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Probabilistic Robotics 

SLAM
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The SLAM Problem

SLAM is the process by which a robot builds 
a map of the environment and, at the same 
time, uses this map to compute its location

• Localization: inferring location given a map 
• Mapping: inferring a map given a location
• SLAM: learning a map and locating the robot 

simultaneously
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The SLAM Problem

• SLAM is a chicken-or-egg problem:
→ A map is needed for localizing a robot
→ A pose estimate is needed to build a map

• Thus, SLAM is (regarded as) a hard problem in 
robotics
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• SLAM is considered one of the most 
fundamental problems for robots to become 
truly autonomous

• A variety of different approaches to address the 
SLAM problem have been presented

• Probabilistic methods rule

• History of SLAM dates back to the mid-eighties 
(stone-age of mobile robotics)

The SLAM Problem
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Given:
• The robot’s controls

• Relative observations

Wanted:

• Map of features

• Path of the robot

The SLAM Problem
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Structure of the Landmark-
based SLAM-Problem 
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SLAM Applications

Indoors

Space

Undersea

Underground
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Representations

•Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 
99; Haehnel, 01;…]

• Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…
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Why is SLAM a hard problem?

SLAM: robot path and map are both unknown

Robot path error correlates errors in the map
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Why is SLAM a hard problem?

• In the real world, the mapping between 
observations and landmarks is unknown

• Picking wrong data associations can have 
catastrophic consequences

• Pose error correlates data associations

Robot pose
uncertainty
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SLAM: 
Simultaneous Localization and Mapping

• Full SLAM:

•Online SLAM:

Integrations (marginalization) typically 
done one at a time 

),|,( :1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,( -ò ò ò= ttttttt dxdxdxuzmxpuzmxp !

Estimates most recent pose and map!

Estimates entire path and map!

13

14

Graphical Model of Full SLAM: 

),|,( :1:1:1 ttt uzmxp
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Graphical Model of Online SLAM: 

121:1:1:1:1:1 ...),|,(),|,( -ò ò ò= ttttttt dxdxdxuzmxpuzmxp !
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Graphical Model: Models

"Motion model"

"Observation model"
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Techniques for Generating 
Consistent Maps

•Scan matching
•EKF SLAM
• Fast-SLAM
•Probabilistic mapping with a single 

map and a posterior about poses 
Mapping + Localization 
•Graph-SLAM, SEIFs
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Scan Matching

Maximize the likelihood of the i-th pose and 
map relative to the (i-1)-th pose and map.

Calculate the map       according to “mapping 
with known poses” based on the poses and 
observations.
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Kalman Filter Algorithm 
1. Algorithm Kalman_filter( µt-1, St-1, ut, zt):

2. Prediction:
3.
4.

5. Correction:
6.
7.
8.

9. Return µt, St

ttttt uBA += -1µµ

t
T
tttt RAA +S=S -1
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ttt
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ttt QCCCK

)( tttttt CzK µµµ -+=
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Extended Kalman Filter 

• Previously Extended Kalman Filter
line features detected from range data

• Now review extended Kalman Filter for 
landmark model

• Digression – (with slightly different 
notation)
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Kalman Filter Components
(also known as: Way Too Many Variables…)

Linear discrete time dynamic system (motion model)

ttttttt wGuBxFx ++=+1

Measurement equation (sensor model)

1111 ++++ += tttt nxHz

State transition
function

Control input
function

Noise input
function with covariance Q

State Control input Process noise

StateSensor reading Sensor noise with covariance R

Sensor function Note:Write these down!!!
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At last!  The Kalman Filter…

Propagation (motion model):
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In words …

Propagation (motion model):

Update (sensor model):

- State estimate is updated from system 
dynamics
- Uncertainty estimate GROWS

- Compute expected value of sensor reading

- Compute the difference between expected and 
“true”
- Compute covariance of sensor reading

- Compute the Kalman Gain (how much to correct 
est.)
- Multiply residual times gain to correct state 
estimate
- Uncertainty estimate SHRINKS
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Linearized Motion Model 
for a Robot
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From a robot-centric 

perspective, the 
velocities look like 

this:

From the global 
perspective, the 

velocities look like 
this: tt
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The discrete time state 
estimate (including 
noise) looks like this:
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Problem!  We don’t 
know linear and 
rotational velocity 
errors.  The state 
estimate will 
rapidly diverge if 
this is the only 
source of 
information!
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Linearized Motion Model 
for a Robot
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The indirect Kalman filter derives the pose equations 
from the estimated error: 

In order to linearize the system, the following small-angle 

assumptions are made:
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f
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Now, we have to compute the covariance matrix 

Propagation equations.
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Linearized Motion Model 
for a Robot
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From the error-state propagation equation, we can obtain the
State propagation and noise input functions F and G :

From these values, we can easily compute the 
standard covariance propagation equation:

T
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Sensor Model for a Robot with a 
Perfect Map
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From the robot, 
the measurement 

looks like this:

From a global 
perspective, the 
measurement 

looks like:
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The measurement equation is nonlinear and must also be linearized!
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Sensor Model for a Robot with a 
Perfect Map
Now, we have to compute the linearized sensor 
function.  
Once again, we make use of the indirect Kalman filter 
where the error in the reading must be estimated.
In order to linearize the system, the following small-
angle assumptions are made:
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The final expression for the error in the sensor reading is:
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• end of digression
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EKF SLAM: State representation
• Localization

3x1 pose vector
3x3 cov. matrix

• SLAM

Landmarks are simply added to the state. 
Growing state vector and covariance matrix!
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• Map with N landmarks:(3+2N)-dimensional 
Gaussian 

• Can handle hundreds of dimensions

(E)KF-SLAM
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EKF SLAM: Building the Map

Filter Cycle, Overview:

1.State prediction (odometry)
2.Measurement prediction
3.Observation
4.Data Association
5.Update
6.Integration of new landmarks
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•State Prediction

EKF SLAM: Building the Map
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Odometry:

(skipping time index k)

Robot-landmark cross-
covariance prediction:

33

EKF SLAM: Building the Map

•Measurement Prediction

34

Global-to-local 
frame transform h
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•Observation

EKF SLAM: Building the Map

35

(x,y)-point landmarks

35

Associates predicted 
measurements
with observation

•Data Association

EKF SLAM: Building the Map

36

? (Gating)
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EKF SLAM: Building the Map

• Filter Update

37

The usual Kalman 
filter expressions 
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• Integrating New Landmarks

EKF SLAM: Building the Map

38

State augmented by

Cross-covariances:
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EKF-SLAM

Map              Correlation matrix

41
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EKF-SLAM

Map              Correlation matrix
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Victoria Park Data Set

[courtesy by E. Nebot]
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Victoria Park Data Set Vehicle

[courtesy by E. Nebot]
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Data Acquisition

[courtesy by E. Nebot]
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SLAM

[courtesy by E. Nebot]
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Map and Trajectory 

Landmarks

Covariance

[courtesy by E. Nebot]
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Landmark Covariance

[courtesy by E. Nebot]
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Estimated Trajectory

[courtesy by E. Nebot]
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EKF SLAM Application

[courtesy by John Leonard]
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EKF SLAM Application

odometry estimated trajectory

[courtesy by John Leonard]
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• Local submaps 
[Leonard et al.99, Bosse et al. 02, Newman et al. 03]

• Sparse links (correlations) 
[Lu & Milios 97, Guivant & Nebot 01]

• Sparse extended information filters 
[Frese et al. 01, Thrun et al. 02]

• Thin junction tree filters 
[Paskin 03]

• Rao-Blackwellisation (FastSLAM) 
[Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03]

Approximations for SLAM

53
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EKF-SLAM Summary

• Quadratic in the number of landmarks: O(n2)
• Convergence results for the linear case.
• Can diverge if nonlinearities are large!
• Have been applied successfully in large-scale 

environments.
• Approximations reduce the computational 

complexity. 
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Graph SLAM 

• Full SLAM Technique
• Generates probabilistic links 
• Computes map only occasionally 
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Graph SLAM
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Graph SLAM
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Graph SLAM
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Graph SLAM

61

61

Graph SLAM
• Full SLAM – with loop closure
• Constructs link graph between poses and 

landmarks 
• Graph is sparse number of edges is linear in 

number of nodes
• Build information matrix and vector in linearized 

form 
• Map recovered by reduction to robot poses, 

followed by conversion to moment representation, 
followed by estimation of landmark positions

• ML estimate by minimization of JgraphSLAM

62Examples of outdoor mapping 108 features 103 poses
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