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Rigid Body Motion 

CS 685

Jana Kosecka

Linear Algebra Review
Rigid Body Motion in 2D
Rigid Body Motion in 3D 

1

Why do we need Linear Algebra?

• We will associate coordinates to
– 3D points in the scene
– 2D points in the CCD array
– 2D points in the image

• Coordinates will be used to
– Perform geometrical transformations
– Associate  3D with 2D points

• Images are matrices of numbers
– We will find properties of these numbers
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Matrices
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Example:

A and B must have the same 
dimensions
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Matrices
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A and B must have 
compatible dimensions
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Matrices
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Matrices

Determinant:
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Matrices
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Inverse: A must be square
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2D,3D Vectors
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vvv
v xx Is a unit vector

If 1|||| =v , v is a UNIT vector
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Vector Addition, Subtraction, Scalar Product
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Inner (dot) Product

v
u

a
The inner product is a SCALAR!

norm of a vector
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Vector (cross) Product

wvu ×=

The cross product is a VECTOR!
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Orientation:
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 || u || =  ||v × w ||=||v |||w || sinαMagnitude:
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Standard base vectors:

Coordinates of a point     in space:

Orthonormal Basis in 3D
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Vector (Cross) Product Computation

w
v

au

Skew symmetric matrix associated with vector
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2D Geometrical Transformations
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2D Translation Equation

x

X 

Y 

tx

ty
x’

t
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Homogeneous Coordinates

Homogeneous coordinates:

Translation using matrices: 

3
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Coordinate frames

• In order to specify a position of a rigid body 
In 2D space, we need to attach a coordinate 
frame to it 

• Frame defines a coordinate system
• Coordinates of any point on the body can be 
expressed in that coordinate system

P = [x,y]’
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Rotation Matrix
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• Counter-clockwise rotation of a coordinate
frame by an angle q

• Counter-clockwise rotation of a coordinate frame
attached to a rigid body by an angle q

{A}

{B}

x’
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Rotation Matrix

Interpretations of the rotation matrix  RAB

{A}

{B}

Columns of  RAB are the unit vectors of the axes of 
frame B expressed in coordinate frame A. Such 
rotation matrix transforms coordinates of points in 
frame B to points in frame A

XA = RABXB

�
RAB =

�
cos � � sin �
sin � cos �

⇥

Use of the rotation matrix as transformation  RAB   
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Rigid Body Transform

{A}

{B}

XA

XB

tAB

XA = XB + tAB

The points from frame A to frame B are 
transformed by the inverse of
(see example next slide) 

XA = RABXB + tAB

T = (RAB , tAB)

tAB

T = (RAB , tAB)

Translation only,        is the origin of the frame B expressed in the 
Frame A 

Composite transformation: 

Transformation: 

XA =
�

RAB tAB

0 1

⇥
XB

Homogeneous coordinates 
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Example

XA =

�

⇤
cos � � sin � tx
sin � cos � ty

0 0 1

⇥

⌅XB

XA =

�

⇤
0 �1 0
1 0 3
0 0 1

⇥

⌅XB � = 90o, tAB = [0, 3]Tfor

{A}

{B}
XA

XB

tAB

XA =

�

⇤
2
3
1

⇥

⌅ XB =

�

⇤
0
�2
1

⇥

⌅

In homogeneous coordinates: 

Verify that the inverse of the above transform 
Transforms coordinates in frame {A} to frame {B} 
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Degrees of Freedom

R is 2x2 4 elements

BUT! There is only 1 degree of freedom: q

The 4 elements must satisfy the following constraints:
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Rows and columns are orthogonal and of unit length
Matrix is orientation preserving
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3-D Euclidean Space - Vectors

A “free” vector is defined by a pair 
of points         :

Coordinates of the vector    :
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3D Rotation of Points – Euler angles
Rotation around the coordinate axes, counter-clockwise:

P
x

Y’
P
’ g

X’

y

z
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Rotation Matrix
• Euler theorem – any rotation can be expressed as a sequence of 

rotations around different coordinate axes  
• Different order of rotations yields different final rotation
• Rotation multiplication is not commutative

• Different ways how to obtain final rotation – rotation around 3 axes 
no successive rotations around same axes

• XYX, XZX, YXY, YZX, ZXZ, ZYZ – Eulerian involves repetition
• Cardanian – no repetitions XYZ, XZY, YZX, YXZ, ZXY, ZYX. 
• Another widely used convention  roll-pitch-yaw

R = Rz (α)Ry (β)Rx (γ )
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Rotation Matrices in 3D

• 3 by 3 matrices
• 9 parameters – only three degrees of freedom
• Representations – either three Euler angles
• or axis and angle representation 

• Properties of rotation matrices (constraints between the 
elements)
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Rotation Matrix

• Problem with 3 angle representations: singularities
• The mapping between angles and Rotation matrix is unique
• i.e. given the rotation matrix, compute 

• The inverse mapping between rotation matrix and the angles 
sometimes cannot be computed or is not unique

2

4
cos cos�� cos ✓ sin� sin cos� sin�+ cos ✓ cos sin� sin sin ✓
sin cos�� cos ✓ sin� cos � sin sin�+ cos✓ cos� cos cos sin ✓

sin ✓ sin� � sin ✓ cos� cos ✓

3

5

�, ✓, 
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Rotation Matrix

• Problem with 3 angle representations: singularities
• The mapping between angles and Rotation matrix is unique
• i.e. given the rotation matrix, compute 

• The inverse mapping between rotation matrix and the angles 
sometimes cannot be computed or is not unique

Angle Axis Representation
• Two coordinates frames of arbitrary orientations can be related 

by a single rotation about ‘some’ axis in space and an angle

2

4
cos cos�� cos ✓ sin� sin cos� sin�+ cos ✓ cos sin� sin sin ✓
sin cos�� cos ✓ sin� cos � sin sin�+ cos✓ cos� cos cos sin ✓

sin ✓ sin� � sin ✓ cos� cos ✓

3

5

�, ✓, 
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Rotation Matrices in 3D
• 3 by 3 matrices
• 9 parameters – only three degrees of freedom
• Representations – either three Euler angles
• or axis and angle representation 

• Properties of rotation matrices (constraints between the 
elements)

Columns are orthonormal
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Rotation Matrix

• Problem with 3 angle representations: singularities

• The mapping between angles and Rotation matrix is unique

• The inverse mapping between Rotation matrix and the angles 
sometimes cannot be computed or is not unique

Angle Axis Representation: 

• Two coordinates frames of arbitrary orientations can be related 
by a single rotation about ‘some’ axis in space and an angle
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Canonical Coordinates for Rotation

By algebra

By solution to ODE

Property of R

Taking derivative

Skew symmetric matrix property

31

3D Rotation (axis & angle)

with

or

Solution to the ODE

32
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Rotation Matrices

Given

How to compute angle and axis
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3D Translation of Points

Translate by a vector 

P
xY’

P’

x’

y
z

z’

t
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Rigid Body Motion – Homogeneous 
Coordinates

3-D coordinates are related by:

Homogeneous coordinates:

Homogeneous coordinates are related by:
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Rigid Body Motion – Homogeneous 
Coordinates

3-D coordinates are related by:

Homogeneous coordinates:

Homogeneous coordinates are related by:
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Properties of Rigid Body Motions

Rigid body motion composition

Rigid body motion inverse

Rigid body motion acting on vectors

Vectors are only affected by rotation – 4th homogeneous coordinate is zero
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Rigid Body Transformation

Coordinates are related by:
Camera pose is specified by:
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Rigid Body Motion

• Shown how to describe positions and orientations of 
coordinate frames (poses) with respect to the origin 
world frame

• Relative pose (R,T) – relationship between two 
consecutive poses
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