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Motion Planning 

Jana Kosecka
Department of Computer Science

• Discrete planning, graph search, shortest path, A* methods
• Road map methods
• Configuration space

Slides thanks to http://cs.cmu.edu/~motionplanning, Jyh-Ming Lien
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Motion Planning

• Planning in continuous state spaces
• Workspace of a robot is a continuous space
• Simplifying assumption (for now) robot is a point

• Given a point robot and a workspace described by 
polygons. In this case workspace is same as 
configuration space

• Example 2D configuration space
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Configuration Space

• Well, most robot is not a point and can have arbitrary 
shape

• What should we do if our robot is not a point?

• Convert rigid robots, articulated robots, etc. into points

• Apply algorithms for moving points
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Configuration Space
Workspace Configuration Space

x
yRobot 

Obstacle C-obstacle

Robot 

p C-obstacle is a polygon – set of configurations robot cannot attain
p Configuration space – all attainable configurations
p Planning paths in configuration space
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Workspace

(4,5,45)

obstacle

Workspace

(x,y)

theta

Configuration  (x,y,theta)

Workspace Obstacle

10

• Th
et
a

C-Space Obstacle

C-Obstacle

Really look like this ?  Every point in the C-obst
corresponds to the configuration where the robot would collide
with the obstacle
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Initial

Goal

Finding a Path

Find a path in 
workspace for a 
robot

Th
et

a

Find a path in 
C-space for a point
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robot

obst

obst

obst

obst

x
y

C-obst

C-obstC-obst

C-obst

robot 

Path is swept volume

Motion Planning in C-space

Path is 1D curve

Workspace

C-space
Simple workspace obstacle transformed 
Into complicated C-obstacle!!
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C = S1 x S1

φ

ϕ

Topology of the configuration pace

• The topology of C is usually not that of a 
Cartesian space Rn.

0 2π

2π

φ

ϕ
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Configuration Space
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Workspace

α
β

Degree of  freedom (DOF)
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Configuration Space 
C-Space

β=125
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C-Space

β=100
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C-Space
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C-Space

α=85
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C-Space

β=80
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C-Space

α=90
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β
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C-Space

β=55
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C-Space
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C-Space

α=135

α

β

0

180

18055

15

C-Space

β=15
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Example: rigid robot in 2-D 
workspace

• dim of configuration space = ???
• Topology ??? 

R2 x SO(1)
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Example: rigid robot in 2-D 
workspace

• dim of configuration space = ???
• Topology – cylinder 

R2 x SO(1)
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Motion Planning

• Planning in continuous state spaces
• Workspace of a robot is a continuous space
• Simplifying assumption (for now) robot is a point

• Given a point robot and a workspace described by 
polygons. In this case workspace is same as 
configuration space (more on this later)

• Roadmap methods
– Visibility graph
– Cell decomposition
– Retraction

25
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Roadmap Methods

roadmap

Capture the connectivity of  Cfreewith a roadmap (graph or 
network) of  one-dimensional curves
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difficult
part

Roadmap Methods

Path Planning with a Roadmap
Input: configurations qinit and qgoal , and B
Output: a path in Cfree connecting qinit and qgoal

1. Build a roadmap in Cfree (preprocessing)
• roadmap nodes are free configurations (or semi-free)
• two nodes connected by edge if  can (easily) move between 
them

2. Connect qinit and qgoal to roadmap nodes vinit and vgoal

3. Find a path in the roadmap between vinit and vgoal
- directly gives a path in Cfree

27
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Visibility Graph

• A visibility graph of C-space for a given C-obstacle is an 
undirected graph G where
– nodes in G correspond to vertices of C-obstacle
– nodes connected by edge in G if

• they are connected by an edge in C-obstacle, or
• the straight line segment connecting them lies entirely in 

Cfree
– (could add qinit and qgoal as roadmap nodes)
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Visibility Graph

• Brute Force Algorithm
– add all edges in C-obstacle to G
– for each pair of vertices (x, y) of C-obstacle, add the edge 

(x, y) to G if the straight line segment connecting them lies 
entirely in cl(C-free) – i.e. robot is allowed to touch the 
obstacles, but not penetrate them (cl – closure)

• test (x; y) for intersection with all O(n) edges of C-
obstacle

• O(n2) pairs to test, each test takes O(n) time

Complexity: O(n3), n is number of vertices in C-obstacle

29
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Visibility Graph
• Visibility graphs – good news

– are conceptually simple
– shortest paths (robot is grazing obstacle)
– we have efficient algorithms if workspace  is 

polygonal
• O(n2), where n is number of vertices of C-obstacle
• O(k + n log n), where k is number of edges in G

– we can make a 'reduced' visibility graph (don't need 
all edges)
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CS633

Reduced Visibility Graph
• we don't really need all the edges in the visibility graph 

(even if we want shortest paths)
• Definition: Let L be the line passing through an edge 

(x; y) in the visibility graph G. The segment (x; y) is a 
tangent segment iff L is tangent to C-obstacle at both 
x and y.

• Line segment is tangent if extending the line beyond 
each of the end points would not intersect the obstacles 

31
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Reduced Visibility Graph

• It turns out we need only keep
– convex vertices of C-obstacle
– non-CB edges that are tangent segments
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Visibility Graph in 3-D

• Visibility graphs don't necessarily contain shortest paths in 
R3

– in fact finding shortest paths in R3 is NP-hard [Canny 
1988]

– (1 + ε²) approximation algorithm [Papadimitriou 
1985]

Bad news: Visibility graphs really only suitable for 2D  
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Voronoi Diagram for Point Sets
• Voronoi diagram of point set X consists of straight line 

segments, constructed by
– computing lines bisecting each pair of points and their 

intersections
– computing intersections of these lines
– keeping segments with more than one nearest neighbor

• segments of Vor(X) have largest clearance from X and 
regions identify closest point of X
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Voronoi Diagram for Point Sets
• When C = R2 and polygonal C-obstacle, Vor(Cfree) 

consists of a finite collection of straight line segments 
and parabolic curve segments (called arcs)
– straight arcs are defined by two vertices or two 

edges of C-obstacle, i.e., the set of points equally 
close to two points (or two line segments) is a line

– parabolic arcs are defined by one vertex and one 
edge of C-obstacle, i.e., the set of points equally 
close to a point and a line is a parabola
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Voronoi Diagram for Point Sets
• Naive Method of Constucting V or(Cfree)

– compute all arcs (for each vertex-vertex, edge-edge, and 
vertex-edge pair)

– compute all intersection points (dividing arcs into 
segments)

– keep segments which are closest only to the 
vertices/edges that defined them
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Retraction
• Retraction ρ : Cfree → Vor(Cfree)

To find a path:
1. compute Vor(Cfree)
2. find paths from qinit and qgoal to ρ(qinit) and ρ(qgoal), respectively
3. search Vor(Cfree) for a set of arcs connecting ρ(qinit) and ρ(qgoal)

40
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Cell Decomposition

• Idea: decompose Cfree into a collection K of non-
overlapping cells such that the union of all the cells 
exactly equals the free C-space

• Cell Characteristics:
– geometry of cells should be simple so that it is easy to 

compute a path between any two configurations in a cell
– it should be pretty easy to test the adjacency of two cells, 

i.e., whether they share a boundary
– it should be pretty easy to find a path crossing the portion 

of the boundary shared by two adjacent cells

• Thus, cell boundaries correspond to 'criticalities' in C, 
i.e., something changes when a cell boundary is 
crossed. No such criticalities in C occur within a cell.

41

Difficult

• Preprocessing:
– represent Cfree as a collection of cells (connected regions of Cfree )

• planning between configurations in the same cell should be 'easy'
– build connectivity graph representing adjacency relations between cells 

• cells adjacent if can move directly between them
• Query:

– locate cells kinit and kgoal containing start and goal configurations
– search the connectivity graph for a 'channel' or sequence of adjacent 

cells connecting kinit and kgoal
– find a path that is contained in the channel of cells

• Two major variants of methods:
– exact cell decomposition:

• set of cells exactly covers Cfree
• complicated cells with irregular boundaries (contact constraints)
• harder to compute

– approximate cell decomposition:
• set of cells approximately covers Cfree
• simpler cells with more regular boundaries
• easier to compute

Cell Decomposition

42
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Trapezoidal Decomposition

• Basic Idea: at every vertex of C-obstacle, extend a 
vertical line up and down in Cfree until it touches a C-
obstacle or the boundary of Cfree

trapezoid

Roadmap – e.g. nodes centroids of cells and centers of vertical lines
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Approx. Cell Decomposition

• Construct a collection of non-overlapping cells such that 
the union of all the cells approximately covers the free 
C-space!

• Cell characteristics
– Cell should have simple shape
– Easy to test adjacency of two cells 
– Easy to find path across two adjacent cells

45
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Approx. Cell Decomposition

• Each cell is
– Empty
– Full
– Mixed

• Different resolution
– Different roadmap

46

Approx. Cell Decomposition

• Higher resolution around CBs

47
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Approx. Cell Decomposition

• Hierarchical approach
– Find path using empty and mixed cells
– Further decompose mixed cells into smaller cells
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Approx. Cell Decomposition

• Advantages:
– simple, uniform decomposition
– easy implementation
– adaptive 

• Disadvantages:
– large storage requirement 
– Lose completeness 

• Bottom line 1: We sacrifice exactness for simplicity and 
efficiency

• Bottom line 2: Approx. cell decomposition methods are 
practical for lower dimension C, i.e., dof <5, b/c they 
generate too many cells, i.e. (Nd) cells in d dimension

49
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Example: Multiple robots
• Given n robots in 2-D
• What are the possible 

representations?

• What is the number of dofs?
• Cross product of 

configuration spaces

J.J. Kuffner et al.

ROV, GAMMA group, UNC

5 articulated robots
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Metric in configuration space

• A metric or distance function d in a configuration space C is a 
function  

such that

• d(q, q’) = 0 if and only if q = q’,
• d(q, q’) = d(q’, q)

aka. Triangle inequality

52
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Example

• Robot A and a point x on A
• x(q): position of x in the workspace when A is at 

configuration q
• A distance d in C is defined by

d(q, q’) = maxx∈A || x(q) − x(q’) ||
where ||x - y|| denotes the Euclidean distance between 
points x and y in the workspace.

• Distance between two configurations is the maximum 
distance between two points of the robot in these two 
different configurations

q q’

53

Examples

• Maximum distance between the object in two 
configurations

C-Dist, Zhang et al. SPM 2007

54



23

C-Space Obstacle

O -R
Obstacle in 
workspace

O

Robot
R

C-obstacle

Configuration space obstacle
C-obstacle is (translational motion)

O -R
Classic result by Lozano-Perez and Wesley 1979
How to construct C-obstacle ? 
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Minkowski sum of convex polygons
• There is a simple algorithm for computing the boundary
• The Minkowski sum of two convex polygons P and Q of 

m and n vertices respectively is a convex polygon P + Q
of m + n vertices.

– The vertices of P + Q are the “sums” of vertices of P 
and Q.

=

63
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Algorithm

• Sort normals to the edges of the polygon
• Every edge of Cobst is either edge of the polygon or edge 

of the robot. �Every edge is used exactly once, we 
need to determine the ordering of the edges

• Sort inward angles on the robot counterclockwise
• Sort outward angles of the obstacle normals 
• Use incrementally the edges which correspond to the 

sorted normals in the order they are encountered

• See more details Chapter 4, section 4.3.2 S. Lavalle: 
Motion Planning. 
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Compute Minkowski Sum

• Convex object
– Use Gaussian map
– Compute convex hull of Point-based Minkowski sum 

(slower)

2D

3D
[Fogel and Halperin 06]

P Q
P⊕Q

65



25

Back to Motion Planning

• Minkowski sum allows us to solve problems with 
translational robots

• Translational case also generalizes to polyhedra and 3D 
translations
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Robot with Rotations

• If a robot is allowed rotation in addition to translation in 
2D then it has 3 DOF

• The configuration space is 3D: (x,y,φ) where φ is in the 
range [0:360)

67
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Polygonal robot translating & rotating in 
2-D workspace

workspace configuration 
space

68

Polygonal robot translating & rotating in 
2-D workspace

x

y
θ

69
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Mapping to C-Space

• The obstacles map to “twisted pillars” in C-Space
• They are no longer polygonal but are composed of 

curved faces and edges
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Computing Free Space

• Exact cell decomposition in 3D is really hard
• Compute z: a finite number of slices for discrete 

angular values
• Each slice will be the representation of the free space 

for a purely translational problem
• Robot will either move within a slice (translating) or 

between slices (rotating)

71
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Hard Motion Planning 

• Configuration Space methods – complex even 
for low dimensional configuration spaces

• Plus – always guarantee finding a plan if it 
exists in finite time (or answer no) 

• Idea behind sampling cased motion planning –
sacrifice completeness for efficiency – weaker 
guarantee – notion on probabilistic 
completeness 
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Collison Checking
• Obstactles defined implicitely via function 
• ColisionCheck (x) -> 0 if the configuration does not 

yield collision -> 1 is the configuration yields collision 
• How to check for collisions ? 
• Consider robot and obstacles are made of convex 

shapes – i.e. triangles – make sure that none of robot 
triangles intersects obstacle triangles 

Check if one of the triangle sides
Is separating line – generalizes to 3D (separating planes)

73
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Building Roadmap in Config Space

• This can be used to make a discrete approximation of 
the configuration space

• Sample the configurations uniformly and tightly 
• Check for each config. if it is in free space
• Connect neighbouring configurations in a graph 
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• General motion planning problem is 
• PSPACE-hard [Reif 79, Hopcroft et al. 84 & 86]
• PSPACE-complete [Canny 87]

The best deterministic algorithm known has running time that is 
exponential in the dimension of the robot’s C-space [Canny 86]

• C-space has high dimension - 6D for rigid body in 3D space
• simple obstacles have complex C-obstacles impractical to

compute  explicit representation of free space for more
than 4 or 5 dof

The Complexity of 
Motion Planning PSPACE

NP

P

75
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robot

obst

obst

obst

obst

x
y

C-obst

C-obstC-obst

C-obst

robot 

Path is swept volume

Motion Planning in C-space

Path is 1D curve

Workspace

C-space
Simple workspace obstacle transformed 
Into complicated C-obstacle!!
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The Alpha Puzzle

Hard Motion Planning Problems 

Swapping Cubes Puzzle

• Separate two shapes (one considered robot) – another obstacle
• Exchange the positions of two cubes 
(one needs move to empty space)
• All these planning problems are considered in continuous spaces

77
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Hard Motion Planning Problems 
Highly Articulated (Constrained) 

Systems

Digital Actors

Reaching and grasping

79

Hard Motion Planning Problems
Flocking: Covering, Homing, Shepherding

Motion for coordinated entities

Control the motion of
coordinated entities

Interactive Navigation of Multiple Agents in 
Crowded Environments. Jur van den Berg, Sachin 
Patil, Jason Sewall, Dinesh Manocha, Ming Lin, 
i3D 2008

80
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Hard Motion Planning Problems 
Deformable Objects

• Find a path for a deformable object  that can 
deform to avoid collision with obstacles

• move a mattress in a house, elastic or air-filled 
objects, metal sheets or long flexible tubes 

• virtual surgery applications
• computer animation and games
• Issue: difficult to find natural deformation 

efficiently
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Hard Motion Planning Problems 
Movable Objects

• M. Stilman and J.J. Kuffner Planning Among Movable Obstacles with 
Artificial Constraints Workshop on the Algorithmic Foundations of Robotics, 
July, 2006 
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http://www.cc.gatech.edu/~mstilman/papers/stilman-WAFR06.pdf
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Hard Motion Planning Problems
Intelligent CAD Applications

• Using Motion Planning to Test Design Requirements:
– Accessibility for servicing/assembly tested on physical “mock 

ups”
– Digital testing saves time and money, is more accurate, 

enables more extensive testing, and is useful for training (VR 
or e-manuals)

Maintainability Problems: 
Mechanical Designs from GE

flange Airplane engine
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Hard Motion Planning Problems
computational biology & chemistry

• Motion of molecules
• help understand important interactions - protein 

structure/function prediction
• diseases such as Alzheimer’s and Mad Cow are related to 

misfolded proteins

normal - misfold

prion protein

84
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Probabilistic Methods

• Resort to sampling based methods
• Avoid computing C-obstacles

– Too difficult to compute efficiently

• Idea: Sacrifice completeness to gain simplicity 
and efficiency

• Probabilistic Methods
– Graph based
– Tree based

85

Sampling Based Motion Planning

• Recall: Algorithm is considered complete if for any input 
it correctly reports the path if it exists in finite amount 
of time

• Sampling based methods cannot achieve completeness

• Deterministic approach which samples densely is called 
Resolution complete

• Random Sampling Based Methods 
Probabilistically complete with enough samples the
probability of finding solution approaches 1

86
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Sampling Based Motion Planning

Geometric 
Models

Collision 
Detection

S

Sampling Based Motion 
Planner

Discrete 
Search

C-space
planning

Idea :  Generate random configurations
Check whether they are collision free 
Connect them using Local planners
Discrete Search: (q0, qG) – single query search until you find qG
Multi-query search: Rapidly Exploring Random Trees
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Probabilistic Motion Planning
• First encounter with randomized techniques – in the context 

of potential field based methods
• Use random walk to escape local minima (can take long time)
• Idea – potential function gives as a cost to go g(q)
• If local planner is not successful reducing the cost to go 
• Switch to random walk mode from current node, terminate if 

node with lower g(q) is found or number of   iterations have 
been reached

• If better node has not been found back-track – pick one of 
the nodes encountered in Random walk and restart best first 
search

88
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• T
h
e
t
a

Probabilistic Roadmap Method
[Kavraki, Svestka, Latombe,Overmars 1996]

Explicit representation of the configuration space is unknown
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1. Connect start and goal to roadmap

Query processing
start

goal

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap
- simple, deterministic local planner
(e.g., straight line)

- discard paths that are invalid

1. Randomly generate robot configurations (nodes)
- discard nodes that are invalid

C-obst

C-space

2. Find path in roadmap between start and goal
- regenerate plans for edges in roadmap

90
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Probabilistic Roadmap Method

• Important sub-routines
– Generate random configurations
– Local planners
– Distance metrics 
– Selecting k-nearest neighbors (becoming dominant 

in high dimensional space)
– Collision detection (>80% computation)

91

PRMs: Pros & Cons

PRMs: The Good News
1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional 
C-space
3. PRMs support fast queries w/ enough 
preprocessing

Many success stories where PRMs solve 
previously unsolved problems

C-
obst

C-
obst

C-
obst

C-
obst

C-
obst

sta
rt

go
al

PRMs: The Bad News

1. PRMs don’t work as well for some 
problems:
– unlikely to sample nodes in narrow 
passages
– hard to sample/connect nodes on 
constraint surfacessta

rt

go
al

C-
obst

C-
obst

C-
obst

C-
obst

92
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Related Work (selected) 

• Probabilistic Roadmap Methods
• Uniform Sampling (original)  [Kavraki, Latombe, Overmars, 
Svestka, 92, 94, 96]
• Obstacle-based PRM (OBPRM) [Amato et al, 98]
• PRM Roadmaps in Dilated Free space [Hsu et al, 98]
• Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]
• Bridge test [Hsu et al 03]
• Visibility Roadmaps [Laumond et al 99]
• Using Medial Axis [Kavraki et al 99, 
Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]
• Generating Contact Configurations [Xiao et al 99] 
• Using workspace clues

93

An Obstacle-Based PRM

start

goal

C-obst

C-obst

C-obst

C-obst

To Navigate Narrow Passages we must sample in them
• most PRM nodes are where planning is easy (not needed)

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle 
surfaces?
• we cannot explicitly construct the C-obstacles...
• we do have models of the (workspace) obstacles...

OBPRM Roadmap

94
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1

3

2

4
5

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
(robot placement colliding with S)

2.  Select a random direction in C-
space
3. Find a free point in that direction
4. Find boundary point between 
them using binary search (collision 
checks)

Note: we can use more 
sophisticated heuristics to try to 
cover C-obstacle

C-obst

95

OBPRM

96
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1

2

Gaussian Sampling PRM 

1. Find a point in S’s C-obstacle
(robot placement colliding with S)

2. Find another point that is within 
distance d to the first point, where d 
is a random variable in a Gaussian 
distribution

3. Keep the second point if it is 
collision free

C-obstd

Note
• Two paradigms: (1) OBPRM: Fix the samples (2) Gaussian PRM: Filter the samples
• None of these methods can (be proved to) provide guarantee that the samples in 
the narrow passage will increase!
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Gaussians

98
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Issues

• How do we determine a random free configuration 
• We would like to sample nodes uniformly from Cfree

• Draw each of the coordinates from the interval of 
corresponding DOF (use uniform probability per interval)

• For each sample check for collision between the robot
and obstacles and robot itself

• If collision free add to V otherwise discard 
• Collision detection and sampling – large topics 

100

Collision Detection

• Treated as black box  - takes most of the 
computation

• In 2D convex robot and obstacle, there exist 
linear time collision detection algorithms 

• Construct polygonal Cobst

• Define a logical predicate which indicates 
whether configuration is free or not

• Hierarchical Methods or Incremental Methods
• Section 5.3.4 Motion Planning Book

101
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Planning in high dimensional spaces

• Single query planning qinitial and qgoal are given 
once – no pre-computation (greedy search 
technique can take a long time)

• Multiple query planning – spreads out 
uniformly, requires lot of samples to cover the 
space

• Next incremental sampling and search 
methods that yields good performance without 
parameters tunning. Idea gradually construct 
search tree, such that it densely covers the 
space

104

Incremental Sampling and Searching

• Single query model – given start and goal q 
find a path

• Analogy with the discrete search algorithms
• Samples are states, edges are paths 

connected them (as opposed to actions 
previously)

• Graphs are undirected; Ingredients
1. Initialize the graph
2. Select vertex for expansion 
3. Generate set of new vertices
4. For some new vertices run a local planner and check whether 

its collision free
5. If yes insert an edge to the graph
6. Keep on going until termination condition  is satisfied

105
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Incremental Search and Sample

• Why not just discretizing configuration space ? 
• For high dimensions large number of states can be   

wasted exploring various cavities of the C-space
• For low dim spaces grid points themselves can 

serve as roadmap points (need to be checked for 
collisions etc) 

• How to choose a resolution of the discretization 
(start coarse , iteratively refine)

• Another option – abandon discretization and work 
with continuous problem (like randomized potential 
fields) or RRT’s

106

Rapidly-Exploring Random Tree (RRT)

• Tree Based single shot planners – compute 
the respresentation of Cfree for single start and 
goal

• RRTs: Rapidly-exploring Random Trees
Rapidly-exploring random trees: Progress and 
prospects. S. M. LaValle and J. J. Kuffner. In Proceedings 
Workshop on the Algorithmic Foundations of Robotics, 2000.)
Incrementally builds the roadmap tree

• Extends to more advanced planning 
techniques
–Integrates the control inputs to ensure that the 
kinodynamic constraints are satisfied

107
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Rapidly-Exploring Random Trees

Idea: Incrementaly construct the search tree, that improves with resolution
Previous  incremental search methods could spend long time exploring nodes
inside unimportant cavities 

108

RRT’s

Random sample connects 
to the nearest node so far

If the nearest point lies on 
an edge, the edge is split
in two

109
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RRT’s
Details: 
Step length: how far to sample
Sample just at the end point
Sample all along, small steps

Extend returns  the new edge

110

Naïve Random Tree

111
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RRT’s are biased towards large 
Voronoi cells

The nodes most likely to be closest to a randomly chosen point in state space 
are those with the largest Voronoi regions. The largest Voronoi regions belong 
to nodes along the frontier of the tree, so these frontier nodes are 
automatically favored when choosing which node to expand.
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Grow two RRT’s together

113



47

Two RRT’s 

114

Two RRT’s

115
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Two RRT’s

116

Two RRT’s

117
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Two RRT’s

118

Two RRT’s

119
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Two RRT’s

120

Taking actions into account
Instead of moving in a straight line for some distance, take into
account kinematic constraints

121
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How it Works

• Build a rapidly-exploring random tree in state 
space (X), starting at sstart

• Stop when tree gets sufficiently close to sgoal

Goal
Start

122

Building an RRT
• To extend an RRT:

– Pick a random point a in X
– Find b, the node of the tree 

closest to a
– Find control inputs u to 

steer the robot from b to a

a

b
u

123
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Building an RRT
• To extend an RRT 

(cont.)
– Apply control inputs 

u for time δ, so 
robot reaches c

– If no collisions occur 
in getting from a to 
c, add c to RRT and 
record u with new 
edge

a

b
u

c

124

Executing the Path

• Once the RRT reaches sgoal

– Backtrack along tree to identify edges that 
lead from sstart to sgoal

– Drive robot using control inputs stored 
along edges in the tree
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Problem of Simple RRT Planner 

• Problem: ordinary RRT explores X uniformly
→ slow convergence

• Solution: bias distribution towards the goal – once in a 
while choose goal as new random configuration (5-10%) 

• If goal is choosen 100% time then it is randomized 
potential planner

126

Bidirectional Planners

• Build two RRTs, from start and goal state

• Complication: need to connect two RRTs
– local planner will not work (dynamic constraints)
– bias the distribution, so that the trees meet
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Bidirectional RRT Example

128

Articulated Robot example

129
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RRT’s

• Link
• http://msl.cs.uiuc.edu/rrt/gallery.html

• Issues/problems
• Metric sensitivity
• Nearest neighbour efficiency 
• Optimal sampling strategy
• Balance between greedy search and exploration 

• Applications in mobile robotics, manipulation, 
humanoids, biology, drug design, areo-space, animation 

• Extensions – real-time RRT’s, anytime RRT’s dynamic 
domains RRT’sm deterministic RRTs, hybrid RRT’s

130

Efficient nearest neighbour 
algorithms

• How to find NN in high
dimensional spaces

• KD trees – recursively choose a plane P that splits the 
set 
evenly in a coordinate direction

• Store P at the node 
• Apply to children sets Sl and Sr
• Requires O(dn) storage

• Various hashing strategies

131
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Computed example

138

Conclusion

• Motion planning is difficult (intractable)

• Roadmap methods
– Probabilistic Motion Planners

We will return to planning when considering 
partial information, dynamically changing 
worlds, uncertainty
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What is not covered?

• Other types of motion planning
– With constraints

• Close-chain constraint
• Nonholonomic constraint
• Differential constraints

– Manipulate planning
– Assembly planning
– Planning with uncertainty
– Planning for multiple robots, dynamic env
– Planning for highly articulated objects
– Planning for deformable objects
– …

Little Seiko
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Additional Readings

• Gross motion planning—a survey, Y. K. Hwang 
and N. Ahuja, ACM Computing Surveys, 1992 
(survey paper)

• Robot Motion Planning. J.C. Latombe. Kluwer 
Academic Publishers, Boston, MA, 1991. 

• Motion Planning: A Journey of Robots, 
Molecules, Digital Actors, and Other Artifacts. 
Jean-Claude Latombe, IJRR, 1999 (survey paper)

• Planning Algorithms, Steven LaValle, 2006, 
Cambridge University Pres, (Free download at 
http://planning.cs.uiuc.edu/)
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Examples

• Road Map methods and behavior based strategies
• Homing https://parasol.tamu.edu/dsmft/movies/flocking_Homing_web.mpg

• Flocking, Goal Search 

• https://parasol.tamu.edu/dsmft/movies/flocking_GoalSearch_web.mpg
• https://parasol.tamu.edu/dsmft/movies/flocking_RBFlock_narrow_homing.mpeg
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