N. Atanasov, M. Zhu, K. Daniilidis and G.
Pappas

Perception - Spatial environment representations

69

N
YU

 v
2

-G
ro

un
d

Tr
ut

h
G

ro
un

d

St
ru

ct
.

 F
ur

ni
t.

Pr

op
s Semantic Segmentation

70

32

Probabilistic Robotics

• Taking into account uncertainty of sensors and actions
• Localization in the presence of uncertainty,
• Map building

Robot Perception
• How to process information from sensors
• Visual Sensing
• Range Sensing

• MDP’s
• POMDP’s

71

Markov Localization :
Applying probability theory to robot localization

• Bayes rule:

– Map from a belief state and a action to new belief
state (ACT):

– Summing over all possible ways in which the robot
may have reached l.

• Markov assumption: Update only depends on
previous state and its most recent actions and
perception.

75

33

77

77

78

78

34

79

79

80

80

35

81

81

82

82

36

83

83

84

84

37

85

85

86

86

38

87

87

88

88

39

89

89

90

90

40

91

91

Probabilistic Robotics: MDP

• “Markov” generally means that given the present state, the
future and the past are independent

• For Markov decision processes, “Markov” means action
outcomes depend only on the current state

• This is just like search, where the successor function could
only depend on the current state (not the history)

Andrey
Markov (1856-

1922)

92

41

Probabilistic Robotics: Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

• In deterministic single-agent search
problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

• For MDPs, we want an optimal policy p*:
S → A

– A policy p gives an action for each state
– An optimal policy is one that maximizes

expected utility if followed
– An explicit policy defines a reflex agent

• Expectimax didn’t compute entire policies
– It computed the action for a single state only

93

Optimal Policies

R(s) = -
2.0

R(s) = -
0.4

R(s) = -0.03R(s) = -
0.01

94

42

Robot Learning, Reinforcement Learning

• How to improve performance over time from our
own/systems experience

• Goal directed learning from interaction
• How to map situations to action to maximize reward

Agent

Environment

action(t)

state(t+1)

reward(t+1)

state(t)

95

96

