Kinematics, Kinematics Chains

CS 685

Jana Kosecka

1

Previously

- · Representation of rigid body motion
- · Two different interpretations
 - as transformations between different coord. frames
 - as operators acting on a rigid body
- Representation in terms of homogeneous coordinates
- · Composition of rigid body motions
- · Inverse of rigid body motion

Rigid Body Motion – Homogeneous Coordinates

3-D coordinates are related by: $X_c = RX_w + T$,

Homogeneous coordinates:

$$m{X} = \left[egin{array}{c} X \ Y \ Z \end{array}
ight] \quad o \quad m{X} = \left[egin{array}{c} X \ Y \ Z \ 1 \end{array}
ight] \in \mathbb{R}^4,$$

Homogeneous coordinates are related by:

$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix} = \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

3

Properties of Rigid Body Motions

Rigid body motion composition

$$\bar{g}_1\bar{g}_2 = \begin{bmatrix} R_1 & T_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_2 & T_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_1R_2 & R_1T_2 + T_1 \\ 0 & 1 \end{bmatrix} \in SE(3)$$

Rigid body motion inverse

$$\bar{g}^{-1} = \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} R^T & -R^T T \\ 0 & 1 \end{bmatrix} \in SE(3).$$

Rigid body motion acting on vectors

Vectors are only affected by rotation – 4th homogeneous coordinate is zero

Δ

3D Rotation (axis & angle)

$$\begin{split} R(t) &= e^{\widehat{\omega}t} \\ R &= I + \widehat{\omega}sin(\theta) + \widehat{\omega}^2(1 - cos(\theta)) \\ \text{with } \|\omega\| &= 1 \\ \text{or } \\ R &= I + \frac{\widehat{\omega}}{\|\omega\|}sin(\|\omega\|) + \frac{\widehat{\omega}^2}{\|\omega\|^2}(1 - cos(\|\omega\|)) \\ \\ R(\omega, \theta) &= e^{\widehat{\omega}\theta} \end{split}$$

5

Rigid Body Transform

Translation only $\;t_{AB}\;$ is the origin of the frame B expressed in the Frame A

$$\mathbf{X}_A = \mathbf{X}_B + t_{AB}$$

Composite transformation:

$$\mathbf{X}_A = R_{AB}\mathbf{X}_B + t_{AB}$$

Transformation: $T=(R_{AB},t_{AB})$ Homogeneous coordinates

$$\mathbf{X}_A = \left[\begin{array}{cc} R_{AB} & t_{AB} \\ 0 & 1 \end{array} \right] \mathbf{X}_B$$

The points from frame A to frame B are transformed by the inverse of (see example next slide) $T=(R_{AB},t_{AB})$

_

Kinematic Chains

- Robot manipulator; multiple rigid bodies linked together
- Kinematics study of position, orientation, velocity, acceleration regardless of the forces
- Simple examples of kinematic model of robot manipulator
- Components links, connected by joints, important frames
- {B} base frame
- {T} tool frame
- $\{S\}$ station frame
- {G} goal/object frame
- {W} wrist frame

Various joints

In general rigid bodies can be connected by various articulated joints

Kinematic Chains in 2D

- Given θ_1,θ_2 determine what is X,Y• Given $\dot{\theta_1},\dot{\theta_2}$ determine what is \dot{X},\dot{Y} We can control θ_1,θ_2 want to understand how it affects position of the tool frame
- · How does the position of the tool frame change as the manipulator articulates
- Actuators change the joint angles

9

Forward kinematics 2D arm

· Find position of the end effector as a function of the joint angles

$$f(\theta_1, \theta_2) = \left[\begin{array}{c} X \\ Y \end{array} \right]$$

Example

Find transformations between frames

P2 - coordinate of the end effector in frame 2 What is the coordinate in frame 0?

$$T_{01} = \begin{bmatrix} c\theta_1 & -s\theta_1 & 0\\ s\theta_1 & c\theta_1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$T_{12} = \begin{bmatrix} c\theta_2 & -s\theta_2 & l_1 \\ s\theta_2 & c\theta_2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\vec{X} = T_{01}T_{12}P_2$$

$$f(\theta_1, \theta_2) = \begin{bmatrix} X \\ Y \end{bmatrix}$$

$$f(\theta_1, \theta_2) = \begin{bmatrix} X \\ Y \end{bmatrix} \qquad \begin{aligned} x &= l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) \\ y &= l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2) \end{aligned}$$

11

Kinematic Chains in 3D

- Additional joints possible (spherical, screw)
- · Additional offset parametes
- Same idea: set up frame with each link
- Define relationship between links (two rules):
 - use Z-axis as an axis of a revolute joint
 - connect two axes shortest distance

In 2D we need only link length and joint angle to specify the transform

In 3D $d_i, \theta_i, a_{i-1}, \alpha_{i-1}$ Denavit-Hartenberg parameters (see LaValle (chapter [3])

Example 3D SCARA manipulator

Transformation between stationary frame and tool frame

$$\begin{split} e^{\hat{\xi}_1\theta_1} &= \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & 0 & 0 \\ \sin\theta_1 & \cos\theta_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ e^{\hat{\xi}_2\theta_2} &= \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 & 0 & l_1\sin\theta_2 \\ \sin\theta_2 & \cos\theta_2 & 0 & l_1(1-\cos\theta_2) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ e^{\hat{\xi}_3\theta_3} &= \begin{bmatrix} \cos\theta_3 & -\sin\theta_3 & 0 & (l_1+l_2)\sin\theta_3 \\ \sin\theta_3 & \cos\theta_3 & 0 & (l_1+l_2)(1-\cos\theta_3) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ e^{\hat{\xi}_4\theta_4} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \theta_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \end{split}$$

$$\begin{split} g_{st}\![\theta) &= \begin{bmatrix} R(\theta) & p(\theta) \\ 0 & 1 \end{bmatrix} \\ R(\theta) &= \begin{bmatrix} \cos(\theta_1 + \theta_2 + \theta_3) & -\sin(\theta_1 + \theta_2 + \theta_3) & 0 \\ \sin(\theta_1 + \theta_2 + \theta_3) & \cos(\theta_1 + \theta_2 + \theta_3) & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ p(\theta) &= \begin{bmatrix} -l_1 \sin\theta_1 - l_2 \sin(\theta_1 + \theta_2) \\ l_1 \cos\theta_1 + l_2 \cos(\theta_1 + \theta_2) \end{bmatrix}. \end{split}$$

Adapted from Murray, Li, Sastry Robotic Manipulation

13

Inverse kinematics

- In order to accomplish tasks, we need to know given some coordinates in the tool frame, how to compute the joint angle
- · Simple 2D example
- Use trigonometry to compute given [X, Y] of the end effector
- Solution may not be unique $\, heta_1, heta_2 \,$
- See handout notes for details

Figure adapted from K. Hauser, http://motion.cs.illinois.edu/RoboticSystems/InverseKinematics.html

Inverse kinematics

- For small problem angles can be calculated analytically, for larger chains more complex
- Some 3D manipulators analytic solutions to IK
- · Redundant robots IK sets of solutions
- · Numerical techniques
 - Cyclic coordinate descent
 - Root finding methods
 - minimization methods
- For more details

http://motion.cs.illinois.edu/RoboticSystems/InverseKinematics.html

15

Inverse Kinematics

Forward Kinematics (FK)

Mathematically determining the position and angle of joints in a series of flexible, jointed objects after determining the position and orientation of the end effector.

In game design, inverse kinematics (IK) is typically used most often in character animation

Learning Locomotion

Iteration 0

[Schulman, Moritz, Levine, Jordan, Abbeel, 2015]

policy gradients, value function approximation

Slides courtesy P. Abbeel

17

Jacobians

- Kinematics enables us study what space is reachable
- Given reachable points in space, how well can be motion of an arm controlled near these points
- We would like to establish relationship between velocities in joint space and velocities in end-effector space
- Given kinematics equations for two link arm

$$x = f_x(\theta_1, \theta_2)$$

$$y = f_y(\theta_1, \theta_2)$$

The relationship between velocities is manipulator Jacobian

$$J(\theta_1, \theta_2)$$

$$\left[\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right] = \left[\begin{array}{cc} \frac{\partial x}{\partial \theta_1} & \frac{\partial x}{\partial \theta_2} \\ \frac{\partial y}{\partial \theta_1} & \frac{\partial y}{\partial \theta_2} \end{array}\right] \left[\begin{array}{c} \dot{\theta_1} \\ \dot{\theta_2} \end{array}\right] \qquad \left[\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right] = J(\theta_1, \theta_2) \left[\begin{array}{c} \dot{\theta_1} \\ \dot{\theta_2} \end{array}\right]$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = J(\theta_1, \theta_2) \begin{bmatrix} \dot{\theta_1} \\ \dot{\theta_2} \end{bmatrix}$$

Manipulator Jacobian

- · Determinant of the Jacobian
- If determinant is 0, there is a singularity
- Manipulator kinematics: position of end effector can be determined knowing the joint angles
- · Actuators: motors that drive the joint angles
- Workspace concept (in the presence of constraints)

Joint angle constraints +/- 45

19

Locomotion of wheeled robots

- Power the motion from place to place
- Differential Drive (two powered wheels)
- · Car Drive (Ackerman Steering)

we also allow wheels to rotate around the z axis

Locomotion of wheeled robots

• Differential Drive (two powered wheels)

- · Each wheel is has its own motor
- · Two wheels can move at different speeds

22

Mobile robot kinematics

- Two wheels, with radius r
- Point P centered between two wheels is the origin of the robot frame
- Distance between the wheels *[*

- Controls: Instantaneous linear velocity of each wheel v_l, v_r
- · Left and right wheel can move at different speed
- Robots coordinate system, robot (heading in the x-direction)
- Parameters, distance between the wheels I
- · Radius of each wheel r

25

Differential Drive

- Controls: Instantaneous linear velocity of each wheel v_l, v_r
- Motion of the robot
- Turn in place

$$v_r = -v_l \rightarrow R = 0$$

Go straight

$$v_r = v_l \rightarrow \omega = 0$$

- Turn in place $v_r = -v_l \rightarrow R = 0$ Go straight $v_r = v_l \rightarrow \omega = 0$
- More general motion, turning and moving forward
- There must be a point that lies on the wheel axis that the robot rotates around

27

Instantaneous Center of Curvature

When robot moves on a curve with particular linear and angular velocity at each instance there is a point called instantaneous center of curvature

Instantaneous linear velocity of each wheel v_l, v_r

$$\omega(R+l/2) = v_r$$

$$\omega(R-l/2) = v_l$$

Forward velocity of the Wheel of radius r as it turns with angular rate i

 $\omega\,$ is the angular velocity of the robot's body frame around ICC

 $\omega = \frac{d\theta}{dt} = \frac{V}{R}$

 $ICC = [x - R\sin\theta, y + R\cos\theta]$

29

Differential Drive

Instantaneous linear velocity of each wheel v_l, v_r

- Angular velocity are related via R radius of the curve (subtract two equations for v_l, v_r)
- Linear velocity (add two equations for v_l, v_r)

 $\omega(R+l/2) = v_r$

 $\omega(R-l/2) = v_l$

 $R = \frac{l}{2} \frac{(v_l + v_r)}{(v_r - v_l)}$

 $\omega = \frac{v_r - v_r}{I}$

 $v = \frac{v_r + v_r}{2}$

 $\omega = \frac{d\theta}{dt} = \frac{V}{R}$

Linear velocity

 ν

Differential Drive: Intuition

- When both wheels turn with the same speed robot goes straight $v_r = v_l$
- When one wheel turns faster then the other robot turns
- When the wheels turn in opposite direction the robot turns in place $v_r = -v_l$
- We can solve for $\,\omega\,$ rate of rotation around ICC two special cases
- Turn in place $v_r = v_l \rightarrow \omega = 0$
- Go straight $v_r = -v_l \rightarrow R = 0$

 $\omega(R+l/2) = v_r$ $\omega(R-l/2) = v_l$

$$R = \frac{l}{2} \frac{(v_l + v_r)}{(v_r - v_l)}$$

- $\omega = \frac{v_r v_l}{l}$
- $v = \frac{v_r + v_l}{2}$

31

Differential Drive

 Linear and angular velocities in the robot body frame

$$\begin{bmatrix} v_{x,R} \\ v_{y,R} \\ \omega \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(v_l + v_r) \\ 0 \\ \frac{1}{2}(v_r - v_l) \end{bmatrix}$$

$$v = [v_x, v_y]$$
$$\omega = \dot{\theta}$$

Representing Robot Pose

- · Representing robot motion in inertial (global) frame
- · Previous the velocities were expressed in robot frame
 - Inertial (global) frame: $\{X_I, Y_I\}$
 - Robot frame (axes) $\{X_R, Y_R\}$
 - Robot pose: $\xi_I = \begin{bmatrix} x & y & \theta \end{bmatrix}^T$
 - Robot velocities: $\dot{\xi}_I = [\vec{x} \ \vec{y} \ \dot{\theta}]^T$

- Mapping from global reference frame to robot frame

$$R(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & x \\ -\sin \theta & \cos \theta & y \\ 0 & 0 & 1 \end{bmatrix}$$

- Example: Robot aligned with Y₁

33

Robot Motion - Differential Drive

- · Representing to robot within an arbitrary initial frame
 - Initial frame: $\{X_I, Y_I\}$
 - Robot frame: $\{X_R, Y_R\}$
 - Robot pose: $\xi_I = \begin{bmatrix} x & y & \theta \end{bmatrix}^T$
 - We control v,ω in the robot frame
 - Differential robot drive instantaneously moves along x axis $v = [v_x, v_y]^T = [v_x, 0]^T$
 - Velocities in the world frame are

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} v \\ 0 \end{bmatrix}$$

$$\dot{x} = \frac{r}{2}(v_r + v_l)\cos\theta$$

$$\dot{y} = \frac{r}{2}(v_l - v_r)\sin\theta$$

$$\dot{\theta} = \omega$$

$$\dot{\theta} = \frac{r}{l}(v_l - v_r)$$

Robot motion Differential Drive

- Velocities in the world frame are

$$\dot{x} = \frac{r}{2}(v_r + v_l)\cos\theta$$
 $\dot{x} = rv\cos\theta$

$$\dot{x} = rv\cos\theta$$

$$\dot{y} = \frac{r}{2}(v_l - v_r)\sin\theta$$

$$\dot{y} = rv\sin\theta$$

$$\dot{\theta} = \frac{\dot{r}}{l}(v_l - v_r)$$

$$\dot{\theta} = r\omega$$

- With the following controls

$$\omega = \frac{v_r - v_l}{1}$$

$$v = \frac{v_r + v_l}{2}$$

36

Unicycle

- Viewed as abstract version of differential drive
- Parameters: wheel radius r, pedaling velocity, linear velocity, angular velocity controlled directly

$$\dot{x} = v\cos\theta$$

$$\dot{y} = v \sin \theta$$

$$\dot{\theta}=\omega$$

$$v = \psi r$$

Car Model

- · Car kinematics model (Ackerman steering)
- · Steering angle, forward speed

$$\dot{x} = v_x \cos \theta$$

$$\dot{y} = v_x \sin \theta$$

$$\dot{\theta} = \frac{\tan \phi}{L} v_{x}$$

- · Ingredients: how to characterize the pose, velocity
- · What are the parameters and control inputs
- See: http://planning.cs.uiuc.edu/node657.html for additional detailed derivations, e.g. tractor trailer

40

Bicycle Kinematic model

- · Similar, slightly different steering mechanism
- · Bicycle model of the car
- · Hind wheels move with the same speed
- · Front wheels can be rotated
- · L distance between form and back wheels

Mobile Robot Kinematic Models

- Manipulator case given joint angles, we can always tell where the end effector is
- Mobile robot basis given wheel positions we cannot tell where the robot is
- · We have to remember the history how it got there
- Need to find relationship between velocities and changes in pose
- Presented on blackboard (see handout)
- How is the wheel velocity affecting velocity of the chassis

42

Differential Drive: Forward Kinematics

 To compute the trajectory we need to integrate the equations

$$x(t) = \frac{1}{2} \int_{0}^{t} [v_{r}(t') + v_{l}(t')] \cos[\theta(t')] dt'$$

$$y(t) = \frac{1}{2} \int_{0}^{t} [v_{r}(t') + v_{l}(t')] \sin[\theta(t')]dt'$$

$$\theta(t) = \frac{1}{l} \int_{0}^{t} \left[v_r(t') - v_l(t') \right] dt'$$

- · Integral cannot be solved analytically
- $\omega(t), v(t)$ are functions of time
- Option 1: consider special cases of straight line motion and rotation only
- Option 2: simulate the differential equation (see notes)

44

Differential Drive

Kinematics First order model

$$\dot{x} = \frac{r}{2}(v_r + v_l)\cos\theta$$

$$\dot{y} = \frac{r}{2}(v_l - v_r)\sin\theta$$

$$\dot{\theta} = \frac{r}{2}(v_l - v_r)$$

Dynamics second order model

$$\dot{x} = \frac{r}{2}(v_r + v_l)\cos\theta$$

$$\dot{y} = \frac{r}{2}(v_l - v_r)\sin\theta$$

$$\dot{\theta} = \frac{r}{L}(v_l - v_r)$$

$$\dot{v}_l = a_l$$

$$\dot{v}_r = a_r$$

- Pick control input (in this case velocities or left and right wheel) and add equations for their derivatives
- New control angular accelerations a_l, a_r

Kinematics First order model

State s (x,y,θ) Position Orientation Translational velocity Steering angle v_s,u_ϕ

$$\dot{x} = v_s \cos \theta$$
$$\dot{y} = v_s \sin \theta$$
$$\dot{\theta} = \frac{v_s}{L} \tan u_{\phi}$$

Car

Dynamics second order model

State s (x,y,θ,v_s,ϕ) Position Orientation Translational velocity Steering angle Translational acceleration u_1 Steering acceleration u_2

$$\dot{x} = v_s \cos \theta$$

$$\dot{y} = v_s \sin \theta$$

$$\dot{\theta} = \frac{v_s}{L} \tan u_{\phi}$$

$$\dot{v}_s = u_1$$

$$\dot{\phi} = u_2$$

46

Generating motions

- Apply control inputs and integrate equations of motion
- Start in some state \$90
- Apply controls u over some time T

$$s(t) = s_0 + \int_{t=0}^{t=T} f(s(t), u) dt$$

- · Closed form integration when possible
- · Numerical integration

Numerical Integration

$$s(t) = s_0 + \int_{t=0}^{t=T} f(s(t), u)dt$$

$$s(t) = f(s(t), u) \approx \frac{s(\Delta t) - s(0)}{\Delta t}$$

$$\dot{s(t)} \approx \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + +\Delta t \begin{bmatrix} u_{\sigma}t\cos\theta \\ u_{\sigma}t\sin\theta \\ u_{\omega} \end{bmatrix}$$

- For small step
- · Simple and efficient
- · Not very accurate

48

Numerical Integration

· Fourth order Runge-Kutta integration

$$s(t) \approx s_0 + \frac{\Delta t}{6}(w_1 + w_2 + w_3 + w_4)$$

$$w_1 = f(s(0), u)$$

$$w_2 = f(s(0) + \frac{\Delta t}{2}w_1, u)$$

$$w_3 = f(s(0) + \frac{\Delta t}{2}w_2, u)$$

$$w_4 = f(s(0) + \frac{\Delta t}{2}w_3, u)$$