Autonomous Robotic Systems
CS 685
Jana Kosecka, 4444 Research |l

kosecka@gmu.edu, 3-1876
Office hours Tue 2-3pm

Logistics

Grading: Homeworks + Project 65% Exam: 35%

Prerequisites: basic statistical concepts, geometry, linear
algebra, calculus, CS 480, CS 580

Course web page

https://cs.gmu.edu/~kosecka/cs685/

Homeworks about every 2 weeks, Midterm, Final Project
Choose from the list of projects, suggest your own

Implement one of the covered methods on robot/robot simulator,
come up with new ideas of robotics tasks

Write a report and prepare the final presentation




Recommended Text

R. Siegwart and I. Nourbakhsh: Introduction to Autonomous Mobile Robots,
MIT Press, 2004

[1]1 S. LaValle: Planning Algorithms, Cambridge Press,
http://planning.cs.uiuc.edu/

[2] S. Thrun, W. Burghart, D. Fox: Probabilistic Robotics
http://robots.stanford.edu/probabilistic-robotics/

[4] S. Russell and P. Norvig: Artificial Intelligence: A Modern Approach

[5] R. Sutton and A. G. Barto: Introduction to Reinforcement Learning (on-
line materials see course www)

Overview of the topics

Kinematics, Kinematic Chains, Mobile Robot kinematics
Notion of state, sensing state, elementary control

Motion planning, Graph Based Methods, Potential Field Based
methods, Sampling Based Methods, Configurations Space

Robot Perception — Image Features, Stereo, Motion Estimation and
3D reconstruction, Object Detection, Semantic Segmentation

Foundations of Probabilistic Robotics

State estimation and Tracking

Localization using Particle Filters

Simultaneous Localization and Mapping using vision and RGB-D data

Dynamic Programming and Markov Decision Processes
Learning how to act — Reinforcement Learning




Course Logistics

Required language Python
Robot simulators, real robots

Availability of robotics platforms
Pioneers with range sensors, cameras

Turtlebot Pyrobot open source robotics platform
http://pyrobot.com

Humanoid — Small soccer league

Simulators — Al Habitat Al-Thor https://ai2thor.allenai.org/
CARLA Autonomous Driving Simulator https://carla.org/

List of resources for mobile robotics http://www.mobilerobots.org//

Possibilities of programming real robots equipped with range sensors,
RGB-D cameras

Current trends and areas of robotic technologies

Embodied Al

Gibson Environment

Habitat Challenge



http://aihabitat.org/
https://ai2thor.allenai.org/
https://carla.org/
http://www.mobilerobots.org/

* House 3D (Facebook Research)
* Rich simulated environments
» Navigation, Perception, Visual Question Answering

Applications History - Robots in manufacturing/material handling

Manhattan project (1942) — handling and processing of radioactive
materials — Telemanipulation

Manufacturing

- storage, transport delivery

- table top tasks, material sorting, part feeding — conveyor belt

- microelectronics, packaging

- harbor transportation

- construction (automatic cranes)

Suitable for hard repetitive tasks — heavy handling or fine positioning
Successful in restricted environments, limited sensing is sufficient —
limited autonomy

Autonomous Robotic Systems
AGV’ s - automated guided vehicles
AUV’s - automated unmanned vehicles




Applications History - Space Robotics

50-ties US space program, exploration of planets, collecting samples
Astronauts bulky space suits — difficult
NASA, JPL, DARPA — sponsoring agencies
Space programs, military application — surveillance, assistance
Planetary Rovers — initially controlled by humans
- large time delays,
- poor communication connections
Need for (semi) — autonomy

Teleoperation — Mars Rover

Human operator controls the robot
Local site — human views the sensory data, sends the commands
Remote site — sensors acquire the information

Dexnet

Google Arm farm




Grand Challenges

2x SMS UMRR
Medium Range Radar
4x Point GreyFlea 2 (front & rear)
1x IDSUEye <
T

2x SMS Blind Spot
Detector (left & right)

Stereo Camera
System
2x IBEO Alasca XT
(Fusion Cluster) g8

>
1x IBEO ML
(rear)

2004, 2005, 2007 g

(LIDAR-System)
(front & rear)

* Lasers, camera, radar, GPS, compass, antenna, IMU,
« Steer by wire system, PC’ s with Ethernet for processing information
from sensors
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Shakey the Robot

Shortt o s
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Learn policies

mo(as|o;)

Or

Supervised learning paradigm
training data o;  a

Learn the policy mo(ao:)

Bojarski ‘16 NVIDIA End to End Learning for Self-
1 Driving Cars
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End-to-end interpretable trainable motion
planner

Backbone Network

v

@  Avomin Traectory

cT—l
Optimizing perception, motion planning and control jointly
integrating map data, predictions of the object detectors

W. Zheng, W. Luo, S. Sua R. Urtasun et al.
End-to-end interpretable neural planner, CVPR 2019
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Example 1:Building Virtual Models of
Mars

Example of stereo pipeline, from raw data, preprocessing,
meshes, texture maps

See http://schwehr.org/photoRealVR/example.html
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Apollo

Lunar Rovers




Applications: Underwater robotics

+ Sensor network + Remotely Operated
robot for ocean
exploration

18

Robots in the service of humans

Robotic surgery - DaVinci robotic surgery robot — human
assisted

Robotics in rehabilitation surgery (Hocomo Inc)

[

Mobile Robots
courier in buildings and hospitals, vacuum cleaners,

19


http://www.intuitivesurgical.com/products/da_vinci_video_overview.aspx

Variety of domains and tasks

20
Games and Entertainment
[et\
\ . ": W
S T wle
ER;3I1 'LA}IE"
Furb|es ERS-312 "MACARON"
Aibos Latter & Macaron
Aibo soccer league - RoboCup
21
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decision making
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representation

Learning in Robotics
Learning to plan, learning to explore, learning to perceive, visual dialog
Learning to grasp, end-to-end learning, modular learning

Natural Language Processing
provides better interfaces, symbol grounding problem

Planning and Decision Making
How to make optimal decision, actions give the current knowledge
of the state, currently available actions

Robotics and Al

Knowledge representation
how to represent objects, humans, environments
symbol grounding problem

Computer Vision, Pattern Recognition, Perception
recognition, vision and motion, segmentation and grouping

30

13



Architecture

Deliberative Control and

decision making Interface/Language
Semantic 1 NLP, Knowledge Representation
Parser Computer Vision — symbol grounding
\ Planning and Decision Makin
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31
Autonomous Robotic System
+ Three Basic Components of the Robotic System
+  SENSE - process information from the sensors
*  PLAN — compute the right commands/directives
+ ACT - produces actuator commands
+ Different organization of these functionalities gives rise to
different robot architectures
32
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Autonomous Driving

DARPA Grand Challenge 2005

2004 CMU vehicle drove 7.36 miles out of 150
2005 5 teams finished, Stanford won

DARPA Urban Challenge 2007

urban environment other vehicles present

6 teams finished

Google Self-Driving Car

by July 2015 1M miles, 14 minor accidents
Ernst Dickmans / Mercedes Benz 1987

1758 Km, 60 miles per hour

Parking maneuvers, overtake maneuvers, skidding

33

Robotic Navigation

Stanford Stanley Grand + Urban Challenge

Challenge - Outdoors structured
Outdoors unstructured env., mixed traffic,
env., single vehicle traffic rules

34
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Robot Components (Stanley)
+ Sensors
« Actuators-Effectors
+ Locomotion System
« Computer system — Architectures — (the brain)

» Lasers, camera, radar, GPS, compass, antenna, IMU,

» Steer by wire system

« Rack of PC’ s with Ethernet for processing information
from sensors
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+ Terrain mapping using lasers
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Autonomous Driving

Reduction of the number of accidents

5 million accidents and

> 30,000 fatalities due to traffic accidents)
Time recovered due to commuting,
Improved parking in the cities,

New models of personal mobility

This Was Supposed to Be the Year
Driverless Cars Went Mainstream

" ogy longer th ed. The
i d diffcul

DT

May 2020, New York Times

Elon Musk Promises a Really Truly Seif-Driving Teslain
2020

re-compiete

nooring paseangrs by ths andof nx e

March 2018, BBC News
Self-driving Uber kills Arizona woman in
first fatal crash involving pedestrian

March 2018, Guardian

38
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Mapping, Control, Planning for autonomous driving
Navigation strategies

trajectory following, planning, (overtake, lane change)

Data Driven, Machine Learning Techniques

39

Autonomous Helicopter Flight

[Abbeel, Coates & Ng]

Kalman filtering, model-predictive control, LQR, system ID, trajectory learning

Slide courtesy P. Abbeel

40
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Four-legged locomotion  oter, abeel & ngi

value iteration, receding horizon control, motion
planning, inverse reinforcement learning,

Slide courtesy P. Abbeel
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Mobile Manipulation

[Maitin-Shepard, Cusumano-Towner, Lei, Abbeel, 2010]

localization, motion planning for navigation and grasping,
grasp point selection, visual recognition

Slide courtesy P. Abbeel

42
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file:////Users/pabbeel/Dropbox/work/Teaching/cs287-fa11/Lecture1/nolearning7.mp4
file:////Users/pabbeel/Dropbox/work/Teaching/cs287-fa11/Lecture1/learned_controller2.wmv

Visuomotor Learning

[Levine*, Finn*, Darrell, Abbeel, 2015]

Slide courtesy P. Abbeel
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Learn policies

oy

Supervised learning paradigm
training data o; a;

Learn the policy mo(alo:)

Bojarski ‘16 NVIDIA End to End Learning for Self-
4 Driving Cars

44
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End-to-end interpretable trainable motion
planner

[ Perception ]
T Gostvoume

T—1

Backbone Network

optimizing perception, motion planning and control jointly
integrating map data, predictions of the object detectors

W. Zheng, W. Luo, S. Sua R. Urtasun et al.
End-to-end interpretable neural planner, CVPR 2019

45

Robots @ GMU

49
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Parietal-temporal-occipitat
association cortex

Caudal

association

cortex
—
Lateral /

sulcus

Primary auditory

+ 100 Billion neurons

+ On average, connected to 1 K others

* Neurons are slow. Firing rates < 100 Hz.

+ Can be classified into
« Sensory — vision, somatic, audition, chemical
* Motor — locomotion, manipulation, speech
+ Central — reasoning and problem solving

50

Trends in biological and machine evolution
Hans Moravec: Robot

* 1 neuron = 1000 instructions/sec
+ 1 synapse = 1 byte of information

« Human brain then processes 10714 IPS and has
1074 bytes of storage

+ In 2000, we have 10”9 IPS and 1079 bytes on a
desktop machine

level computing power

- In 25 years, assuming Moore’ s law we obtain human

51
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Course Overview — PART |
Modeling Geometric transformation

A Body Reference Frame
Relative to the Inertial
Reference Frame

X1
Inertial Reference Frame

* Modeling Rigid Body Motion
» Modeling Kinematic Chains

53
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Modelling motion

* Notion of state, state evolution

+ Systems view vector X denotes the state of the
system, vector U types of controls/actions the
system can carry out we will discuss ways of
characterizing the motion of the system

Xt+1 = f(Xt, U—t)

x(t) = f(x(t),u(t))

54

Mobile Robot Kinematics

=

+ Two wheels |E &
=

« Three wheels &3 ‘ B

55
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Motion Control: Open Loop Control

« trajectory (path) divided in motion
segments of clearly defined shape:

— straight lines and segments of a cirgk goal
+ control problem:

1%

— pre-compute a smooth trajectory
based on line and circle segments

56

Motion Control: Feedback Control,
Problem Statement

* Find a control matrix K, if exists
K — |:k11 k12 k13:|
k21 k22 k23
+ with kij=k(t,e)

+ such that the control of v(t) and
a(t)

7

R

x
{v(t)}zK-ezK- y
o(7) p

« drives the error e to zero.

lime(¢) =0

=0

25



Motion Planning: Graph Based Methods

Single shortest path - single destination t (single source)
Given pair of vertices - what is the shortest path from
utov

Example:

58

Motion Planning: Grassfire algorithm

Discretize the space
Create a queue Q of all pixels
at the boundary of obstacles
For each, set the boundary to 1
And the free space to 0.

For each element in the Q
If d(q) = 0 set d(q) = 1+min d(q’)
of the neighbours which differ

from O
Add all neighbours to the Q with

d(@) =0

Resulting map — distance to the nearest obstacle

59
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Motion Planning: Roadmap Methods

Capture the connectivity of C. with a roadmap (graph or
network) of one-dimensional curves

~jroadmap

60
Configuration Space
Workspace Configuration Space
Robo‘__
le
R(Kot
o C-obstacle is a polygon.
61
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Probabilistic Roadmap Methods

To Navigate Narrow Passages we must sample in them
» most PRM nodes are where planning is easy (not needed)

PRM Roadmap OBPRM Roadmap
. o oa A
[ 4 : ° ° ) .0
¢ C-obs -obs f
[ ] 1 ]

? -obs -obs A

° 1 ° Pr ]
btart ° o tart

Idea: Can we sample nodes near C-obstacle
surfaces?

e we cannot explicitly construct the C-obstacles...

* we do have models of the (workspace) obstacles...

62

Robot Perception: Feature Matching

Strong +
Ml connected
{weak edges

Original l
image

Interest points
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Perception: Mapping and localization

' "

* Visual odometry

» 3D reconstruction

64
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Perception: 3D mapping

http://www.cs.unc.edu/Research/urbanscape

66

by

Perception for Autonomous Driving

Drivable Areas

Car detections Semantic Segmentation

68

68
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Perception - Spatial environment representations

CVPR 2019

Localization from Semantic Observations via the Matrix
Permanent N. Atanasov, M. Zhu, K. Daniilidis and G.
Pappas

69

OiS

Semantic Segmentation

Ground Struct. Furnit. Pr

NYU v2 - Ground Truth

31



Probabilistic Robotics

+ Taking into account uncertainty of sensors and actions
+ Localization in the presence of uncertainty,
* Map building

Robot Perception

* How to process information from sensors
+ Visual Sensing

* Range Sensing

+ MDP’s
POMDP’s

71

Markov Localization :
Applying probability theory to robot localization

p(Bl4)p(4)
p(B)

— Map from a belief state and a action to new belief
state (ACT):

p(lt|0t) = Jp(l,|l't, 15 Ot)p(l'F l)dl'tf 1

— Summing over all possible ways in which the robot
may have reached |.

+ Markov assumption: Update only depends on
previous state and its most recent actions and
perception.

+ Bayes rule: p(4|B) =

75
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Probabilistic Robotics: MDP

+  “Markov” generally means that given the present state, the
future and the past are independent

» For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St+1 = 5,|St =54, Ay =ay, Si—1 =521, Ai1,...5 = 50)

Andrey
Markov (1856-
1922)

P(St+1 = 3/|St =5, A = at)

» This is just like search, where the successor function could
only depend on the current state (not the history)

92
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Probabilistic Robotics: Policies

* In deterministic single-agent search
problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

+  For MDPs, we want an optimal policy =*:
S—A
— Apolicy = gives an action for each state

— An optimal policy is one that maximizes

expected utility if followed . i ,

— An explicit policy defines a reflex agent Optimal policy when R(s, a, s') = -0.03
for all non-terminals s

+ Expectimax didn’t compute entire policies
— It computed the action for a single state only

93
Optimal Policies
| | = | » |1
V== V[ [=
- | - ' - | - | -
R(s) =- R(s) =-0.03
0.0
= | | » |1 [ I S
INNE INEE
R(s) =- R(s) = -
0.4 2.0
94
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Robot Learning, Reinforcement Learning

How to improve performance over time from our
own/systems experience

Goal directed learning from interaction
How to map situations to action to maximize reward

state(t)
> Agent
—>
reward(t+1) action(t)
Environment [«
state(t+1)
95
9%
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