
1

Motion Planning

Jana Kosecka
Department of Computer Science

• Discrete planning, graph search, shortest path, A* methods
• Road map methods
• Configuration space

Slides thanks to http://cs.cmu.edu/~motionplanning, Jyh-Ming Lien

1

Motion Planning

• Planning in continuous state spaces
• Workspace of a robot is a continuous space
• Simplifying assumption (for now) robot is a point

• Given a point robot and a workspace described by
polygons. In this case workspace is same as
configuration space

• Example 2D configuration space

7

http://cs.cmu.edu/~motionplanning

2

Configuration Space

• Well, most robot is not a point and can have arbitrary
shape

• What should we do if our robot is not a point?

• Convert rigid robots, articulated robots, etc. into points

• Apply algorithms for moving points

8

Configuration Space
Workspace Configuration Space

x
yRobot

Obstacle C-obstacle

Robot

p C-obstacle is a polygon – set of configurations robot cannot attain
p Configuration space – all attainable configurations
p Planning paths in configuration space

9

3

Workspace

(4,5,45)

obstacle

Workspace

(x,y)

theta

Configuration (x,y,theta)

Workspace Obstacle

10

• Th
et
a

C-Space Obstacle

C-Obstacle

Really look like this ? Every point in the C-obst
corresponds to the configuration where the robot would collide
with the obstacle

11

4

Initial

Goal

Finding a Path

Find a path in
workspace for a
robot

Th
et

a

Find a path in
C-space for a point

12

robot

obst

obst

obst

obst

x
y

C-obst

C-obstC-obst

C-obst

robot

Path is swept volume

Motion Planning in C-space

Path is 1D curve

Workspace

C-space
Simple workspace obstacle transformed
Into complicated C-obstacle!!

13

5

C = S1 x S1

φ

ϕ

Topology of the configuration pace

• The topology of C is usually not that of a
Cartesian space Rn.

0 2π

2π

φ

ϕ

14

Configuration Space

15

6

Workspace

α
β

Degree of freedom (DOF)

16

Configuration Space
C-Space

β=125

α

β

0

180

18055

125

α=55

17

7

C-Space

β=100

α

β

0

180

18075

100

C-Space

α=75

18

C-Space

α=85

α

β

0

180

18085

80

C-Space

β=80

19

8

C-Space

α=90

α

β

0

180

18090

55

C-Space

β=55

20

C-Space

α=110

α

β

0

180

180110

30

C-Space

β=30

21

9

C-Space

α=135

α

β

0

180

18055

15

C-Space

β=15

22

Example: rigid robot in 2-D
workspace

• dim of configuration space = ???
• Topology ???

R2 x SO(1)

23

10

Example: rigid robot in 2-D
workspace

• dim of configuration space = ???
• Topology – cylinder

R2 x SO(1)

24

Motion Planning

• Planning in continuous state spaces
• Workspace of a robot is a continuous space
• Simplifying assumption (for now) robot is a point

• Given a point robot and a workspace described by
polygons. In this case workspace is same as
configuration space (more on this later)

• Roadmap methods
– Visibility graph
– Cell decomposition
– Retraction

25

11

Roadmap Methods

roadmap

Capture the connectivity of Cfreewith a roadmap (graph or
network) of one-dimensional curves

26

difficult
part

Roadmap Methods

Path Planning with a Roadmap
Input: configurations qinit and qgoal , and B
Output: a path in Cfree connecting qinit and qgoal

1. Build a roadmap in Cfree (preprocessing)
• roadmap nodes are free configurations (or semi-free)
• two nodes connected by edge if can (easily) move between
them

2. Connect qinit and qgoal to roadmap nodes vinit and vgoal

3. Find a path in the roadmap between vinit and vgoal
- directly gives a path in Cfree

27

12

Visibility Graph

• A visibility graph of C-space for a given C-obstacle is an
undirected graph G where
– nodes in G correspond to vertices of C-obstacle
– nodes connected by edge in G if

• they are connected by an edge in C-obstacle, or
• the straight line segment connecting them lies entirely in

Cfree
– (could add qinit and qgoal as roadmap nodes)

28

Visibility Graph

• Brute Force Algorithm
– add all edges in C-obstacle to G
– for each pair of vertices (x, y) of C-obstacle, add the edge

(x, y) to G if the straight line segment connecting them lies
entirely in cl(C-free) – i.e. robot is allowed to touch the
obstacles, but not penetrate them (cl – closure)

• test (x; y) for intersection with all O(n) edges of C-
obstacle

• O(n2) pairs to test, each test takes O(n) time

Complexity: O(n3), n is number of vertices in C-obstacle

29

13

Visibility Graph
• Visibility graphs – good news

– are conceptually simple
– shortest paths (robot is grazing obstacle)
– we have efficient algorithms if workspace is

polygonal
• O(n2), where n is number of vertices of C-obstacle
• O(k + n log n), where k is number of edges in G

– we can make a 'reduced' visibility graph (don't need
all edges)

30

CS633

Reduced Visibility Graph
• we don't really need all the edges in the visibility graph

(even if we want shortest paths)
• Definition: Let L be the line passing through an edge

(x; y) in the visibility graph G. The segment (x; y) is a
tangent segment iff L is tangent to C-obstacle at both
x and y.

• Line segment is tangent if extending the line beyond
each of the end points would not intersect the obstacles

31

14

Reduced Visibility Graph

• It turns out we need only keep
– convex vertices of C-obstacle
– non-CB edges that are tangent segments

32

Visibility Graph in 3-D

• Visibility graphs don't necessarily contain shortest paths in
R3

– in fact finding shortest paths in R3 is NP-hard [Canny
1988]

– (1 + ε²) approximation algorithm [Papadimitriou
1985]

Bad news: Visibility graphs really only suitable for 2D

33

15

Voronoi Diagram for Point Sets
• Voronoi diagram of point set X consists of straight line

segments, constructed by
– computing lines bisecting each pair of points and their

intersections
– computing intersections of these lines
– keeping segments with more than one nearest neighbor

• segments of Vor(X) have largest clearance from X and
regions identify closest point of X

37

Voronoi Diagram for Point Sets
• When C = R2 and polygonal C-obstacle, Vor(Cfree)

consists of a finite collection of straight line segments
and parabolic curve segments (called arcs)
– straight arcs are defined by two vertices or two

edges of C-obstacle, i.e., the set of points equally
close to two points (or two line segments) is a line

– parabolic arcs are defined by one vertex and one
edge of C-obstacle, i.e., the set of points equally
close to a point and a line is a parabola

38

16

Voronoi Diagram for Point Sets
• Naive Method of Constucting V or(Cfree)

– compute all arcs (for each vertex-vertex, edge-edge, and
vertex-edge pair)

– compute all intersection points (dividing arcs into
segments)

– keep segments which are closest only to the
vertices/edges that defined them

39

Retraction
• Retraction ρ : Cfree → Vor(Cfree)

To find a path:
1. compute Vor(Cfree)
2. find paths from qinit and qgoal to ρ(qinit) and ρ(qgoal), respectively
3. search Vor(Cfree) for a set of arcs connecting ρ(qinit) and ρ(qgoal)

40

17

Cell Decomposition

• Idea: decompose Cfree into a collection K of non-
overlapping cells such that the union of all the cells
exactly equals the free C-space

• Cell Characteristics:
– geometry of cells should be simple so that it is easy to

compute a path between any two configurations in a cell
– it should be pretty easy to test the adjacency of two cells,

i.e., whether they share a boundary
– it should be pretty easy to find a path crossing the portion

of the boundary shared by two adjacent cells

• Thus, cell boundaries correspond to 'criticalities' in C,
i.e., something changes when a cell boundary is
crossed. No such criticalities in C occur within a cell.

41

Difficult

• Preprocessing:
– represent Cfree as a collection of cells (connected regions of Cfree)

• planning between configurations in the same cell should be 'easy'
– build connectivity graph representing adjacency relations between cells

• cells adjacent if can move directly between them
• Query:

– locate cells kinit and kgoal containing start and goal configurations
– search the connectivity graph for a 'channel' or sequence of adjacent

cells connecting kinit and kgoal
– find a path that is contained in the channel of cells

• Two major variants of methods:
– exact cell decomposition:

• set of cells exactly covers Cfree
• complicated cells with irregular boundaries (contact constraints)
• harder to compute

– approximate cell decomposition:
• set of cells approximately covers Cfree
• simpler cells with more regular boundaries
• easier to compute

Cell Decomposition

42

18

Trapezoidal Decomposition

• Basic Idea: at every vertex of C-obstacle, extend a
vertical line up and down in Cfree until it touches a C-
obstacle or the boundary of Cfree

trapezoid

Roadmap – e.g. nodes centroids of cells and centers of vertical lines

43

Approx. Cell Decomposition

• Construct a collection of non-overlapping cells such that
the union of all the cells approximately covers the free
C-space!

• Cell characteristics
– Cell should have simple shape
– Easy to test adjacency of two cells
– Easy to find path across two adjacent cells

45

19

Approx. Cell Decomposition

• Each cell is
– Empty
– Full
– Mixed

• Different resolution
– Different roadmap

46

Approx. Cell Decomposition

• Higher resolution around CBs

47

20

Approx. Cell Decomposition

• Hierarchical approach
– Find path using empty and mixed cells
– Further decompose mixed cells into smaller cells

48

Approx. Cell Decomposition

• Advantages:
– simple, uniform decomposition
– easy implementation
– adaptive

• Disadvantages:
– large storage requirement
– Lose completeness

• Bottom line 1: We sacrifice exactness for simplicity and
efficiency

• Bottom line 2: Approx. cell decomposition methods are
practical for lower dimension C, i.e., dof <5, b/c they
generate too many cells, i.e. (Nd) cells in d dimension

49

21

Example: Multiple robots
• Given n robots in 2-D
• What are the possible

representations?

• What is the number of dofs?
• Cross product of

configuration spaces

J.J. Kuffner et al.

ROV, GAMMA group, UNC

5 articulated robots

51

Metric in configuration space

• A metric or distance function d in a configuration space C is a
function

such that

• d(q, q’) = 0 if and only if q = q’,
• d(q, q’) = d(q’, q)

aka. Triangle inequality

52

22

Example

• Robot A and a point x on A
• x(q): position of x in the workspace when A is at

configuration q
• A distance d in C is defined by

d(q, q’) = maxx∈A || x(q) − x(q’) ||
where ||x - y|| denotes the Euclidean distance between
points x and y in the workspace.

• Distance between two configurations is the maximum
distance between two points of the robot in these two
different configurations

q q’

53

Examples

• Maximum distance between the object in two
configurations

C-Dist, Zhang et al. SPM 2007

54

23

C-Space Obstacle

O -R
Obstacle in
workspace

O

Robot
R

C-obstacle

Configuration space obstacle
C-obstacle is (translational motion)

O -R
Classic result by Lozano-Perez and Wesley 1979
How to construct C-obstacle ?

56

Minkowski sum of convex polygons
• There is a simple algorithm for computing the boundary
• The Minkowski sum of two convex polygons P and Q of

m and n vertices respectively is a convex polygon P + Q
of m + n vertices.

– The vertices of P + Q are the “sums” of vertices of P
and Q.

=

63

24

Algorithm

• Sort normals to the edges of the polygon
• Every edge of Cobst is either edge of the polygon or edge

of the robot. �Every edge is used exactly once, we
need to determine the ordering of the edges

• Sort inward angles on the robot counterclockwise
• Sort outward angles of the obstacle normals
• Use incrementally the edges which correspond to the

sorted normals in the order they are encountered

• See more details Chapter 4, section 4.3.2 S. Lavalle:
Motion Planning.

64

Compute Minkowski Sum

• Convex object
– Use Gaussian map
– Compute convex hull of Point-based Minkowski sum

(slower)

2D

3D
[Fogel and Halperin 06]

P Q
P⊕Q

65

25

Back to Motion Planning

• Minkowski sum allows us to solve problems with
translational robots

• Translational case also generalizes to polyhedra and 3D
translations

66

Robot with Rotations

• If a robot is allowed rotation in addition to translation in
2D then it has 3 DOF

• The configuration space is 3D: (x,y,φ) where φ is in the
range [0:360)

67

26

Polygonal robot translating & rotating in
2-D workspace

workspace configuration
space

68

Polygonal robot translating & rotating in
2-D workspace

x

y
θ

69

27

Mapping to C-Space

• The obstacles map to “twisted pillars” in C-Space
• They are no longer polygonal but are composed of

curved faces and edges

70

Computing Free Space

• Exact cell decomposition in 3D is really hard
• Compute z: a finite number of slices for discrete

angular values
• Each slice will be the representation of the free space

for a purely translational problem
• Robot will either move within a slice (translating) or

between slices (rotating)

71

28

Hard Motion Planning

• Configuration Space methods – complex even
for low dimensional configuration spaces

• Plus – always guarantee finding a plan if it
exists in finite time (or answer no)

• Idea behind sampling cased motion planning –
sacrifice completeness for efficiency – weaker
guarantee – notion on probabilistic
completeness

72

Collison Checking
• Obstactles defined implicitely via function
• ColisionCheck (x) -> 0 if the configuration does not

yield collision -> 1 is the configuration yields collision
• How to check for collisions ?
• Consider robot and obstacles are made of convex

shapes – i.e. triangles – make sure that none of robot
triangles intersects obstacle triangles

Check if one of the triangle sides
Is separating line – generalizes to 3D (separating planes)

73

29

Building Roadmap in Config Space

• This can be used to make a discrete approximation of
the configuration space

• Sample the configurations uniformly and tightly
• Check for each config. if it is in free space
• Connect neighbouring configurations in a graph

74

• General motion planning problem is
• PSPACE-hard [Reif 79, Hopcroft et al. 84 & 86]
• PSPACE-complete [Canny 87]

The best deterministic algorithm known has running time that is
exponential in the dimension of the robot’s C-space [Canny 86]

• C-space has high dimension - 6D for rigid body in 3D space
• simple obstacles have complex C-obstacles impractical to

compute explicit representation of free space for more
than 4 or 5 dof

The Complexity of
Motion Planning PSPACE

NP

P

75

30

robot

obst

obst

obst

obst

x
y

C-obst

C-obstC-obst

C-obst

robot

Path is swept volume

Motion Planning in C-space

Path is 1D curve

Workspace

C-space
Simple workspace obstacle transformed
Into complicated C-obstacle!!

76

The Alpha Puzzle

Hard Motion Planning Problems

Swapping Cubes Puzzle

• Separate two shapes (one considered robot) – another obstacle
• Exchange the positions of two cubes
(one needs move to empty space)
• All these planning problems are considered in continuous spaces

77

31

Hard Motion Planning Problems
Highly Articulated (Constrained)

Systems

Digital Actors

Reaching and grasping

79

Hard Motion Planning Problems
Flocking: Covering, Homing, Shepherding

Motion for coordinated entities

Control the motion of
coordinated entities

Interactive Navigation of Multiple Agents in
Crowded Environments. Jur van den Berg, Sachin
Patil, Jason Sewall, Dinesh Manocha, Ming Lin,
i3D 2008

80

32

Hard Motion Planning Problems
Deformable Objects

• Find a path for a deformable object that can
deform to avoid collision with obstacles

• move a mattress in a house, elastic or air-filled
objects, metal sheets or long flexible tubes

• virtual surgery applications
• computer animation and games
• Issue: difficult to find natural deformation

efficiently

81

Hard Motion Planning Problems
Movable Objects

• M. Stilman and J.J. Kuffner Planning Among Movable Obstacles with
Artificial Constraints Workshop on the Algorithmic Foundations of Robotics,
July, 2006

82

http://www.cc.gatech.edu/~mstilman/papers/stilman-WAFR06.pdf

33

Hard Motion Planning Problems
Intelligent CAD Applications

• Using Motion Planning to Test Design Requirements:
– Accessibility for servicing/assembly tested on physical “mock

ups”
– Digital testing saves time and money, is more accurate,

enables more extensive testing, and is useful for training (VR
or e-manuals)

Maintainability Problems:
Mechanical Designs from GE

flange Airplane engine

83

Hard Motion Planning Problems
computational biology & chemistry

• Motion of molecules
• help understand important interactions - protein

structure/function prediction
• diseases such as Alzheimer’s and Mad Cow are related to

misfolded proteins

normal - misfold

prion protein

84

34

Probabilistic Methods

• Resort to sampling based methods
• Avoid computing C-obstacles

– Too difficult to compute efficiently

• Idea: Sacrifice completeness to gain simplicity
and efficiency

• Probabilistic Methods
– Graph based
– Tree based

85

Sampling Based Motion Planning

• Recall: Algorithm is considered complete if for any input
it correctly reports the path if it exists in finite amount
of time

• Sampling based methods cannot achieve completeness

• Deterministic approach which samples densely is called
Resolution complete

• Random Sampling Based Methods
Probabilistically complete with enough samples the
probability of finding solution approaches 1

86

35

Sampling Based Motion Planning

Geometric
Models

Collision
Detection

S

Sampling Based Motion
Planner

Discrete
Search

C-space
planning

Idea : Generate random configurations
Check whether they are collision free
Connect them using Local planners
Discrete Search: (q0, qG) – single query search until you find qG
Multi-query search: Rapidly Exploring Random Trees

87

Probabilistic Motion Planning
• First encounter with randomized techniques – in the context

of potential field based methods
• Use random walk to escape local minima (can take long time)
• Idea – potential function gives as a cost to go g(q)
• If local planner is not successful reducing the cost to go
• Switch to random walk mode from current node, terminate if

node with lower g(q) is found or number of iterations have
been reached

• If better node has not been found back-track – pick one of
the nodes encountered in Random walk and restart best first
search

88

36

• T
h
e
t
a

Probabilistic Roadmap Method
[Kavraki, Svestka, Latombe,Overmars 1996]

Explicit representation of the configuration space is unknown

89

1. Connect start and goal to roadmap

Query processing
start

goal

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap
- simple, deterministic local planner
(e.g., straight line)

- discard paths that are invalid

1. Randomly generate robot configurations (nodes)
- discard nodes that are invalid

C-obst

C-space

2. Find path in roadmap between start and goal
- regenerate plans for edges in roadmap

90

37

Probabilistic Roadmap Method

• Important sub-routines
– Generate random configurations
– Local planners
– Distance metrics
– Selecting k-nearest neighbors (becoming dominant

in high dimensional space)
– Collision detection (>80% computation)

91

PRMs: Pros & Cons

PRMs: The Good News
1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional
C-space
3. PRMs support fast queries w/ enough
preprocessing

Many success stories where PRMs solve
previously unsolved problems

C-
obst

C-
obst

C-
obst

C-
obst

C-
obst

sta
rt

go
al

PRMs: The Bad News

1. PRMs don’t work as well for some
problems:
– unlikely to sample nodes in narrow
passages
– hard to sample/connect nodes on
constraint surfacessta

rt

go
al

C-
obst

C-
obst

C-
obst

C-
obst

92

38

Related Work (selected)

• Probabilistic Roadmap Methods
• Uniform Sampling (original) [Kavraki, Latombe, Overmars,
Svestka, 92, 94, 96]
• Obstacle-based PRM (OBPRM) [Amato et al, 98]
• PRM Roadmaps in Dilated Free space [Hsu et al, 98]
• Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]
• Bridge test [Hsu et al 03]
• Visibility Roadmaps [Laumond et al 99]
• Using Medial Axis [Kavraki et al 99,
Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]
• Generating Contact Configurations [Xiao et al 99]
• Using workspace clues

93

An Obstacle-Based PRM

start

goal

C-obst

C-obst

C-obst

C-obst

To Navigate Narrow Passages we must sample in them
• most PRM nodes are where planning is easy (not needed)

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle
surfaces?
• we cannot explicitly construct the C-obstacles...
• we do have models of the (workspace) obstacles...

OBPRM Roadmap

94

39

1

3

2

4
5

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
(robot placement colliding with S)

2. Select a random direction in C-
space
3. Find a free point in that direction
4. Find boundary point between
them using binary search (collision
checks)

Note: we can use more
sophisticated heuristics to try to
cover C-obstacle

C-obst

95

OBPRM

96

40

1

2

Gaussian Sampling PRM

1. Find a point in S’s C-obstacle
(robot placement colliding with S)

2. Find another point that is within
distance d to the first point, where d
is a random variable in a Gaussian
distribution

3. Keep the second point if it is
collision free

C-obstd

Note
• Two paradigms: (1) OBPRM: Fix the samples (2) Gaussian PRM: Filter the samples
• None of these methods can (be proved to) provide guarantee that the samples in
the narrow passage will increase!

97

Gaussians

98

41

Issues

• How do we determine a random free configuration
• We would like to sample nodes uniformly from Cfree

• Draw each of the coordinates from the interval of
corresponding DOF (use uniform probability per interval)

• For each sample check for collision between the robot
and obstacles and robot itself

• If collision free add to V otherwise discard
• Collision detection and sampling – large topics

100

Collision Detection

• Treated as black box - takes most of the
computation

• In 2D convex robot and obstacle, there exist
linear time collision detection algorithms

• Construct polygonal Cobst

• Define a logical predicate which indicates
whether configuration is free or not

• Hierarchical Methods or Incremental Methods
• Section 5.3.4 Motion Planning Book

101

42

Planning in high dimensional spaces

• Single query planning qinitial and qgoal are given
once – no pre-computation (greedy search
technique can take a long time)

• Multiple query planning – spreads out
uniformly, requires lot of samples to cover the
space

• Next incremental sampling and search
methods that yields good performance without
parameters tunning. Idea gradually construct
search tree, such that it densely covers the
space

104

Incremental Sampling and Searching

• Single query model – given start and goal q
find a path

• Analogy with the discrete search algorithms
• Samples are states, edges are paths

connected them (as opposed to actions
previously)

• Graphs are undirected; Ingredients
1. Initialize the graph
2. Select vertex for expansion
3. Generate set of new vertices
4. For some new vertices run a local planner and check whether

its collision free
5. If yes insert an edge to the graph
6. Keep on going until termination condition is satisfied

105

43

Incremental Search and Sample

• Why not just discretizing configuration space ?
• For high dimensions large number of states can be

wasted exploring various cavities of the C-space
• For low dim spaces grid points themselves can

serve as roadmap points (need to be checked for
collisions etc)

• How to choose a resolution of the discretization
(start coarse , iteratively refine)

• Another option – abandon discretization and work
with continuous problem (like randomized potential
fields) or RRT’s

106

Rapidly-Exploring Random Tree (RRT)

• Tree Based single shot planners – compute
the respresentation of Cfree for single start and
goal

• RRTs: Rapidly-exploring Random Trees
Rapidly-exploring random trees: Progress and
prospects. S. M. LaValle and J. J. Kuffner. In Proceedings
Workshop on the Algorithmic Foundations of Robotics, 2000.)
Incrementally builds the roadmap tree

• Extends to more advanced planning
techniques
–Integrates the control inputs to ensure that the
kinodynamic constraints are satisfied

107

44

Rapidly-Exploring Random Trees

Idea: Incrementaly construct the search tree, that improves with resolution
Previous incremental search methods could spend long time exploring nodes
inside unimportant cavities

108

RRT’s

Random sample connects
to the nearest node so far

If the nearest point lies on
an edge, the edge is split
in two

109

45

RRT’s
Details:
Step length: how far to sample
Sample just at the end point
Sample all along, small steps

Extend returns the new edge

110

Naïve Random Tree

111

46

RRT’s are biased towards large
Voronoi cells

The nodes most likely to be closest to a randomly chosen point in state space
are those with the largest Voronoi regions. The largest Voronoi regions belong
to nodes along the frontier of the tree, so these frontier nodes are
automatically favored when choosing which node to expand.

112

Grow two RRT’s together

113

47

Two RRT’s

114

Two RRT’s

115

48

Two RRT’s

116

Two RRT’s

117

49

Two RRT’s

118

Two RRT’s

119

50

Two RRT’s

120

Taking actions into account
Instead of moving in a straight line for some distance, take into
account kinematic constraints

121

51

How it Works

• Build a rapidly-exploring random tree in state
space (X), starting at sstart

• Stop when tree gets sufficiently close to sgoal

Goal
Start

122

Building an RRT
• To extend an RRT:

– Pick a random point a in X
– Find b, the node of the tree

closest to a
– Find control inputs u to

steer the robot from b to a

a

b
u

123

52

Building an RRT
• To extend an RRT

(cont.)
– Apply control inputs

u for time δ, so
robot reaches c

– If no collisions occur
in getting from a to
c, add c to RRT and
record u with new
edge

a

b
u

c

124

Executing the Path

• Once the RRT reaches sgoal

– Backtrack along tree to identify edges that
lead from sstart to sgoal

– Drive robot using control inputs stored
along edges in the tree

125

53

Problem of Simple RRT Planner

• Problem: ordinary RRT explores X uniformly
→ slow convergence

• Solution: bias distribution towards the goal – once in a
while choose goal as new random configuration (5-10%)

• If goal is choosen 100% time then it is randomized
potential planner

126

Bidirectional Planners

• Build two RRTs, from start and goal state

• Complication: need to connect two RRTs
– local planner will not work (dynamic constraints)
– bias the distribution, so that the trees meet

127

54

Bidirectional RRT Example

128

Articulated Robot example

129

55

RRT’s

• Link
• http://msl.cs.uiuc.edu/rrt/gallery.html

• Issues/problems
• Metric sensitivity
• Nearest neighbour efficiency
• Optimal sampling strategy
• Balance between greedy search and exploration

• Applications in mobile robotics, manipulation,
humanoids, biology, drug design, areo-space, animation

• Extensions – real-time RRT’s, anytime RRT’s dynamic
domains RRT’sm deterministic RRTs, hybrid RRT’s

130

Efficient nearest neighbour
algorithms

• How to find NN in high
dimensional spaces

• KD trees – recursively choose a plane P that splits the
set
evenly in a coordinate direction

• Store P at the node
• Apply to children sets Sl and Sr
• Requires O(dn) storage

• Various hashing strategies

131

http://msl.cs.uiuc.edu/rrt/gallery.html

56

Computed example

138

Conclusion

• Motion planning is difficult (intractable)

• Roadmap methods
– Probabilistic Motion Planners

We will return to planning when considering
partial information, dynamically changing
worlds, uncertainty

139

57

What is not covered?

• Other types of motion planning
– With constraints

• Close-chain constraint
• Nonholonomic constraint
• Differential constraints

– Manipulate planning
– Assembly planning
– Planning with uncertainty
– Planning for multiple robots, dynamic env
– Planning for highly articulated objects
– Planning for deformable objects
– …

Little Seiko

140

Additional Readings

• Gross motion planning—a survey, Y. K. Hwang
and N. Ahuja, ACM Computing Surveys, 1992
(survey paper)

• Robot Motion Planning. J.C. Latombe. Kluwer
Academic Publishers, Boston, MA, 1991.

• Motion Planning: A Journey of Robots,
Molecules, Digital Actors, and Other Artifacts.
Jean-Claude Latombe, IJRR, 1999 (survey paper)

• Planning Algorithms, Steven LaValle, 2006,
Cambridge University Pres, (Free download at
http://planning.cs.uiuc.edu/)

141

58

Examples

• Road Map methods and behavior based strategies
• Homing https://parasol.tamu.edu/dsmft/movies/flocking_Homing_web.mpg

• Flocking, Goal Search

• https://parasol.tamu.edu/dsmft/movies/flocking_GoalSearch_web.mpg
• https://parasol.tamu.edu/dsmft/movies/flocking_RBFlock_narrow_homing.mpeg

142

https://parasol.tamu.edu/dsmft/movies/flocking_Homing_web.mpg
https://parasol.tamu.edu/dsmft/movies/flocking_GoalSearch_web.mpg
https://parasol.tamu.edu/dsmft/movies/flocking_GoalSearch_web.mpg
https://parasol.tamu.edu/dsmft/movies/flocking_RBFlock_narrow_homing.mpeg

