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Probabilistic Robotics

Probabilistic Motion and Sensor 
Models

Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, 

Maren Bennewitz, Kai Arras and Probabilistic Robotics Book
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Robot Motion

§ Robot motion is inherently uncertain.
§ How can we model this uncertainty?
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Dynamic Bayesian Network for 
Controls, States, and Sensations
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Probabilistic Motion Models

•To implement the Bayes Filter, we 
need the transition model p(x | x’, u).

•The term p(x | x’, u) specifies a 
posterior probability, that action u
carries the robot from x’ to x.

• In this section we will specify, how 
p(x | x’, u) can be modeled based on the 
motion equations.
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Coordinate Systems
• In general the configuration of a robot can be 

described by six parameters.

• Three-dimensional Cartesian coordinates plus 
three Euler angles pitch, roll, and tilt.

• Throughout this section, we consider robots 
operating on a planar surface.

§ The state space of such 
systems is three-
dimensional (x,y,q).
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Example Wheel Encoders
These modules require 
+5V and GND to power 
them, and provide a 0 to 
5V output. They provide 
+5V output when they 
"see" white, and a 0V 
output when they "see" 
black. These disks are 

manufactured out of high 
quality laminated color 
plastic to offer a very crisp 
black to white transition. 
This enables a wheel 
encoder sensor to easily 
see the transitions. 

Source: http://www.active-robots.com/
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Dead Reckoning

•Derived from “deduced reckoning.”
•Mathematical procedure for 

determining the present location of a 
vehicle.
•Achieved by calculating the current 

pose of the vehicle based on its 
velocities and the time elapsed.
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Reasons for Motion Errors

bump

ideal case different wheel
diameters

carpet
and many more …
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Odometry Model
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Noise Model for Odometry

•The measured motion is given by the 
true motion corrupted with noise.
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Typical Distributions for 
Probabilistic Motion Models
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Calculating the Probability (zero-
centered)
• For a normal distribution

• For a triangular distribution

1. Algorithm prob_normal_distribution(a,b):

2. return  

1. Algorithm prob_triangular_distribution(a,b):

2. return  
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Calculating the Posterior 
Given x, x’, and u

22 )'()'( yyxxtrans -+-=d
qd ---= )','(atan21 xxyyrot

12 ' rotrot dqqd --=
22 )'()'(ˆ yyxxtrans -+-=d
qd ---= )','(atan2ˆ

1 xxyyrot

12
ˆ'ˆ
rotrot dqqd --=

)ˆ|ˆ|,ˆ(prob trans21rot11rot1rot1 dadadd +-=p
|))ˆ||ˆ(|ˆ,ˆ(prob rot2rot14trans3transtrans2 ddadadd ++-=p

)ˆ|ˆ|,ˆ(prob trans22rot12rot2rot3 dadadd +-=p

1. Algorithm motion_model_odometry(x,x’,u)
2.
3.
4.
5.
6.
7.
8.
9.
10.

11. return  p1 · p2 · p3

odometry values (u)

values of interest (x,x’)
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Application
• Repeated application of the sensor model for short 

movements.
• Typical banana-shaped distributions obtained for 

2d-projection of 3d posterior.

x’
u

p(x|u,x’)

u

x’
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Sample-based Density Representation
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Sample-based Density Representation
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How to Sample from Normal or 
Triangular Distributions?
• Sampling from a normal distribution

• Sampling from a triangular distribution

1. Algorithm sample_normal_distribution(b):

2. return  

1. Algorithm sample_triangular_distribution(b):

2. return  
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Normally Distributed Samples

106 samples
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For Triangular Distribution

103 samples 104 samples

106 samples105 samples
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Rejection Sampling

•Sampling from arbitrary distributions
1. Algorithm sample_distribution(f,b): 
2. repeat
3.
4.
5. until  (                )
6. return
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Example
•Sampling from 

23

Sample Odometry Motion Model
1. Algorithm sample_motion_model(u, x):

1.
2.
3.

4.
5.
6.

7. Return  
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)||sample(ˆ
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)ˆcos(ˆ' 1rottransxx dqd ++=
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sample_normal_distribution
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Sampling from Our Motion Model

Start
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Examples (Odometry-Based)
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Velocity-Based Model

q-90
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Posterior Probability for Velocity 
Model
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Sampling from Velocity Model
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Examples (velocity based)
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Summary
• We discussed motion models for odometry-based 

and velocity-based systems
• We discussed ways to calculate the posterior 

probability p(x| x’, u).
• We also described how to sample from p(x| x’, u).
• Typically the calculations are done in fixed time 

intervals Dt.
• In practice, the parameters of the models have to 

be learned.
• We also discussed an extended motion model that 

takes the map into account. 

33

34

Sensors for Mobile Robots
• Contact sensors: Bumpers
• Internal sensors

• Accelerometers (spring-mounted masses)
• Gyroscopes (spinning mass, laser light)
• Compasses, inclinometers (earth magnetic field, gravity)

• Proximity sensors
• Sonar (time of flight)
• Radar (phase and frequency)
• Laser range-finders (triangulation, tof, phase)
• Infrared (intensity)

• Visual sensors: Cameras
• Satellite-based sensors: GPS
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Proximity Sensors

• The central task is to determine P(z|x), i.e., the 
probability of a measurement z given that the 
robot is at position x.
• Question: Where do the probabilities come from?
• Approach: Let’s try to explain a measurement.
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Beam-based Sensor Model

•Scan z consists of K measurements.

• Individual measurements are 
independent given the robot position.
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Beam-based Sensor Model
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Typical Measurement Errors of an 
Range Measurements

1. Beams reflected by 
obstacles

2. Beams reflected by 
persons / caused 
by crosstalk

3. Random 
measurements

4. Maximum range 
measurements
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Proximity Measurement

• Measurement can be caused by …
• a known obstacle.
• cross-talk.
• an unexpected obstacle (people, furniture, …).
• missing all obstacles (total reflection, glass, …).

• Noise is due to uncertainty …
• in measuring distance to known obstacle.
• in position of known obstacles.
• in position of additional obstacles.
• whether obstacle is missed.
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Beam-based Proximity Model
Measurement noise

zexp zmax0

b
zz

hit e
b

mxzP
2

exp )(
2
1

2
1),|(

-
-

=
p

h
þ
ý
ü

î
í
ì <

=
-

otherwise
zz

mxzP
z

0
e

),|( exp
unexp

llh

Unexpected obstacles

zexp zmax0

40



19

41

Beam-based Proximity Model
Random measurement Max range
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Resulting Mixture Density
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How can we determine the model parameters?
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Raw Sensor Data
Measured distances for expected distance of 300 cm. 

Sonar Laser
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Approximation
• Maximize log likelihood of the data

• Search space of n-1 parameters.
• Hill climbing
• Gradient descent
• Genetic algorithms
• Expectation maximization 
• ML estimate of the parameters

• Deterministically compute the n-th 
parameter to satisfy normalization 
constraint.

)|( expzzP
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Approximation Results

Sonar

Laser

300cm 400cm
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Example

z P(z|x,m)

Measurements along corridor are more likely
Scan and likelihood evaluated along corridor
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Summary Beam-based Model
• Assumes independence between beams.

• Justification?
• Overconfident!

• Models physical causes for measurements.
• Mixture of densities for these causes.
• Assumes independence between causes. Problem?

• Implementation
• Learn parameters based on real data.
• Different models should be learned for different angles at 

which the sensor beam hits the obstacle.
• Determine expected distances by ray-tracing.
• Expected distances can be pre-processed.
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Scan-based Model

•Beam-based model is …
• not smooth for small obstacles and at 

edges.
• not very efficient.
• Small change in pose – large change in 

likelihood

• Idea: Instead of following along the 
beam, just check the end point.
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Scan-based Model

•Probability is a mixture of …
• a Gaussian distribution with mean at 

distance to closest obstacle,
• a uniform distribution for random 

measurements, and 
• a small uniform distribution for max 

range measurements.
•Again, independence between 

different components is assumed.
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Example

P(z|x,m)

Map m

Likelihood field
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San Jose Tech Museum

Occupancy grid map Likelihood field
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Scan Matching

•Extract likelihood field from scan and 
use it to match different scan.
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Additional Models of Proximity Sensors

• Map matching (sonar,laser): generate 
small, local maps from sensor data and 
match local maps against global model.

• Scan matching (laser): map is represented 
by scan endpoints, match scan into this 
map.

• Features (sonar, laser, vision): Extract 
features such as doors, hallways from 
sensor data.
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Landmarks

•Active beacons (e.g., radio, GPS)
•Passive (e.g., visual, retro-reflective)
•Standard approach is triangulation

•Sensor provides
• distance, or
• bearing, or
• distance and bearing.
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Distance and Bearing
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Probabilistic Model
1. Algorithm landmark_detection_model(z,x,m):

2.

3.

4.

5. Return  

22 ))(())((ˆ yimximd yx -+-=

),ˆprob(),ˆprob(det aeaae -×-= dddp

qa ,,,,, yxxdiz ==

q---= ))(,)(atan2(ˆ ximyima xy

),|(uniformfpdetdet mxzPzpz +

Computing likelihood of landmark measurement
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Distributions
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Distances Only
No Uncertainty
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Bearings Only With Uncertainty

P1

P2

P3

P1

P2

Most approaches attempt to find estimation mean.
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Summary of Sensor Models
• Explicitly modeling uncertainty in sensing is key to 

robustness.
• In many cases, good models can be found by the following 

approach:
1. Determine parametric model of noise free measurement.
2. Analyze sources of noise.
3. Add adequate noise to parameters (eventually mix in densities 

for noise).
4. Learn (and verify) parameters by fitting model to data.
5. Likelihood of measurement is given by “probabilistically 

comparing” the actual with the expected measurement.
• This holds for motion models as well.
• It is extremely important to be aware of the underlying 

assumptions!
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