Kinematics, Kinematics Chains

CS 685

Jana Kosecka

Previously

+ Representation of rigid body motion
+ Two different interpretations
- as transformations between different coord. frames
- as operators acting on a rigid body
+ Representation in terms of homogeneous coordinates
+ Composition of rigid body motions
* Inverse of rigid body motion




Rigid Body Motion — Homogeneous
Coordinates

3-D coordinates are related by: Xc=RXy+T,

Homogeneous coordinates:
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Homogeneous coordinates are related by:
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Properties of Rigid Body Motions

Rigid body motion composition
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Rigid body motion inverse
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Rigid body motion acting on vectors

T _ pT
Ff) RlT} € SE(3).

Vectors are only affected by rotation — 4" homogeneous coordinate is zero




3D Rotation (axis & angle)

R(t) = !
R =14+ &sin(0) + @2(1 — cos(6))
with [w| =1 w= {Z; € R3
or v3
—~ ~2
R=1+ osin(|w]) + rrs(1 — cos([lw]))
[l [l

R(w, ) = e~

Rigid Body Transform

Translation only ¢t 4 g is the origin of the frame B expressed in the
Frame A

Xa=Xp+1tan

Composite transformation:

XA =RapXpB+tian

{B}
Transformation: T — (RA37 tAB) X4 Xp
Homogeneous coordinates
Rap tas
XA - l 0 1 XB tAB

The points from frame A to frame B are
transformed by the inverse of

(see example nextslide) T = (Rap,tan)




Kinematic Chains

+ Robot manipulator; multiple rigid bodies linked together

+ Kinematics — study of position, orientation, velocity, acceleration
regardless of the forces
+ Simple examples of kinematic model of robot manipulator

« Components — links, connected by joints, important frames

{B} — base frame
{T} - tool frame L W)
{S} — station frame / /
{G} - goal/object frame '\\/

{W} — wrist frame ’V {O}
i
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{B} {S}

Various joints

* In general rigid bodies can be connected by
various articulated joints

Revolute Prismatic Screw
1 Degree of Freedom 1 Degree of Freedom 1 Degree of Freedom

> ' ' |
\

Cylindrical Spherical Planar
2 Degrees of Freedom 3 Degrees of Freedom 3 Degrees of Freedom




Kinematic Chains in 2D

X
Y

02
91 work space frame

|-— Base frame

* Given ), 05 determine whatis X,Y
- Given ¢, ¢, determine whatis X,Y
* We can control ¢, f, want to understand how it affects

position of the tool frame

* How does the position of the tool frame change as the

manipulator articulates

+ Actuators change the joint angles

Forward kinematics 2D arm

+ Find position of the end effector as a function of the
joint angles

f(01,02) = [ if( ]
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Example

Find transformations between frames
P2 — coordinate of the end effector in frame 2

o lg What is the coordinate in frame 0 ?
2T . (e, —s6; 0]
P. 0. To1 = | st chq 0
R 0o 0 1
I _' ("‘:\“P : :
I / / 092 —892 ll
/. 0: T12 = 892 692 0
[ S |0 0 1]
P —

X =T01T12P

X x =1y cos b + Iz cos(01 + 05)

f(el’ 92) - l Y ] Yy = l1sinf; + Iy sin(@l + 02)
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Kinematic Chains in 3D

Additional joints possible (spherical, screw)
Additional offset parametes

Same idea: set up frame with each link
Define relationship between links (two rules):
- use Z-axis as an axis of a revolute joint

- connect two axes shortest distance

In 2D we need only link length and joint angle to specify the
transform

In3D di, 05, a1, 01 Denavit-Hartenberg parameters (see
LaValle (chapter [3])
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Example 3D SCARA manipulator

[cosf; —sinh, 0 0
&6, _ |sinfp cosfy 0 0
A 0 10
L o 0 01
[cos#y —sinfy 0 1y sin 0y
Sl _ sinfy  cosfy 0 (1 —cosby)
- 0 0 1 0
L 0 0 0 1
[cosf3 —sinfly 0 (I1 +13) sinfs
JEa0s _ sinfly  cosfz 0 (I3 +1o)(1 —cosbs)
- 0 0 1 0
L o 00 1
[1 00 0
e _ |01 0 0
. . i {00 1 6y
Transformation between stationary frame 8 6 o i

and tool frame
onf®) = [ug&) ['(19)]

cos(fy + 0o +03) —sin(¢y +6>+03) 0
sin(fy + 62 +603) cos(f; + 602 +063) 0O
0 0 1

R(0) =

i —lysinf; — losin(6y + 62)
Adapted from Murray, Li, Sastry = {h e 02)} :
Robotic Manipulation
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Inverse kinematics

+ In order to accomplish tasks, we need to know given some
coordinates in the tool frame, how to compute the joint angle

+ Simple 2D example

+ Use trigopnometry to compute given [X, Y] of the end effector
* Solution may not be unique §;, 0,

+ See handout notes for details

x(@)

Figure adapted from K. Hauser,
http://motion.cs.illinois.edu/RoboticSystems/InverseKinematics.html
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Inverse kinematics

+ For small problem angles can be calculated
analytically, for larger chains more complex

+ Some 3D manipulators — analytic solutions to IK
+ Redundant robots — IK sets of solutions
* Numerical techniques

- Cyclic coordinate descent

- Root finding methods

- minimization methods

+ For more details
http://motion.cs.illinois.edu/RoboticSystems/InverseKinematics.html
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Inverse Kinematics

Forward Kinematics (FK)
Mathematically determining the
position and angle of joints in a
series of flexible, jointed objects
after determining the position and
orientation of the end effector.

In game design, inverse
kinematics (IK) is typically
used most often in character
animation

ResilE
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Learning Locomotion

lterotion O [Schulman, Moritz, Levine, Jordan, Abbeel, 2015]

policy gradients, value function approximation

Slides courtesy P. Abbeel
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Jacobians

Kinematics enables us study what space is reachable

Given reachable points in space, how well can be motion of an arm
controlled near these points

We would like to establish relationship between velocities in joint space
and velocities in end-effector space

Given kinematics equations for two link arm

r = fm(91792)
Yy = fy(91)92)
The relationship between velocities is manipulator Jacobian
J(601,02)
. ) 9 ; : )
&l | 290 das 0, v = J(01,6) 01
gl T | %y Oy 0. Y ’ )
Yy 90, 90, 2
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Manipulator Jacobian

+ Determinant of the Jacobian
+ If determinant is O, there is a singularity

+ Manipulator kinematics: position of end effector can be
determined knowing the joint angles

+ Actuators: motors that drive the joint angles
+ Workspace concept (in the presence of constraints)

Joint angle constraints +/- 45
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Locomotion of wheeled robots

+ Power the motion from place to place
+ Differential Drive (two powered wheels)
+ Car Drive (Ackerman Steering)

roll
A
X
Y y

z motion

we also allow wheels to
rotate around the z axis

21
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Locomotion of wheeled robots

+ Differential Drive (two powered wheels)

+ Each wheel is has its own motor
+ Two wheels can move at different speeds

22
Mobile robot kinematics
+ Two wheels, with radius r
+ Point P centered between two wheels is the origin of
the robot frame
- Distance between the wheels |
Vi
24
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Differential Drive

Controls: Instantaneous linear velocity of each wheel v,,v,
Left and right wheel can move at different speed

Robots coordinate system, robot (heading in the x-direction)
Parameters, distance between the wheels /

Radius of each wheel r

y i

1CC 4
7 Q.

X
f 5 v =yr
R
(xy X
r — wheel radius
Ve v,_linear velocity of the right wheel
12 v;_linear velocity of the left wheel
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Differential Drive

Controls: Instantaneous linear velocity of each wheel v, v,
Motion of the robot

Turn in place v,=-v,—>R=0
Go straight v.=v,—=>w=0
y

ICC
v )
X
y 0
R
(xy X
A\
12

26
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Differential Drive

« Turninplace v,=-v, >R=0

+ Gostraight v, =v,>w=0

* More general motion, turning and moving forward

» There must be a point that lies on the wheel axis that
the robot rotates around

y
ICC

Vi
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Instantaneous Center of Curvature

¥ I
7 =

= When robot moves on a curve with particular linear and
angular velocity at each instance there is a point called
instantaneous center of curvature

28
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Differential Drive

Instantaneous linear velocity of each wheel

CU(R +1/ 2) =Vr Forward velocity of the
Wheel of radius r as it

CU(R -1/ 2) = Vi turns with angular
rate ,;
Y

w is the angular velocity of the robot’s body frame
around ICC &

Y do v
1cC dt R

vl’vr

ICC=[x—Rsinf,y+ Rcosd]

X

A

2
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Differential Drive

Instantaneous linear velocity of each wheel
+ Angular velocity are related via R radius of the curve

(subtract two equations for v,,v,)
+ Linear velocity (add two equations for v,,v,)
o(R+1/2)=vr

y
ICC w(R-1/2)=w
v
R=£(V1+Vr)
2 (vri—wi)

Vr=—VI

Vl’vr

0 a)

X X
(y Vr+ Vi
v=

Angular velocity w=—=—

2

Linear velocity %

30

14



Differential Drive: Intuition

+ When both wheels turn with the same
speed robot goes straight v, = v,

 When one wheel turns faster then the

W(R+1/2)=vr

other robot turns w(R-1/2)=w
+ When the wheels turn in opposite direction I (vi+v)
the robot turns in place v =-v, T2 (m—w)
. Vr— Vi
+ We can solve for  rate of rotation W =
around ICC two special cases !
* Turninplace v =v, > @ =0 v
« Gostraight v =-v,—>R=0 2
31
Differential Drive
+ Linear and angular velocities
in the robot body frame |
- E(Vl +v)
ICC Y |7 1 0
w E(Vr _Vl)
V= [vx,vy]
w=0
32
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Representing Robot Pose

+ Representing robot motion in inertial (global) frame
+ Previous the velocities were expressed in robot frame

Y

— Inertial (global) frame: (XY}

— Robot frame (axes)  {x;.¥;}

— Robot pose: &=[x y of

— Robot velocities: ¢, =[x , 4] :

— Previously the velocities were expressed in the robot
coordinate frame

— Mapping from global reference frame to robot frame

cosf sinf x Y
R(0)=|-sin® cos y
0 0 1
— Example: Robot aligned with Y, Y
33
Robot Motion — Differential Drive
* Representing to robot within an arbitrary initjal frame
— Initial frame:  {x,.v,} I
— Robot frame:  {Xz.%}
— Robot pose: ¢, =[x y o]
— We control v, in the robot frame :
— Differential roTbot drive instantaneously moves along x
axis v=[v..v,| =[v,.0"
— Velocities in the world frame are
X |_| cosf -sinf | v T = g(vr+vl)cosﬁ
y sinf  cos6 0 -
_ y==(vyy —v,)sinf
f=w _ %
0 = 7(1” — V)
34
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Robot motion Differential Drive

— Velocities in the world frame are

:L'—;(vr—i—vl)cosﬁ X = 1V Ccosb
y':g(vz—vr)&n@ Yy =rvsinf
- 0=rw
6 =" (01— vr)
— With the following controls i
Vr— Vi T
w =
/ X
Vr+ Vi Wﬂle
2 |
36
Unicycle

Viewed as abstract version of differential drive

Parameters: wheel radius r, pedaling velocity, linear
velocity, angular velocity controlled directly

YR 0 .
Val ®

T =wvcosb .
. . v ="r
y = vsinf

0=w

37




Car Model

« Car kinematics model (Ackerman steering)
« Steering angle, forward speed

X= v, cosf
y=v sinf

- tan

X

+ Ingredients: how to characterize the pose, velocity
+ What are the parameters and control inputs

« See: hitp://planning.cs.uiuc.edu/node657.html for
additional detailed derivations, e.g. tractor trailer
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Bicycle Kinematic model

Similar, slightly different steering mechanism

Bicycle model of the car

Hind wheels move with the same speed

Front wheels can be rotated

L distance between form and back wheels

X=vcosf
y=vsin0

ICC sV
0 =—tany
L

Nonholonomic velocity constraints
Xxcosf—ysind =0
x,y) Cannot change orientation not moving with v

v=O—>9=1tany—>9=0
L

41
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http://planning.cs.uiuc.edu/node657.html

Mobile Robot Kinematic Models

Manipulator case — given joint angles, we can always
tell where the end effector is

Mobile robot basis — given wheel positions we cannot

tell where the robot is

We have to remember the history how it got there
Need to find relationship between velocities and

changes in pose

Presented on blackboard (see handout)
How is the wheel velocity affecting velocity of the

chassis

42

Differential Drive: Forward Kinematics
» To compute the trajectory we need to integrate

1CC the equations
L
R
P(t+6t)
=
S
P(t)

x(t) = %j[vr(t') +vi(t")] cos[O(t)]dr'

0

y(t)= %I[Vr(ld) +wi(t")] sin[0(¢")]dt’

0

(1) = H[w(f) —vi(t")] dr'

43

43
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Differential Drive

+ Integral cannot be solved analytically

* w(t),v(t) are functions of time

+ Option 1: consider special cases of straight line
motion and rotation only

« Option 2: simulate the differential equation (see

notes)
44
Differential Drive
Kinematics Dynamics
First order model second order model
izg(errvl)cosQ T = g(vr—f—vl) cos
§= 50— v)sing § =L (v —v,)sing
, 2 "
ng(vl—vr) 9—£(v — )
- L l r
’Ul = qy
Uy = Qo
» Pick control input (in this case velocities or left and right
wheel) and add equations for their derivatives
* New control — angular accelerations a;, a,
45
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Car

Kinematics Dynamics

First order model second order model
State s (g;,y,g) State s (Ly,e,vs’(b)
Position Po_smon_
Orientation Orlentat!on .
Translational velocity Translational velocity
Steering angle s, Ug Steering angle

Translational acceleration U1
Steering acceleration U2

T = vscosl

T = v cosf 7 = Vg sin
Y = vgsind é:U—StaDU¢
. v, L
Hzftanud) Vs = Uy
¢ = us
46
Generating motions
+ Apply control inputs and integrate equations of motion
+ Start in some state S0
+ Apply controls U over some time T
t=T
s(t) = sg —I—/ f(s(t),u)dt
t=0
+ Closed form integration when possible
* Numerical integration
47
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Numerical Integration

t=T
s(t) = so +/t f(s(t),u)dt

=0
s(At) — s(0
(1) = 7(s(t),0) ~ X200
_ o Uyt cosd
s(t) ~ |yo| ++At |u,tsiné
<0 U

* For small step
+ Simple and efficient
* Not very accurate

48

Numerical Integration

+ Fourth order Runge-Kutta integration

- At
s(t) =~ so + ?(wl + wo + w3 + wy)

wy = f(S(O),U)
wy = f(s(0) + %wl,u)
ws = f(s(0) + %wg,u)

wa = F(s(0) + Srws, )

49
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