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Probabilistic Robotics

Discrete Filters and Particle Filters 
Models

Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, 

Maren Bennewitz, Kai Arras and Probabilistic Robotics Book
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Probabilistic Localization
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Piecewise 
Constant
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Discrete Bayes Filter Algorithm 

1. Algorithm Discrete_Bayes_filter( Bel(x),d ):
2. h=0
3. If d is a perceptual data item z then
4. For all x do
5.
6.
7. For all x do
8.
9. Else if d is an action data item u then
10. For all x do
11.
12. Return Bel’(x)
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Piecewise Constant Representation

The 
picture 
can't be 
displayed.
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Implementation (1)
• To update the belief upon sensory input and to carry out 

the normalization one has to iterate over all cells of the 
grid.

• Especially when the belief is peaked (which is generally the 
case during position tracking), one wants to avoid 
updating irrelevant aspects of the state space.

• One approach is not to update entire sub-spaces of the 
state space.

• This, however, requires to monitor whether the robot is 
de-localized or not.

• To achieve this, one can consider the likelihood of the 
observations given the active components of the state 
space.
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Implementation (2)
• To efficiently update the belief upon robot motions, one typically 

assumes a bounded Gaussian model for the motion uncertainty.
• This reduces the update cost from O(n2) to O(n), where n is the 

number of states.
• The update can also be realized by shifting the data in the grid 

according to the measured motion.
• In a second step, the grid is then convolved using a separable 

Gaussian Kernel.
• Two-dimensional example:
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§ Fewer arithmetic operations
§ Easier to implement
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Grid-based Localization
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Sonars and 
Occupancy Grid Map 
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§ Recall: Discrete filter
§ Discretize the continuous state space
§ High memory complexity

§ Fixed resolution (does not adapt to the belief)

§ Particle filters are a way to efficiently represent 
non-Gaussian distribution

§ Basic principle
§ Set of state hypotheses (“particles”)
§ Survival-of-the-fittest

Motivation
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Sample-based Localization (sonar)
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§ Set of weighted samples

Mathematical Description

§ The samples represent the posterior

State hypothesis Importance weight
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§ Particle sets can be used to approximate functions

Function Approximation

§ The more particles fall into an interval, the higher 
the probability of that interval

§ How to draw samples form a function/distribution?
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§ Let us assume that f(x)<1 for all x
§ Sample x from a uniform distribution
§ Sample c from [0,1]

§ if f(x) > c keep the sample
otherwise reject the sampe

Rejection Sampling
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§ We can even use a different distribution g to 
generate samples from f

§ By introducing an importance weight w, we can 
account for the “differences between g and f ”

§ w = f / g
§ f is often called

target
§ g is often called

proposal
§ Pre-condition:

f(x)>0 à g(x)>0

Importance Sampling Principle
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Importance Sampling with Resampling:
Landmark Detection Example
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Distributions

Wanted: samples distributed according to 
p(x| z1, z2, z3)
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This is Easy!
We can draw samples from p(x|zl) by adding 
noise to the detection parameters.
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Importance Sampling
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The more is the sample consistent with all the measurements the higher the weight
will be 
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Importance Sampling with Resampling

Weighted samples After resampling

Given:  set of samples 
Wanted: single sample where probability of sample
is given by wi
Repeat n times                
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Particle Filters
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Sensor Information: Importance Sampling
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Robot Motion
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Sensor Information: Importance Sampling
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Robot Motion
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Particle Filter Algorithm

§ Sample the next generation for particles using the 
proposal distribution

§ Compute the importance weights :
weight = target distribution / proposal distribution

§ Resampling: “Replace unlikely samples by more 
likely ones”
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1. Algorithm particle_filter( St-1, ut-1 zt):
2.

3. For Generate new samples

4. Sample index j(i) from the discrete distribution given by wt-1
5. Sample     from                         using          and

6. Compute importance weight

7. Update normalization factor

8. Insert

9. For

10. Normalize weights

Particle Filter Algorithm
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draw xi
t-1 from Bel(xt-1)

draw xi
t from p(xt | xi

t-1,ut-1)

Importance factor for xi
t:
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Particle Filter Algorithm
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Resampling

• Given: Set S of weighted samples.

•Wanted : Random sample, where the 
probability of drawing xi is given by wi.

• Typically done n times with replacement to 
generate new sample set S’.
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Resampling
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§ Roulette wheel
§ Stochastic universal sampling
§ Systematic resampling
§ Linear time complexity
§ Easy to implement, low variance
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1. Algorithm systematic_resampling(S,n):

2.
3. For Generate cdf
4.
5. Initialize threshold

6. For Draw samples …
7. While (            ) Skip until next threshold reached
8.
9. Insert
10. Increment threshold

11. Return S’

Resampling Algorithm
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Also called stochastic universal sampling
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Mobile Robot Localization

§ Each particle is a potential pose of the robot

§ Proposal distribution is the motion model of 
the robot (prediction step)

§ The observation model is used to compute 
the importance weight (correction step)

[For details, see PDF file on the lecture web page]
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Start

Motion Model  Reminder
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Proximity Sensor Model Reminder

Laser sensor Sonar sensor
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Sample-based Localization (sonar)
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Initial Distribution
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After Incorporating Ten 
Ultrasound Scans
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After Incorporating 65 Ultrasound 
Scans
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Estimated Path
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Vision-based Localization

P(z|x)

h(x)
z

65
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Under a Light

Measurement z: P(z|x):
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Next to a Light

Measurement z: P(z|x):
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Elsewhere

Measurement z: P(z|x):
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Global Localization Using Vision
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Limitations

• The approach described so far is able to 
• track the pose of a mobile robot and to
• globally localize the robot.

• How can we deal with localization errors 
(i.e., the kidnapped robot problem)?
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Approaches

• Randomly insert samples (the robot can be 
teleported at any point in time).

• Insert random samples proportional to the 
average likelihood of the particles (the 
robot has been teleported with higher 
probability when the likelihood of its 
observations drops). 
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Summary – Particle Filters

• Particle filters are an implementation of 
recursive Bayesian filtering
• They represent the posterior by a set of 

weighted samples
• They can model non-Gaussian distributions
• Proposal to draw new samples
• Weight to account for the differences 

between the proposal and the target
• Monte Carlo filter, Survival of the fittest, 

Condensation, Bootstrap filter
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Summary – PF Localization

• In the context of localization, the particles 
are propagated according to the motion 
model.
• They are then weighted according to the 

likelihood of the observations.
• In a re-sampling step, new particles are 

drawn with a probability proportional to the 
likelihood of the observation. 
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