Probabilistic Robotics

Probabilistic Motion and Sensor Models

Robot Motion

- Robot motion is inherently uncertain.
- How can we model this uncertainty?

Dynamic Bayesian Network for Controls, States, and Sensations

Probabilistic Motion Models

- To implement the Bayes Filter, we need the transition model $p\left(x \mid x^{\prime}, u\right)$.
- The term $p\left(x \mid x^{\prime}, u\right)$ specifies a posterior probability, that action u carries the robot from x ' to x.
- In this section we will specify, how $p\left(x \mid x^{\prime}, u\right)$ can be modeled based on the motion equations.

Coordinate Systems

- In general the configuration of a robot can be described by six parameters.
- Three-dimensional Cartesian coordinates plus three Euler angles pitch, roll, and tilt.
- Throughout this section, we consider robots operating on a planar surface.
- The state space of such systems is threedimensional (x, y, θ).

Example Wheel Encoders

These modules require +5 V and GND to power them, and provide a 0 to 5 V output. They provide
 +5 V output when they "see" white, and a OV output when they "see" black.

These disks are manufactured out of high manufactured out of hig plastic to offer a very crisp black to white transition. This enables a wheel encoder sensor to easily see the transitions.

Dead Reckoning

- Derived from "deduced reckoning."
- Mathematical procedure for determining the present location of a vehicle.
- Achieved by calculating the current pose of the vehicle based on its velocities and the time elapsed.

Reasons for Motion Errors

ideal case

bump
and many more ...

different wheel diameters

Odometry Model

- Robot moves from $\langle\bar{x}, \bar{y}, \bar{\theta}\rangle$ to $\left\langle\bar{x}^{\prime}, \bar{y}^{\prime}, \bar{\theta}^{\prime}\right\rangle$.
- Odometry information $u=\left\langle\delta_{\text {rot } 1}, \delta_{\text {rot } 2}, \delta_{\text {trans }}\right\rangle$.

Noise Model for Odometry

- The measured motion is given by the true motion corrupted with noise.

$$
\begin{aligned}
& \delta_{\text {trans }}=\sqrt{\left(\bar{x}^{\prime}-\bar{x}\right)^{2}+\left(\bar{y}^{\prime}-\bar{y}\right)^{2}} \\
& \delta_{\text {rot } 1}=\operatorname{atan} 2\left(\bar{y}^{\prime}-\bar{y}, \bar{x}^{\prime}-\bar{x}\right)-\bar{\theta} \\
& \delta_{\text {rot } 2}=\bar{\theta}^{\prime}-\bar{\theta}-\delta_{\text {rot } 1}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\delta}_{\text {rot } 1}=\delta_{\text {rot } 1}+\varepsilon_{\alpha_{1}\left|\delta_{\text {rot } 1}\right|+\alpha_{2}\left|\delta_{\text {rrans }}\right|} \\
& \hat{\delta}_{\text {trans }}=\delta_{\text {trans }}+\varepsilon_{\alpha_{3}\left|\delta_{\text {rrans }}\right|+\alpha_{4}\left|\delta_{\text {rot } 1}+\delta_{\text {rot } 2}\right|} \\
& \hat{\delta}_{\text {rot } 2}=\delta_{\text {rot } 2}+\varepsilon_{\alpha_{1}\left|\delta_{\text {rot } 2}\right|+\alpha_{2}\left|\delta_{\text {rrans }}\right|}
\end{aligned}
$$

Typical Distributions for Probabilistic Motion Models

Normal distribution

Triangular distribution

Calculating the Probability (zerocentered)

- For a normal distribution

1. Algorithm prob_normal_distribution (a, b) :
2. return $\frac{1}{\sqrt{2 \pi b^{2}}} \exp \left\{-\frac{1}{2} \frac{a^{2}}{b^{2}}\right\}$

- For a triangular distribution

1. Algorithm prob_triangular_distribution (a, b) :
2. return $\max \left\{0, \frac{1}{\sqrt{6} b}-\frac{|a|}{6 b^{2}}\right\}$
```
Calculating the Posterior
Given x, x', and u
    Algorithm motion_model_odometry(x, x',u)
    \delta}\mp@subsup{\delta}{\mathrm{ trans }}{}=\sqrt{}{(\mp@subsup{\overline{x}}{}{\prime}-\overline{x}\mp@subsup{)}{}{2}+(\mp@subsup{\overline{y}}{}{\prime}-\overline{y}\mp@subsup{)}{}{2}
```



```
    \delta}\mp@subsup{\mathrm{ rot 2 }}{}{=}\mp@subsup{\overline{0}}{}{\prime}-\overline{0}-\mp@subsup{\delta}{\mathrm{ rot }}{
    \mp@subsup{\delta}{trans}{}}=\sqrt{}{(\mp@subsup{x}{}{\prime}-x\mp@subsup{)}{}{2}+(\mp@subsup{y}{}{\prime}-y\mp@subsup{)}{}{2}
    \hat { \delta } _ { \text { rot1 } } = \operatorname { a t a n } 2 ( y ^ { \prime } - y , x ^ { \prime } - x ) - \overline { \theta }
    \mp@subsup{\delta}{\mathrm{ rot 2 }}{}=\mp@subsup{0}{}{\prime}-0-\mp@subsup{\hat{\delta}}{\mathrm{ rot }}{}
    p}=\operatorname{prob}(\mp@subsup{\delta}{\mathrm{ rot1 }}{}-\mp@subsup{\hat{\delta}}{\mathrm{ rotl }}{},\mp@subsup{\alpha}{1}{}|\mp@subsup{\hat{\delta}}{\mathrm{ rotl }}{}|+\mp@subsup{\alpha}{2}{}\mp@subsup{\hat{\delta}}{\mathrm{ trans }}{}
    p}=\operatorname{prob}(\mp@subsup{\delta}{\mathrm{ trans }}{}-\mp@subsup{\hat{\delta}}{\mathrm{ trass }}{},\mp@subsup{\alpha}{3}{}\mp@subsup{\hat{\delta}}{\mathrm{ trans }}{}+\mp@subsup{\alpha}{4}{}(|\mp@subsup{\hat{\delta}}{\mathrm{ rotl }}{}|+|\mp@subsup{\hat{\delta}}{\mathrm{ rot2 }}{}|)
    p}=\operatorname{prob}(\mp@subsup{\delta}{\mathrm{ rot2 }}{}-\mp@subsup{\hat{\delta}}{\mathrm{ rot2 }}{},\mp@subsup{\alpha}{1}{}|\mp@subsup{\hat{\delta}}{\mathrm{ rot2 }}{}|+\mp@subsup{\alpha}{2}{}\mp@subsup{\hat{\delta}}{\mathrm{ trans }}{}
    return }\mp@subsup{p}{1}{}\cdot\mp@subsup{p}{2}{}\cdot\mp@subsup{p}{3}{
```


Application

- Repeated application of the sensor model for short movements.
- Typical banana-shaped distributions obtained for 2d-projection of 3d posterior.

16

17

18

How to Sample from Normal or Triangular Distributions?

- Sampling from a normal distribution

1. Algorithm sample_normal_distribution(b):
2. return $\frac{1}{2} \sum_{i=1}^{12} \operatorname{rand}(-b, b)$

- Sampling from a triangular distribution

1. Algorithm sample_triangular_distribution(b):
2. return $\frac{\sqrt{6}}{2}[\operatorname{rand}(-b, b)+\operatorname{rand}(-b, b)]$

Normally Distributed Samples

20
20

Rejection Sampling

- Sampling from arbitrary distributions

1. Algorithm sample_distribution (f, b) :
2. repeat
3. $x=\operatorname{rand}(-b, b)$
4. $y=\operatorname{rand}(0, \max \{f(x) \mid x \in(-b, b)\})$
5. until $(y \leq f(x))$
6. return x

23

Sample Odometry Motion Model

1. Algorithm sample_motion_model (u, x) :

$$
u=\left\langle\delta_{\text {rot } 1}, \delta_{\text {rot } 2}, \delta_{\text {trans }}\right\rangle, x=\langle x, y, \theta\rangle
$$

1. $\hat{\delta}_{\text {rot } 1}=\delta_{\text {rot } 1}+\operatorname{sample}\left(\alpha_{1}\left|\delta_{\text {rott }}\right|+\alpha_{2} \delta_{\text {trans }}\right)$
2. $\hat{\delta}_{\text {trans }}=\delta_{\text {trans }}+\operatorname{sample}\left(0, \delta_{\text {trans }}+\alpha_{4}\left(\left|\delta_{\text {rot } 1}\right|+\left|\delta_{\text {rot2 }}\right|\right)\right)$
3. $\hat{\delta}_{\text {rot } 2}=\delta_{\text {rot } 2}+\operatorname{sample}\left(\alpha \delta_{\text {rot }}+\alpha_{2} \delta_{\text {trans }}\right)$
4. $x^{\prime}=x+\hat{\delta}_{\text {trans }} \cos \left(\theta+\hat{\delta}_{\text {rot }}\right)$
5. $y^{\prime}=y+\hat{\delta}_{\text {trans }} \sin \left(\theta+\hat{\delta}_{\text {rot } 1}\right)$
sample_normal_distribution
6. $\theta^{\prime}=\theta+\hat{\delta}_{\text {rot } 1}+\hat{\delta}_{\text {rot } 2}$
7. Return $\left\langle x^{\prime}, y^{\prime}, \theta^{\prime}\right\rangle$

Posterior Probability for Velocity
Posterior Probability for Velocity
Model
Model
1: \quad Algorithm motion_model_velocity $\left(x_{t}, u_{t}, x_{t-1}\right)$:
1: \quad Algorithm motion_model_velocity $\left(x_{t}, u_{t}, x_{t-1}\right)$:
2 :
2 :
$\mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta}$
$\mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta}$
$x^{*}=\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)$
$x^{*}=\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)$
$y^{*}=\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)$
$y^{*}=\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)$
$r^{*}=\sqrt{\left(x-x^{*}\right)^{2}+\left(y-y^{*}\right)^{2}}$
$r^{*}=\sqrt{\left(x-x^{*}\right)^{2}+\left(y-y^{*}\right)^{2}}$
$\Delta \theta=\operatorname{atan} 2\left(y^{\prime}-y^{*}, x^{\prime}-x^{*}\right)-\operatorname{atan} 2\left(y-y^{*}, x-x^{*}\right)$
$\Delta \theta=\operatorname{atan} 2\left(y^{\prime}-y^{*}, x^{\prime}-x^{*}\right)-\operatorname{atan} 2\left(y-y^{*}, x-x^{*}\right)$
$\hat{v}=\frac{\Delta \theta}{\Delta t} r^{*}$
$\hat{v}=\frac{\Delta \theta}{\Delta t} r^{*}$
$\hat{\omega}=\frac{\Delta \theta}{\Delta t}$
$\hat{\omega}=\frac{\Delta \theta}{\Delta t}$
$\hat{\gamma}=\frac{\widehat{\theta^{\prime}-\theta}}{\Delta t}-\hat{\omega}$
$\hat{\gamma}=\frac{\widehat{\theta^{\prime}-\theta}}{\Delta t}-\hat{\omega}$
return $\operatorname{prob}\left(v-\hat{v}, \alpha_{1}|v|+\alpha_{2}|\omega|\right) \cdot \operatorname{prob}\left(\omega-\hat{\omega}, \alpha_{3}|v|+\alpha_{4}|\omega|\right)$
return $\operatorname{prob}\left(v-\hat{v}, \alpha_{1}|v|+\alpha_{2}|\omega|\right) \cdot \operatorname{prob}\left(\omega-\hat{\omega}, \alpha_{3}|v|+\alpha_{4}|\omega|\right)$
$\operatorname{prob}\left(\hat{\gamma}, \alpha_{5}|v|+\alpha_{6}|\omega|\right)$
$\operatorname{prob}\left(\hat{\gamma}, \alpha_{5}|v|+\alpha_{6}|\omega|\right)$
29
29

Summary

- We discussed motion models for odometry-based and velocity-based systems
- We discussed ways to calculate the posterior probability $p\left(x \mid x^{\prime}, u\right)$.
- We also described how to sample from $p\left(x \mid x^{\prime}, u\right)$.
- Typically the calculations are done in fixed time intervals Δt.
- In practice, the parameters of the models have to be learned.
- We also discussed an extended motion model that takes the map into account.

Sensors for Mobile Robots

- Contact sensors: Bumpers
- Internal sensors
- Accelerometers (spring-mounted masses)
- Gyroscopes (spinning mass, laser light)
- Compasses, inclinometers (earth magnetic field, gravity)
- Proximity sensors
- Sonar (time of flight)
- Radar (phase and frequency)
- Laser range-finders (triangulation, tof, phase)
- Infrared (intensity)
- Visual sensors: Cameras
- Satellite-based sensors: GPS

- The central task is to determine $P(z \mid x)$, i.e., the probability of a measurement z given that the robot is at position x.
- Question: Where do the probabilities come from?
- Approach: Let's try to explain a measurement.

Beam-based Sensor Model

- Scan z consists of K measurements.

$$
z=\left\{z_{1}, z_{2}, \ldots, z_{K}\right\}
$$

- Individual measurements are independent given the robot position.

$$
P(z \mid x, m)=\prod_{k=1}^{K} P\left(z_{k} \mid x, m\right)
$$

Typical Measurement Errors of an Range Measurements

1. Beams reflected by obstacles
2. Beams reflected by persons / caused by crosstalk
3. Random measurements
4. Maximum range measurements

Proximity Measurement

- Measurement can be caused by ...
- a known obstacle.
- cross-talk.
- an unexpected obstacle (people, furniture, ...).
- missing all obstacles (total reflection, glass, ...).
- Noise is due to uncertainty
- in measuring distance to known obstacle.
- in position of known obstacles.
- in position of additional obstacles.
- whether obstacle is missed.

Beam-based Proximity Model

$P_{h i t}(z \mid x, m)=\eta \frac{1}{\sqrt{2 \pi b}} e^{-\frac{1\left(z-z_{\text {cep }}\right)^{2}}{2}}$
$P_{\text {unexp }}(z \mid x, m)=\left\{\begin{array}{cc}\eta \lambda \mathrm{e}^{-\lambda z} & z<z_{\exp } \\ 0 & \text { otherwise }\end{array}\right\}$

41

Resulting Mixture Density

$$
\int \quad P(z \mid x, m)=\left(\begin{array}{c}
\alpha_{\text {hit }} \\
\alpha_{\text {unexp }} \\
\alpha_{\text {max }} \\
\alpha_{\text {rand }}
\end{array}\right)^{T} \cdot\left(\begin{array}{c}
P_{\text {hit }}(z \mid x, m) \\
P_{\text {unexp }}(z \mid x, m) \\
P_{\max }(z \mid x, m) \\
P_{\text {rand }}(z \mid x, m)
\end{array}\right)
$$

How can we determine the model parameters?

42

43

Approximation

- Maximize log likelihood of the data

$$
P\left(z \mid z_{\exp }\right)
$$

- Search space of $\mathrm{n}-1$ parameters.
- Hill climbing
- Gradient descent
- Genetic algorithms
- Expectation maximization
- ML estimate of the parameters
- Deterministically compute the n-th parameter to satisfy normalization constraint.

45

Measurements along corridor are more likely
Scan and likelihood evaluated along corridor

Summary Beam-based Model

- Assumes independence between beams.
- Justification?
- Overconfident!
- Models physical causes for measurements.
- Mixture of densities for these causes.
- Assumes independence between causes. Problem?
- Implementation
- Learn parameters based on real data.
- Different models should be learned for different angles at which the sensor beam hits the obstacle.
- Determine expected distances by ray-tracing.
- Expected distances can be pre-processed.

Scan-based Model

- Beam-based model is ...
- not smooth for small obstacles and at edges.
- not very efficient.
- Small change in pose - large change in likelihood
- Idea: Instead of following along the beam, just check the end point.

Scan-based Model

- Probability is a mixture of ...
- a Gaussian distribution with mean at distance to closest obstacle,
- a uniform distribution for random measurements, and
- a small uniform distribution for max range measurements.
- Again, independence between different components is assumed.

57
58

Additional Models of Proximity Sensors

- Map matching (sonar,laser): generate small, local maps from sensor data and match local maps against global model.
- Scan matching (laser): map is represented by scan endpoints, match scan into this map.
- Features (sonar, Iaser, vision): Extract features such as doors, hallways from sensor data.

Landmarks

- Active beacons (e.g., radio, GPS)
- Passive (e.g., visual, retro-reflective)
- Standard approach is triangulation
- Sensor provides
- distance, or
- bearing, or
- distance and bearing.

63

Probabilistic Model

1. Algorithm landmark_detection_model $(z, \mathrm{x}, \mathrm{m})$: $z=\langle i, d, \alpha\rangle, x=\langle x, y, \theta\rangle$
2. $\hat{d}=\sqrt{\left(m_{x}(i)-x\right)^{2}+\left(m_{y}(i)-y\right)^{2}}$
3. $\hat{a}=\operatorname{atan} 2\left(m_{y}(i)-y, m_{x}(i)-x\right)-\theta$
4. $p_{\mathrm{det}}=\operatorname{prob}\left(\hat{d}-d, \varepsilon_{d}\right) \cdot \operatorname{prob}\left(\hat{\alpha}-\alpha, \varepsilon_{\alpha}\right)$
5. Return $z_{\text {det }} p_{\text {det }}+z_{\text {fp }} P_{\text {uniform }}(z \mid x, m)$

Computing likelihood of landmark measurement

64

67

68

Summary of Sensor Models

- Explicitly modeling uncertainty in sensing is key to robustness.
- In many cases, good models can be found by the following approach:

1. Determine parametric model of noise free measurement.
2. Analyze sources of noise.
3. Add adequate noise to parameters (eventually mix in densities for noise).
4. Learn (and verify) parameters by fitting model to data.
5. Likelihood of measurement is given by "probabilistically comparing" the actual with the expected measurement.

- This holds for motion models as well.
- It is extremely important to be aware of the underlying assumptions!

