
1

Motion Planning

Jana Kosecka
Department of Computer Science

• Discrete planning, graph search, shortest path, A* methods
• Road map methods
• Configuration space

Slides thanks to http://cs.cmu.edu/~motionplanning, Jyh-Ming Lien

1

Probabilistic Methods

• Resort to sampling based methods
• Avoid computing C-obstacles

– Too difficult to compute efficiently

• Idea: Sacrifice completeness to gain simplicity
and efficiency

• Probabilistic Methods
– Graph based
– Tree based

2

http://cs.cmu.edu/~motionplanning

2

Sampling Based Motion Planning

• Recall: Algorithm is considered complete if for any input
it correctly reports the path if it exists in finite amount
of time

• Sampling based methods cannot achieve completeness

• Deterministic approach which samples densely is called
Resolution complete

• Random Sampling Based Methods
Probabilistically complete with enough samples the
probability of finding solution approaches 1

3

Sampling Based Motion Planning

Geometric
Models

Collision
Detection

S

Sampling Based Motion
Planner

Discrete
Search

C-space
planning

Idea : Generate random configurations
Check whether they are collision free
Connect them using Local planners
Discrete Search: (q0, qG) – single query search until you find qG
Multi-query search: Rapidly Exploring Random Trees

4

3

• T
h
e
t
a

Probabilistic Roadmap Method
[Kavraki, Svestka, Latombe,Overmars 1996]

Explicit representation of the configuration space is unknown

6

1. Connect start and goal to roadmap

Query processing
start

goal

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap
- simple, deterministic local planner
(e.g., straight line)

- discard paths that are invalid

1. Randomly generate robot configurations (nodes)
- discard nodes that are invalid

C-obst

C-space

2. Find path in roadmap between start and goal
- regenerate plans for edges in roadmap

7

4

Probabilistic Roadmap Method

• Important sub-routines
– Generate random configurations
– Local planners
– Distance metrics
– Selecting k-nearest neighbors (becoming dominant

in high dimensional space)
– Collision detection (>80% computation)

8

Metric in configuration space

• A metric or distance function d in a configuration space C is a
function

such that

• d(q, q’) = 0 if and only if q = q’,
• d(q, q’) = d(q’, q)

aka. Triangle inequality

9

5

Examples in R2 × S1

• Consider R2 x S1 (plane and circle)

• q = (x, y, θ), q’ = (x’, y’, θ’) with θ, θ’ ∈ [0,2π)
α = min { |θ − θ’ | , 2π - |θ − θ’| }
Distance between two angles

• d(q, q’) = sqrt((x-x’)2 + (y-y’)2 + α2))

• d(q, q’) = sqrt((x-x’)2 + (y-y’)2 + (αr)2), where r is
the maximal distance between a point on the robot and
the reference point

• Examples of a distance between two configurations

θ’

θ

α

11

Local planner collision checking

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

12

6

PRMs: Pros & Cons
PRMs: The Good News

1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional
C-space
3. PRMs support fast queries w/ enough
preprocessing

Many success stories where PRMs solve
previously unsolved problems

C-
obst

C-
obst

C-
obst

C-
obst

C-
obst

sta
rt

goal

PRMs: The Bad News

1. PRMs don’t work as well for some
problems:
– unlikely to sample nodes in narrow
passages
– hard to sample/connect nodes on
constraint surfaces

13

Problems with PRMs

start

goal

C-obst

C-obst

C-obst

C-obst

14

7

An Obstacle-Based PRM

start

goal

C-obst

C-obst

C-obst

C-obst

To Navigate Narrow Passages we must sample in them
• most PRM nodes are where planning is easy (not needed)

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle
surfaces?
• we cannot explicitly construct the C-obstacles...
• we do have models of the (workspace) obstacles...

OBPRM Roadmap

15

1

3

2

4
5

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
(robot placement colliding with S)

2. Select a random direction in C-
space
3. Find a free point in that direction
4. Find boundary point between
them using binary search (collision
checks)

Note: we can use more
sophisticated heuristics to try to
cover C-obstacle

C-obst

16

8

OBPRM

17

1

2

Gaussian Sampling PRM

1. Find a point in S’s C-obstacle
(robot placement colliding with S)

2. Find another point that is within
distance d to the first point, where d
is a random variable in a Gaussian
distribution

3. Keep the second point if it is
collision free

C-obstd

Note
• Two paradigms: (1) OBPRM: Fix the samples (2) Gaussian PRM: Filter the samples
• None of these methods can (be proved to) provide guarantee that the samples in
the narrow passage will increase!

18

9

Related Work (selected)

• Probabilistic Roadmap Methods
• Uniform Sampling (original) [Kavraki, Latombe, Overmars,
Svestka, 92, 94, 96]
• Obstacle-based PRM (OBPRM) [Amato et al, 98]
• PRM Roadmaps in Dilated Free space [Hsu et al, 98]
• Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]
• Bridge test [Hsu et al 03]
• Visibility Roadmaps [Laumond et al 99]
• Using Medial Axis [Kavraki et al 99,
Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]
• Generating Contact Configurations [Xiao et al 99]
• Using workspace clues

19

Gaussians

20

10

Collision Detection

• Treated as black box - takes most of the
computation

• In 2D convex robot and obstacle, there exist
linear time collision detection algorithms

• Construct polygonal Cobst

• Define a logical predicate which indicates
whether configuration is free or not

• Hierarchical Methods or Incremental Methods
• Section 5.3.4 Motion Planning Book

22

Collision Detection

• For more complex non-convex bodies – Hierarchical
methods (create bounded regions – to avoid checking
bodies which are far apart)

• Have a quick way of computing whether two regions
intersect (Bound. Regions: spheres, axis aligned boxes),
the composite bounding regions are represented by
trees

• Incremental Methods
e.g. compute closest point distance at each iteration

assuming that the robot does not move too much. Can
be efficiently computed for 2D convex polygons
(computing vertex-vertex, edge-vertex and edge-edge
distances).

23

11

Collision Detection

• Previous methods:
• Check for collision free configuration
• Check for collision free path segment
• Consider that the path between two configurations is a

straight line, parameterized by [0,1], sample the
interval and check each sample whether its collision free

• For more details on alternative sampling strategies
(Section 5.3.4 Motion Planning Book)

• There exist algorithms with guarantees – trickier to
implement

24

Issues

• How do we determine a random free configuration
• We would like to sample nodes uniformly from Cfree

• Draw each of the coordinates from the interval of
corresponding DOF (use uniform probability per interval)

• For each sample check for collision between the robot
and obstacles and robot itself

• If collision free add to V otherwise discard
• Collision detection and sampling – large topics
• Suitable for high-dimensional spaces

• Resulting path look very jerky, question how to follow
them with smooth trajectories

25

12

Probabilistic Roadmaps

• Construct the road map for the entire configuration
space

26

Planning in high dimensional spaces

• Single query planning qinitial and qgoal are given once –
no pre-computation (greedy search technique can take
a long time)

• Multiple query planning – spreads out uniformly,
requires lot of samples to cover the space

• Next incremental sampling and search methods that
yields good performance without parameters tunning.
Idea gradually construct search tree, such that it
densely covers the space

27

13

Rapidly Exploring Random Trees

• Single query model – given start and goal q find a path
• Analogy with the discrete search algorithms
• Samples are states, edges are paths connected them

(as opposed to actions previously)
• Graphs are undirected (Tree) Ingredients

1. Initialize the graph
2. Select vertex for expansion
3. Generate set of new vertices
4. For some new vertices run a local planner and check whether

its collision free
5. If yes insert an edge to the graph
6. Keep on going until termination condition is satisfied

28

Incremental Search and Sample

• Why not just discretizing configuration space ?
• For high dimensions large number of states can be wasted

exploring various cavities of the C-space
• For low dim spaces grid points themselves can serve as

roadmap points (need to be checked for collisions etc)

• How to choose a resolution of the discretization
(start coarse , iteratively refine)

• Another option – abandon discretization and work with
continuous problem (like randomized potential fields) or RRT’s

29

14

Rapidly Exploring Random Trees

30

Rapidly-Exploring Random Tree (RRT)

• Tree Based single shot planners – compute
the respresentation of Cfree for single start and
goal

• RRTs: Rapidly-exploring Random Trees
Rapidly-exploring random trees: Progress and
prospects. S. M. LaValle and J. J. Kuffner. In Proceedings
Workshop on the Algorithmic Foundations of Robotics, 2000.)
Incrementally builds the roadmap tree

• Extends to more advanced planning
techniques
–Integrates the control inputs to ensure that the
kinodynamic constraints are satisfied

31

15

Rapidly-Exploring Random Trees

Idea: Incrementaly construct the search tree, that improves with resolution
Previous incremental search methods could spend long time exploring nodes
inside unimportant cavities

32

RRT’s

Random sample connects
to the nearest node so far

If the nearest point lies on
an edge, the edge is split
in two

33

16

RRT’s
Details:
Step length: how far to sample
Sample just at the end point
Sample all along, small steps

Extend returns the new edge

34

RRT pseudo-code details

• Add start node to the tree
• Repeat n times

– Generate random configuration x
– If x is in free space using CollisionCheck

find y, the closes node in the tree to the configuration x
if dist(x,y) > delta – check if x is too far away from y
find a configuration z that is along the path from x to y
such that dist(z, y) <= delta
x = z;
if (LocalPlanner(x,y) – check if you can get from x to y
if yes add x to the graph

35

17

Naïve Random Tree

36

RRT’s are biased towards large
Voronoi cells

The nodes most likely to be closest to a randomly chosen point in state space
are those with the largest Voronoi regions. The largest Voronoi regions belong
to nodes along the frontier of the tree, so these frontier nodes are
automatically favored when choosing which node to expand.

37

18

Grow two RRT’s together

38

Two RRT’s

39

19

Two RRT’s

40

Two RRT’s

41

20

Two RRT’s

42

Two RRT’s

43

21

Two RRT’s

44

Two RRT’s

45

22

Taking actions into account
Instead of moving in a straight line for some distance, take into
account kinematic constraints

46

How it Works

• Build a rapidly-exploring random tree in state
space (X), starting at sstart

• Stop when tree gets sufficiently close to sgoal

Goal
Start

47

23

Building an RRT
• To extend an RRT:

– Pick a random point a in X
– Find b, the node of the tree

closest to a
– Find control inputs u to

steer the robot from b to a

a

b
u

48

Building an RRT
• To extend an RRT

(cont.)
– Apply control inputs

u for time δ, so
robot reaches c

– If no collisions occur
in getting from a to
c, add c to RRT and
record u with new
edge

a

b
u

c

49

24

Executing the Path

• Once the RRT reaches sgoal

– Backtrack along tree to identify edges that
lead from sstart to sgoal

– Drive robot using control inputs stored
along edges in the tree

50

Problem of Simple RRT Planner

• Problem: ordinary RRT explores X uniformly
→ slow convergence

• Solution: bias distribution towards the goal – once in a
while choose goal as new random configuration (5-10%)

• If goal is choosen 100% time then it is randomized
potential planner

51

25

Bidirectional Planners

• Build two RRTs, from start and goal state

• Complication: need to connect two RRTs
– local planner will not work (dynamic constraints)
– bias the distribution, so that the trees meet

52

Articulated Robot example

54

26

RRT’s

• Link
• http://msl.cs.uiuc.edu/rrt/gallery.html

• Issues/problems
• Metric sensitivity
• Nearest neighbour efficiency
• Optimal sampling strategy
• Balance between greedy search and exploration

• Applications in mobile robotics, manipulation,
humanoids, biology, drug design, areo-space, animation

• Extensions – real-time RRT’s, anytime RRT’s dynamic
domains RRT’sm deterministic RRTs, hybrid RRT’s

55

Efficient nearest neighbour
algorithms

• How to find NN in high
dimensional spaces

• KD trees – recursively choose a plane P that splits the
set
evenly in a coordinate direction

• Store P at the node
• Apply to children sets Sl and Sr
• Requires O(dn) storage

• Various hashing strategies

56

http://msl.cs.uiuc.edu/rrt/gallery.html

27

Computed example

63

Conclusion

• Motion planning is difficult (intractable)

• Roadmap methods
– Probabilistic Motion Planners

We will return to planning when considering
partial information, dynamically changing
worlds, uncertainty

64

28

What is not covered?

• Other types of motion planning
– With constraints

• Close-chain constraint
• Nonholonomic constraint
• Differential constraints

– Manipulate planning
– Assembly planning
– Planning with uncertainty
– Planning for multiple robots, dynamic env
– Planning for highly articulated objects
– Planning for deformable objects
– …

Little Seiko

65

Additional Readings

• Gross motion planning—a survey, Y. K. Hwang
and N. Ahuja, ACM Computing Surveys, 1992
(survey paper)

• Robot Motion Planning. J.C. Latombe. Kluwer
Academic Publishers, Boston, MA, 1991.

• Motion Planning: A Journey of Robots,
Molecules, Digital Actors, and Other Artifacts.
Jean-Claude Latombe, IJRR, 1999 (survey paper)

• Planning Algorithms, Steven LaValle, 2006,
Cambridge University Pres, (Free download at
http://planning.cs.uiuc.edu/)

66

29

Examples

• Road Map methods and behavior based strategies
• Homing https://parasol.tamu.edu/dsmft/movies/flocking_Homing_web.mpg

• Flocking, Goal Search

• https://parasol.tamu.edu/dsmft/movies/flocking_GoalSearch_web.mpg
• https://parasol.tamu.edu/dsmft/movies/flocking_RBFlock_narrow_homing.mpeg

67

https://parasol.tamu.edu/dsmft/movies/flocking_Homing_web.mpg
https://parasol.tamu.edu/dsmft/movies/flocking_GoalSearch_web.mpg
https://parasol.tamu.edu/dsmft/movies/flocking_GoalSearch_web.mpg
https://parasol.tamu.edu/dsmft/movies/flocking_RBFlock_narrow_homing.mpeg

