Probabilistic Robotics

Probabilistic Motion and Sensor Models

Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book

Robot Motion

- Robot motion is inherently uncertain.
- How can we model this uncertainty?

Probabilistic Motion Models

- To implement the Bayes Filter, we need the transition model p(x | x', u).
- The term $p(x \mid x', u)$ specifies a posterior probability, that action u carries the robot from x' to x.

4

• In this section we will specify, how $p(x \mid x', u)$ can be modeled based on the motion equations.

Coordinate Systems

- In general the configuration of a robot can be described by six parameters.
- Three-dimensional Cartesian coordinates plus three Euler angles pitch, roll, and tilt.
- Throughout this section, we consider robots operating on a planar surface.
- The state space of such systems is threedimensional (x,y,θ).

Example Wheel Encoders

These modules require +5V and GND to power them, and provide a 0 to 5V output. They provide +5V output when they "see" white, and a 0V output when they "see" black.

7

These disks are manufactured out of high quality laminated color plastic to offer a very crisp black to white transition. This enables a wheel encoder sensor to easily see the transitions.

7

Source: http://www.active-robots.com/

Dead Reckoning

- Derived from "deduced reckoning."
- Mathematical procedure for determining the present location of a vehicle.
- Achieved by calculating the current pose of the vehicle based on its velocities and the time elapsed.

8

Noise Model for Odometry

• The measured motion is given by the true motion corrupted with noise.

$$\hat{\delta}_{rot1} = \delta_{rot1} + \varepsilon_{\alpha_1 |\delta_{rot1}| + \alpha_2 |\delta_{trans}|}$$
$$\hat{\delta}_{trans} = \delta_{trans} + \varepsilon_{\alpha_3 |\delta_{trans}| + \alpha_4 |\delta_{rot1} + \delta_{rot2}|}$$
$$\hat{\delta}_{rot2} = \delta_{rot2} + \varepsilon_{\alpha_1 |\delta_{rot2}| + \alpha_2 |\delta_{trans}|}$$

10

How to Sample from Normal or Triangular Distributions?

- Sampling from a normal distribution
 - 1. Algorithm **sample_normal_distribution**(*b*):

2. return $\frac{1}{2} \sum_{i=1}^{12} rand(-b,b)$ • Sampling from a triangular distribution

2. return
$$\frac{\sqrt{6}}{2}$$
 [rand $(-b,b)$ + rand $(-b,b)$]

Posterior Probability for Velocity Model

1:	Algorithm motion_model_velocity(x_t, u_t, x_{t-1}):
2:	$\mu = \frac{1}{2} \frac{(x - x')\cos\theta + (y - y')\sin\theta}{(y - y')\cos\theta - (x - x')\sin\theta}$
3:	$x^* = \frac{x + x'}{2} + \mu(y - y')$
4:	$y^* = rac{y+y'}{2} + \mu(x'-x)$
5:	$r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}$
6:	$\Delta \theta = \operatorname{atan2}(y' - y^*, x' - x^*) - \operatorname{atan2}(y - y^*, x - x^*)$
7:	$\hat{v} = rac{\Delta heta}{\Delta t} \; r^*$
8:	$\hat{\omega} = rac{\Delta heta}{\Delta t}$
9:	$\hat{\gamma} = rac{ heta'- heta}{\Delta t} - \hat{\omega}$
10:	$\textit{return } \mathbf{prob}(v - \hat{v}, \alpha_1 v + \alpha_2 \omega) + \mathbf{prob}(\omega - \hat{\omega}, \alpha_3 v + \alpha_4 \omega)$
	$\cdot \operatorname{\mathbf{prob}}(\hat{\gamma}, \alpha_5 v + \alpha_6 \omega)$ 29

Summary

- We discussed motion models for odometry-based and velocity-based systems
- We discussed ways to calculate the posterior probability p(x|x', u).
- We also described how to sample from p(x|x', u).
- Typically the calculations are done in fixed time intervals Δt .
- In practice, the parameters of the models have to be learned.
- We also discussed an extended motion model that takes the map into account.

Sensors for Mobile Robots

- Contact sensors: Bumpers
- Internal sensors
 - Accelerometers (spring-mounted masses)
 - Gyroscopes (spinning mass, laser light)
 - Compasses, inclinometers (earth magnetic field, gravity)
- Proximity sensors
 - Sonar (time of flight)
 - Radar (phase and frequency)
 - Laser range-finders (triangulation, tof, phase)
 - Infrared (intensity)
- Visual sensors: Cameras
- Satellite-based sensors: GPS

33

34

33

Beam-based Sensor Model

• Scan *z* consists of *K* measurements.

 $z = \{z_1, z_2, ..., z_K\}$

• Individual measurements are independent given the robot position.

$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

36

35

Proximity Measurement

- Measurement can be caused by ...
 - a known obstacle.
 - cross-talk.
 - an unexpected obstacle (people, furniture, ...).
 - missing all obstacles (total reflection, glass, ...).
- Noise is due to uncertainty ...
 - in measuring distance to known obstacle.
 - in position of known obstacles.
 - in position of additional obstacles.
 - whether obstacle is missed.

40

39

Summary Beam-based Model

- Assumes independence between beams.
 - Justification?
 - Overconfident!
- Models physical causes for measurements.
 - Mixture of densities for these causes.
 - Assumes independence between causes. Problem?
- Implementation
 - Learn parameters based on real data.
 - Different models should be learned for different angles at which the sensor beam hits the obstacle.
 - Determine expected distances by ray-tracing.
 - Expected distances can be pre-processed.

Scan-based Model

- Beam-based model is ...
 - not smooth for small obstacles and at edges.
 - not very efficient.
 - Small change in pose large change in likelihood

• Idea: Instead of following along the beam, just check the end point.

53

54

53

- Probability is a mixture of ...
 - a Gaussian distribution with mean at distance to closest obstacle,
 - a uniform distribution for random measurements, and
 - a small uniform distribution for max range measurements.
- Again, independence between different components is assumed.

- Map matching (sonar,laser): generate small, local maps from sensor data and match local maps against global model.
- Scan matching (laser): map is represented by scan endpoints, match scan into this map.
- Features (sonar, laser, vision): Extract features such as doors, hallways from sensor data.

Landmarks

- Active beacons (*e.g.*, radio, GPS)
- Passive (*e.g.*, visual, retro-reflective)
- Standard approach is triangulation
- Sensor provides
 - distance, or
 - bearing, or

61

62

• distance and bearing.

61

Summary of Sensor Models

- Explicitly modeling uncertainty in sensing is key to robustness.
- In many cases, good models can be found by the following approach:
 - 1. Determine parametric model of noise free measurement.
 - 2. Analyze sources of noise.
 - 3. Add adequate noise to parameters (eventually mix in densities for noise).
 - 4. Learn (and verify) parameters by fitting model to data.
 - 5. Likelihood of measurement is given by "probabilistically comparing" the actual with the expected measurement.
- This holds for motion models as well.
- It is extremely important to be aware of the underlying assumptions!