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Motion Planning 

Jana Kosecka
Department of Computer Science

• Discrete planning, graph search, shortest path, A* methods
• Road map methods
• Configuration space

Slides thanks to http://cs.cmu.edu/~motionplanning, Jyh-Ming Lien
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Probabilistic Methods

• Resort to sampling based methods
• Avoid computing C-obstacles

– Too difficult to compute efficiently

• Idea: Sacrifice completeness to gain simplicity 
and efficiency

• Probabilistic Methods
– Graph based
– Tree based
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http://cs.cmu.edu/~motionplanning
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Sampling Based Motion Planning

• Recall: Algorithm is considered complete if for any input 
it correctly reports the path if it exists in finite amount 
of time

• Sampling based methods cannot achieve completeness

• Deterministic approach which samples densely is called 
Resolution complete

• Random Sampling Based Methods 
Probabilistically complete with enough samples the
probability of finding solution approaches 1
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Sampling Based Motion Planning

Geometric 
Models

Collision 
Detection

S

Sampling Based Motion 
Planner

Discrete 
Search

C-space
planning

Idea :  Generate random configurations
Check whether they are collision free 
Connect them using Local planners
Discrete Search: (q0, qG) – single query search until you find qG
Multi-query search: Rapidly Exploring Random Trees
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Probabilistic Roadmap Method
[Kavraki, Svestka, Latombe,Overmars 1996]

Explicit representation of the configuration space is unknown
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1. Connect start and goal to roadmap

Query processing
start

goal

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap
- simple, deterministic local planner
(e.g., straight line)

- discard paths that are invalid

1. Randomly generate robot configurations (nodes)
- discard nodes that are invalid

C-obst

C-space

2. Find path in roadmap between start and goal
- regenerate plans for edges in roadmap
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Probabilistic Roadmap Method

• Important sub-routines
– Generate random configurations
– Local planners
– Distance metrics 
– Selecting k-nearest neighbors (becoming dominant 

in high dimensional space)
– Collision detection (>80% computation)
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Metric in configuration space

• A metric or distance function d in a configuration space C is a 
function  

such that

• d(q, q’) = 0 if and only if q = q’,
• d(q, q’) = d(q’, q)

aka. Triangle inequality
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Examples in R2 × S1

• Consider R2 x S1  (plane and circle)

• q = (x, y, θ), q’ = (x’, y’, θ’) with θ, θ’ ∈ [0,2π)
α = min { |θ − θ’ | , 2π - |θ − θ’| }
Distance between two angles

• d(q, q’) = sqrt( (x-x’)2 + (y-y’)2 + α2 ) )

• d(q, q’) = sqrt( (x-x’)2 + (y-y’)2 + (αr)2 ), where r is 
the maximal distance between a point on the robot and 
the reference point

• Examples of a distance between two configurations

θ’

θ

α

11

Local planner collision checking 

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal
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PRMs: Pros & Cons
PRMs: The Good News

1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional 
C-space
3. PRMs support fast queries w/ enough 
preprocessing

Many success stories where PRMs solve 
previously unsolved problems

C-
obst

C-
obst

C-
obst

C-
obst

C-
obst

sta
rt

goal

PRMs: The Bad News

1. PRMs don’t work as well for some 
problems:
– unlikely to sample nodes in narrow 
passages
– hard to sample/connect nodes on 
constraint surfaces
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Problems with PRMs

start

goal

C-obst

C-obst

C-obst

C-obst
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An Obstacle-Based PRM

start

goal

C-obst

C-obst

C-obst

C-obst

To Navigate Narrow Passages we must sample in them
• most PRM nodes are where planning is easy (not needed)

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle 
surfaces?
• we cannot explicitly construct the C-obstacles...
• we do have models of the (workspace) obstacles...

OBPRM Roadmap
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Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
(robot placement colliding with S)

2.  Select a random direction in C-
space
3. Find a free point in that direction
4. Find boundary point between 
them using binary search (collision 
checks)

Note: we can use more 
sophisticated heuristics to try to 
cover C-obstacle

C-obst
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OBPRM
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2

Gaussian Sampling PRM 

1. Find a point in S’s C-obstacle
(robot placement colliding with S)

2. Find another point that is within 
distance d to the first point, where d 
is a random variable in a Gaussian 
distribution

3. Keep the second point if it is 
collision free

C-obstd

Note
• Two paradigms: (1) OBPRM: Fix the samples (2) Gaussian PRM: Filter the samples
• None of these methods can (be proved to) provide guarantee that the samples in 
the narrow passage will increase!
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Related Work (selected) 

• Probabilistic Roadmap Methods
• Uniform Sampling (original)  [Kavraki, Latombe, Overmars, 
Svestka, 92, 94, 96]
• Obstacle-based PRM (OBPRM) [Amato et al, 98]
• PRM Roadmaps in Dilated Free space [Hsu et al, 98]
• Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]
• Bridge test [Hsu et al 03]
• Visibility Roadmaps [Laumond et al 99]
• Using Medial Axis [Kavraki et al 99, 
Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]
• Generating Contact Configurations [Xiao et al 99] 
• Using workspace clues
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Gaussians

20
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Collision Detection

• Treated as black box  - takes most of the 
computation

• In 2D convex robot and obstacle, there exist 
linear time collision detection algorithms 

• Construct polygonal Cobst

• Define a logical predicate which indicates 
whether configuration is free or not

• Hierarchical Methods or Incremental Methods
• Section 5.3.4 Motion Planning Book
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Collision Detection

• For more complex non-convex bodies – Hierarchical 
methods (create bounded regions – to avoid checking 
bodies which are far apart)

• Have a quick way of computing whether two regions 
intersect (Bound. Regions: spheres, axis aligned boxes), 
the composite bounding regions are represented by 
trees

• Incremental Methods
e.g. compute closest point distance at each iteration 

assuming that the robot does not move too much. Can 
be efficiently computed for 2D convex polygons 
(computing vertex-vertex, edge-vertex and edge-edge 
distances). 
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Collision Detection

• Previous methods: 
• Check for collision free configuration 
• Check for collision free path segment
• Consider that the path between two configurations is a 

straight line, parameterized by [0,1], sample the 
interval and check each sample whether its collision free

• For more details on alternative sampling strategies 
(Section 5.3.4 Motion Planning Book) 

• There exist algorithms with guarantees – trickier to 
implement
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Issues

• How do we determine a random free configuration 
• We would like to sample nodes uniformly from Cfree

• Draw each of the coordinates from the interval of 
corresponding DOF (use uniform probability per interval)

• For each sample check for collision between the robot
and obstacles and robot itself

• If collision free add to V otherwise discard 
• Collision detection and sampling – large topics 
• Suitable for high-dimensional spaces

• Resulting path look very jerky, question how to follow 
them with smooth trajectories
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Probabilistic Roadmaps

• Construct the road map for the entire configuration 
space
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Planning in high dimensional spaces

• Single query planning qinitial and qgoal are given once –
no pre-computation (greedy search technique can take 
a long time)

• Multiple query planning – spreads out uniformly, 
requires lot of samples to cover the space

• Next incremental sampling and search methods that 
yields good performance without parameters tunning. 
Idea gradually construct search tree, such that it 
densely covers the space

27



13

Rapidly Exploring Random Trees

• Single query model – given start and goal q find a path
• Analogy with the discrete search algorithms
• Samples are states, edges are paths connected them 

(as opposed to actions previously)
• Graphs are undirected (Tree) Ingredients

1. Initialize the graph
2. Select vertex for expansion 
3. Generate set of new vertices
4. For some new vertices run a local planner and check whether 

its collision free
5. If yes insert an edge to the graph
6. Keep on going until termination condition  is satisfied
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Incremental Search and Sample

• Why not just discretizing configuration space ? 
• For high dimensions large number of states can be   wasted 

exploring various cavities of the C-space
• For low dim spaces grid points themselves can serve as 

roadmap points (need to be checked for collisions etc) 

• How to choose a resolution of the discretization 
(start coarse , iteratively refine)

• Another option – abandon discretization and work with 
continuous problem (like randomized potential fields) or RRT’s
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Rapidly Exploring Random Trees

30

Rapidly-Exploring Random Tree (RRT)

• Tree Based single shot planners – compute 
the respresentation of Cfree for single start and 
goal

• RRTs: Rapidly-exploring Random Trees
Rapidly-exploring random trees: Progress and 
prospects. S. M. LaValle and J. J. Kuffner. In Proceedings 
Workshop on the Algorithmic Foundations of Robotics, 2000.)
Incrementally builds the roadmap tree

• Extends to more advanced planning 
techniques
–Integrates the control inputs to ensure that the 
kinodynamic constraints are satisfied
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Rapidly-Exploring Random Trees

Idea: Incrementaly construct the search tree, that improves with resolution
Previous  incremental search methods could spend long time exploring nodes
inside unimportant cavities 
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RRT’s

Random sample connects 
to the nearest node so far

If the nearest point lies on 
an edge, the edge is split
in two

33
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RRT’s
Details: 
Step length: how far to sample
Sample just at the end point
Sample all along, small steps

Extend returns  the new edge
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RRT pseudo-code details

• Add start node to the tree
• Repeat n times 

– Generate random configuration x
– If x is in free space using CollisionCheck

find y, the closes node in the tree to the configuration x
if dist(x,y) > delta – check if x is too far away from y
find a configuration z that is along the path from x to y
such that dist(z, y) <= delta
x = z;
if (LocalPlanner(x,y) – check if you can get from x to y
if yes add x to the graph 
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Naïve Random Tree

36

RRT’s are biased towards large 
Voronoi cells

The nodes most likely to be closest to a randomly chosen point in state space 
are those with the largest Voronoi regions. The largest Voronoi regions belong 
to nodes along the frontier of the tree, so these frontier nodes are 
automatically favored when choosing which node to expand.
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Grow two RRT’s together

38

Two RRT’s 

39
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Two RRT’s

40

Two RRT’s

41
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Two RRT’s

42

Two RRT’s
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Two RRT’s

44

Two RRT’s

45
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Taking actions into account
Instead of moving in a straight line for some distance, take into
account kinematic constraints
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How it Works

• Build a rapidly-exploring random tree in state 
space (X), starting at sstart

• Stop when tree gets sufficiently close to sgoal

Goal
Start

47
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Building an RRT
• To extend an RRT:

– Pick a random point a in X
– Find b, the node of the tree 

closest to a
– Find control inputs u to 

steer the robot from b to a

a

b
u
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Building an RRT
• To extend an RRT 

(cont.)
– Apply control inputs 

u for time δ, so 
robot reaches c

– If no collisions occur 
in getting from a to 
c, add c to RRT and 
record u with new 
edge

a

b
u

c
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Executing the Path

• Once the RRT reaches sgoal

– Backtrack along tree to identify edges that 
lead from sstart to sgoal

– Drive robot using control inputs stored 
along edges in the tree
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Problem of Simple RRT Planner 

• Problem: ordinary RRT explores X uniformly
→ slow convergence

• Solution: bias distribution towards the goal – once in a 
while choose goal as new random configuration (5-10%) 

• If goal is choosen 100% time then it is randomized 
potential planner
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Bidirectional Planners

• Build two RRTs, from start and goal state

• Complication: need to connect two RRTs
– local planner will not work (dynamic constraints)
– bias the distribution, so that the trees meet
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Articulated Robot example

54



26

RRT’s

• Link
• http://msl.cs.uiuc.edu/rrt/gallery.html

• Issues/problems
• Metric sensitivity
• Nearest neighbour efficiency 
• Optimal sampling strategy
• Balance between greedy search and exploration 

• Applications in mobile robotics, manipulation, 
humanoids, biology, drug design, areo-space, animation 

• Extensions – real-time RRT’s, anytime RRT’s dynamic 
domains RRT’sm deterministic RRTs, hybrid RRT’s
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Efficient nearest neighbour 
algorithms

• How to find NN in high
dimensional spaces

• KD trees – recursively choose a plane P that splits the 
set 
evenly in a coordinate direction

• Store P at the node 
• Apply to children sets Sl and Sr
• Requires O(dn) storage

• Various hashing strategies
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Computed example

63

Conclusion

• Motion planning is difficult (intractable)

• Roadmap methods
– Probabilistic Motion Planners

We will return to planning when considering 
partial information, dynamically changing 
worlds, uncertainty
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What is not covered?

• Other types of motion planning
– With constraints

• Close-chain constraint
• Nonholonomic constraint
• Differential constraints

– Manipulate planning
– Assembly planning
– Planning with uncertainty
– Planning for multiple robots, dynamic env
– Planning for highly articulated objects
– Planning for deformable objects
– …

Little Seiko
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Additional Readings

• Gross motion planning—a survey, Y. K. Hwang 
and N. Ahuja, ACM Computing Surveys, 1992 
(survey paper)

• Robot Motion Planning. J.C. Latombe. Kluwer 
Academic Publishers, Boston, MA, 1991. 

• Motion Planning: A Journey of Robots, 
Molecules, Digital Actors, and Other Artifacts. 
Jean-Claude Latombe, IJRR, 1999 (survey paper)

• Planning Algorithms, Steven LaValle, 2006, 
Cambridge University Pres, (Free download at 
http://planning.cs.uiuc.edu/)

66



29

Examples

• Road Map methods and behavior based strategies
• Homing https://parasol.tamu.edu/dsmft/movies/flocking_Homing_web.mpg

• Flocking, Goal Search 

• https://parasol.tamu.edu/dsmft/movies/flocking_GoalSearch_web.mpg
• https://parasol.tamu.edu/dsmft/movies/flocking_RBFlock_narrow_homing.mpeg
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https://parasol.tamu.edu/dsmft/movies/flocking_Homing_web.mpg
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