Rigid Body Motion

CS 685
Jana Kosecka

Linear Algebra Review
Rigid Body Motion in 2D
Rigid Body Motion in 3D

1

Why do we need Linear Algebra?

- We will associate coordinates to
- 3D points in the scene
- 2D points in the CCD array
- 2D points in the image
- Coordinates will be used to
- Perform geometrical transformations
- Associate 3D with 2D points
- Images are matrices of numbers
- We will find properties of these numbers

$$
\begin{gathered}
\text { Matrices } \\
A_{n \times m}=\left[\begin{array}{cccc}
a_{11} & a 12 & \ldots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
a_{n 1} & \ldots & \ldots & a_{n n}
\end{array}\right] \\
\text { Matrix Sum: } \\
a_{n 2}
\end{gathered} C_{n \times m}=A_{n \times m}+B_{n \times m} . \begin{aligned}
& \text { A and B must have the same } \\
& c_{i j}=a_{i j}+b_{i j}
\end{aligned} \begin{aligned}
& \text { dimensions }
\end{aligned}
$$

Example:

$$
\left[\begin{array}{ll}
2 & 5 \\
3 & 1
\end{array}\right]+\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]=\left[\begin{array}{ll}
8 & 7 \\
4 & 6
\end{array}\right]
$$

3

Matrices

Product:

$$
\begin{array}{cl}
C_{n \times p}=A_{n \times m} B_{n \times p} & \begin{array}{l}
\text { A and B must have } \\
\text { compatible dimension }
\end{array} \\
c_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j} & A_{n \times n} B_{n \times n} \neq B_{n \times n} A_{n \times n}
\end{array}
$$

Examples:

$$
\left[\begin{array}{ll}
2 & 5 \\
3 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]=\left[\begin{array}{ll}
17 & 29 \\
19 & 11
\end{array}\right] \quad\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right] \cdot\left[\begin{array}{ll}
2 & 5 \\
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
18 & 32 \\
17 & 10
\end{array}\right]
$$

Matrices

Transpose:

$$
\begin{aligned}
C_{m \times n} & =A^{T} n \times m & (A+B)^{T} & =A^{T}+B^{T} \\
c_{i j} & =a_{j i} & (A B)^{T} & =B^{T} A^{T}
\end{aligned}
$$

If $\quad A^{T}=A \quad \mathrm{~A}$ is symmetric
Examples:

$$
\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]^{T}=\left[\begin{array}{ll}
6 & 1 \\
2 & 5
\end{array}\right] \quad\left[\begin{array}{ll}
6 & 2 \\
1 & 5 \\
3 & 8
\end{array}\right]^{T}=\left[\begin{array}{lll}
6 & 1 & 3 \\
2 & 5 & 8
\end{array}\right]
$$

5

Matrices

Determinant: A must be square

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{21} a_{12} \\
& \operatorname{det}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

Example: $\quad \operatorname{det}\left[\begin{array}{ll}2 & 5 \\ 3 & 1\end{array}\right]=2-15=-13$

Matrices

Inverse:

$$
\begin{aligned}
& A_{n \times n} A^{-1}{ }_{n \times n}=A_{n \times n}^{-1} A_{n \times n}=I \\
& \quad\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1}=\frac{1}{a_{11} a_{22}-a_{21} a_{12}}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
\end{aligned}
$$

Example: $\quad\left[\begin{array}{ll}6 & 2 \\ 1 & 5\end{array}\right]^{-1}=\frac{1}{28}\left[\begin{array}{cc}5 & -2 \\ -1 & 6\end{array}\right]$

$$
\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]^{-1} \cdot\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]=\frac{1}{28}\left[\begin{array}{cc}
5 & -2 \\
-1 & 6
\end{array}\right] \cdot\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]=\frac{1}{28}\left[\begin{array}{cc}
28 & 0 \\
0 & 28
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

7

$$
\begin{gathered}
\text { 2D,3D Vectors } \\
\mathbf{v}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \in \mathbb{R}^{2} \quad \mathbf{v}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{R}^{3} \\
\text { Magnitude: } \quad\|\mathbf{v}\|=\sqrt{x_{1}^{2}+x_{2}^{2}} \\
\\
\end{gathered}
$$

If $\|\mathbf{v}\|=1, \mathbf{v}$ is a UNIT vector $\frac{\mathbf{v}}{\|\mathbf{v}\|}=\left(\frac{x_{1}}{\|\mathbf{v}\|}, \frac{x_{2}}{\|\mathbf{v}\|}\right)$ Is a unit vector Orientation: $\quad \theta=\tan ^{-1}\left(\frac{x_{2}}{x_{1}}\right)$

9

Inner (dot) Product

$$
u^{T} v=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{1}
\end{array}\right]=u_{1} \cdot v_{1}+u_{2} \cdot v_{2}
$$

The inner product is a SCALAR!

$u^{T} v=\left[\begin{array}{ll}u_{1} & u_{2}\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\|u\|\|v\| \cos \alpha$

$$
u^{T} v=0 \leftrightarrow u \perp v
$$

$$
u=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \quad v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

$\langle u, v\rangle \doteq u^{T} v=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} \quad \cos (\theta)=\frac{\langle u, v\rangle}{\|u\|\|v\|}$
$\|u\| \doteq \sqrt{u^{T} u}=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{3}} \quad$ norm of a vector

Orthonormal Basis in 3D

Standard base vectors:
$\mathrm{i}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \quad \mathrm{j}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \quad \mathrm{k}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Coordinates of a point p in space:

$$
\boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \in \mathbb{R}^{3} \quad \boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=X . \mathbf{i}+Y . \mathbf{j}+Z . \mathrm{k}
$$

$$
\begin{aligned}
& \text { Vector (Cross) Product Computation } \\
& \mathbf{i}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \mathbf{j}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{k}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& u \times v=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{i}+\left(u_{3} v_{1}-u_{1} v_{3}\right) \mathbf{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k} \\
& u \times v \doteq \widehat{u} v, u_{1}, v \in \mathbb{R}^{3} \\
& \widehat{u}=\left[\begin{array}{ccc}
0 & -u_{3} & u_{2} \\
u_{3} & 0 & -u_{1} \\
-u_{2} & u_{1} & 0
\end{array}\right] \in \mathbb{R}^{3 \times 3} \\
& \uparrow \uparrow \widehat{u} v \\
& \text { Skew symmetric matrix associated with vector }
\end{aligned}
$$

2D Translation Equation

$\mathrm{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$
$\mathrm{t}=\left[\begin{array}{l}t_{x} \\ t_{y}\end{array}\right]$

$$
\mathbf{x}^{\prime}=\mathbf{x}+t=\left[\left.\begin{array}{l}
\mathbf{x}+t_{x} \\
\mathbf{y}+t_{y}
\end{array} \right\rvert\,\right.
$$

Homogeneous Coordinates

Homogeneous coordinates:

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \rightarrow \quad \mathrm{x}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \in \mathbb{R}_{\mathbb{K}^{3},},
$$

Translation using matrices:

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\mathrm{x}^{\prime}=P_{t} \mathrm{x}
\end{gathered}
$$

Coordinate frames

- In order to specify a position of a rigid body In 2D space, we need to attach a coordinate frame to it
- Frame defines a coordinate system
- Coordinates of any point on the body can be expressed in that coordinate system

17

Rotation Matrix

- Counter-clockwise rotation of a coordinate frame by an angle θ

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Counter-clockwise rotation of a coordinate frame attached to a rigid body by an angle θ

Rotation Matrix

Interpretations of the rotation matrix R_{AB}
\{B\}

Columns of $R_{A B}$ are the unit vectors of the axes of frame B expressed in coordinate frame A. Such rotation matrix transforms coordinates of points in frame B to points in frame A

Use of the rotation matrix as transformation R_{AB}

$$
\mathbf{X}_{A}=R_{A B} \mathbf{X}_{B}
$$

Rigid Body Transform

Translation only, $t_{A B}$ is the origin of the frame B expressed in the Frame A

$$
\mathbf{X}_{A}=\mathbf{X}_{B}+t_{A B}
$$

Composite transformation:

$$
\mathbf{X}_{A}=R_{A B} \mathbf{X}_{B}+t_{A B}
$$

Transformation: $\quad T=\left(R_{A B}, t_{A B}\right)$
Homogeneous coordinates
$\mathbf{X}_{A}=\left[\begin{array}{cc}R_{A B} & t_{A B} \\ 0 & 1\end{array}\right] \mathbf{X}_{B}$

The points from frame A to frame B are
transformed by the inverse of
$T=\left(R_{A B}, t_{A B}\right)$
(see example next slide)

$$
\mathbf{X}_{A}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right] \mathbf{X}_{B}
$$

In homogeneous coordinates:
$\mathbf{X}_{A}=\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 3 \\ 0 & 0 & 1\end{array}\right] \mathbf{X}_{B}$ for $\theta=90^{\circ}, t_{A B}=[0,3]^{T}$

Verify that the inverse of the above transform
Transforms coordinates in frame $\{A\}$ to frame $\{B\}$
21

Degrees of Freedom

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

R is $2 \times 2 \quad \Longrightarrow \quad 4$ elements

BUT! There is only 1 degree of freedom: θ
The 4 elements must satisfy the following constraints:
$R . R^{T}=I$ Rows and columns are orthogonal and of unit length
$\operatorname{det}(R)=1$

3-D Euclidean Space - Vectors

A "free" vector is defined by a pair
of points (p, q)
$\boldsymbol{X}_{p}=\left[\begin{array}{c}X_{1} \\ Y_{1} \\ Z_{1}\end{array}\right] \in \mathbb{R}^{3}, \boldsymbol{X}_{q}=\left[\begin{array}{c}X_{2} \\ Y_{2} \\ Z_{2}\end{array}\right] \in \mathbb{R}^{3}$,
Coordinates of the vector :
$v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{c}X_{2}-X_{1} \\ Y_{2}-Y_{1} \\ Z_{2}-Z_{1}\end{array}\right] \in \mathbb{R}^{3}$

3D Rotation of Points - Euler angles

Rotation around the coordinate axes, counter-clockwise:

$$
\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right]
$$

$$
R=R_{z}(\gamma) R_{y}(\beta) R_{x}(\alpha)
$$

24

Rotation Matrix

- Euler theorem - any rotation can be expressed as a sequence of rotations around different coordinate axes
- Different order of rotations yields different final rotation
- Rotation multiplication is not commutative
- Different ways how to obtain final rotation - rotation around 3 axes no successive rotations around same axes
- XYX, XZX, YXY, YZX, ZXZ, ZYZ - Eulerian involves repetition
- Cardanian - no repetitions XYZ, XZY, YZX, YXZ, ZXY, ZYX.
- Another widely used convention roll-pitch-yaw

$$
R=R_{z}(\alpha) R_{y}(\beta) R_{x}(\gamma)
$$

Rotation Matrices in 3D

- 3 by 3 matrices
- 9 parameters - only three degrees of freedom
- Representations - either three Euler angles
- or axis and angle representation

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- Properties of rotation matrices (constraints between the elements)

$$
\begin{array}{r}
R R^{T}=I \\
\operatorname{det}(R)=I
\end{array}
$$

Rotation Matrix

- Problem with 3 angle representations: singularities
- The mapping between angles and Rotation matrix is unique
- i.e. given the rotation matrix, compute ϕ, θ, ψ

$$
\left[\begin{array}{ccc}
\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi & \cos \phi \sin \phi+\cos \theta \cos \psi \sin \phi & \sin \psi \sin \theta \\
\sin \psi \cos \phi-\cos \theta \sin \phi \cos \psi & -\sin \psi \sin \phi+\cos \theta \cos \phi \cos \psi & \cos \psi \sin \theta \\
\sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta
\end{array}\right.
$$

- The inverse mapping between rotation matrix and the angles sometimes cannot be computed or is not unique

27

Rotation Matrix

- Problem with 3 angle representations: singularities
- The mapping between angles and Rotation matrix is unique
- i.e. given the rotation matrix, compute ϕ, θ, ψ

$$
\left[\begin{array}{ccc}
\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi & \cos \phi \sin \phi+\cos \theta \cos \psi \sin \phi & \sin \psi \sin \theta \\
\sin \psi \cos \phi-\cos \theta \sin \phi \cos \psi & -\sin \psi \sin \phi+\cos \theta \cos \phi \cos \psi & \cos \psi \sin \theta \\
\sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta
\end{array}\right.
$$

- The inverse mapping between rotation matrix and the angles sometimes cannot be computed or is not unique

Angle Axis Representation

- Two coordinates frames of arbitrary orientations can be related by a single rotation about 'some' axis in space and an angle

Rotation Matrices in 3D

- 3 by 3 matrices
- 9 parameters - only three degrees of freedom
- Representations - either three Euler angles
- or axis and angle representation

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- Properties of rotation matrices (constraints between the elements)
$R . R^{T}=I \quad r_{i}^{T} r_{j}=\delta_{i j} \doteq\left\{\begin{array}{ll}1 & \text { for } i=j, \\ 0 & \text { for } i \neq j,\end{array} \quad \forall i, j \in\{1,2,3\}\right.$.
$\operatorname{det}(R)=I \quad$ Columns are orthonormal

29

Rotation Matrix

- Problem with 3 angle representations: singularities
- The mapping between angles and Rotation matrix is unique
- The inverse mapping between Rotation matrix and the angles sometimes cannot be computed or is not unique

Angle Axis Representation:

- Two coordinates frames of arbitrary orientations can be related by a single rotation about 'some' axis in space and an angle

Canonical Coordinates for Rotation

Property of R

$$
R(t) R^{T}(t)=I
$$

Taking derivative
$\dot{R}(t) R^{T}(t)+R(t) \dot{R}^{T}(t)=0 \Rightarrow \dot{R}(t) R^{T}(t)=-\left(\dot{R}(t) R^{T}(t)\right)^{T}$
Skew symmetric matrix property

$$
\dot{R}(t) R^{T}(t)=\widehat{\omega}(t)
$$

By algebra

$$
\dot{R}(t)=\widehat{\omega} R(t)
$$

By solution to ODE

$$
R(t)=e^{\widehat{\omega} t}
$$

3D Rotation (axis \& angle)

Solution to the ODE

$$
\begin{aligned}
& \qquad R(t)=e^{\widehat{\omega} t} \\
& \qquad R=I+\widehat{\omega} \sin (\theta)+\widehat{\omega}^{2}(1-\cos (\theta)) \\
& \text { with } \quad\|\omega\|=1 \quad \omega=\left[\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right] \in \mathbb{R}^{3} \\
& \text { or } \\
& R=I+\frac{\widehat{\omega}}{\|\omega\|} \sin (\|\omega\|)+\frac{\widehat{\omega}^{2}}{\|\omega\|^{2}}(1-\cos (\|\omega\|))
\end{aligned}
$$

Rotation Matrices

Given

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

How to compute angle and axis

$$
\|\omega\|=\cos ^{-1}\left(\frac{\operatorname{trace}(R)-1}{2}\right), \quad \frac{\omega}{\|\omega\|}=\frac{1}{2 \sin (\|\omega\|)}\left[\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right]
$$

Rigid Body Motion - Homogeneous Coordinates

3-D coordinates are related by: $\quad \boldsymbol{X}_{c}=R \boldsymbol{X}_{w}+T$, Homogeneous coordinates:

$$
\boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \quad \rightarrow \quad \boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \in \mathbb{R}^{4},
$$

Homogeneous coordinates are related by:

$$
\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{ll}
R & T \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

Rigid Body Motion - Homogeneous

 Coordinates3-D coordinates are related by: $\quad \boldsymbol{X}_{c}=R \boldsymbol{X}_{w}+T$, Homogeneous coordinates:

$$
\boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \quad \rightarrow \quad \boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \in \mathbb{R}^{4},
$$

Homogeneous coordinates are related by:

$$
\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{ll}
R & T \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

Properties of Rigid Body Motions

Rigid body motion composition

$$
\bar{g}_{1} \bar{g}_{2}=\left[\begin{array}{cc}
R_{1} & T_{1} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
R_{2} & T_{2} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R_{1} R_{2} & R_{1} T_{2}+T_{1} \\
0 & 1
\end{array}\right] \quad \in S E(3)
$$

Rigid body motion inverse

$$
\bar{g}^{-1}=\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
R^{T} & -R^{T} T \\
0 & 1
\end{array}\right] \in \operatorname{SE}(3) .
$$

Rigid body motion acting on vectors
Vectors are only affected by rotation $-4^{\text {th }}$ homogeneous coordinate is zero

Rigid Body Transformation

Coordinates are related by:

$$
\boldsymbol{X}_{c}=R \boldsymbol{X}_{w}+T
$$

Camera pose is specified by: $\quad g=(R, T) \in S E(3)$

Rigid Body Motion

- Shown how to describe positions and orientations of coordinate frames (poses) with respect to the origin world frame
- Relative pose (R,T) - relationship between two consecutive poses

