
1

Probabilistic Robotics

SLAM

1

The SLAM Problem

SLAM is the process by which a robot builds
a map of the environment and, at the same
time, uses this map to compute its location

• Localization: inferring location given a map
• Mapping: inferring a map given a location
• SLAM: learning a map and locating the robot

simultaneously

2

2

2

The SLAM Problem

• SLAM is a chicken-or-egg problem:
→ A map is needed for localizing a robot
→ A pose estimate is needed to build a map

• Thus, SLAM is (regarded as) a hard problem in
robotics

3

3

4

• SLAM is considered one of the most
fundamental problems for robots to become
truly autonomous

• A variety of different approaches to address the
SLAM problem have been presented

• Probabilistic methods rule

• History of SLAM dates back to the mid-eighties
(stone-age of mobile robotics)

The SLAM Problem

4

3

5

Given:
• The robot’s controls

• Relative observations

Wanted:

• Map of features

• Path of the robot

The SLAM Problem

5

6

Structure of the Landmark-
based SLAM-Problem

6

4

7

SLAM Applications

Indoors

Space

Undersea

Underground

7

8

Representations

•Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras,
99; Haehnel, 01;…]

• Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…

8

5

9

9

10

10

6

11

Why is SLAM a hard problem?

SLAM: robot path and map are both unknown

Robot path error correlates errors in the map

11

12

Why is SLAM a hard problem?

• In the real world, the mapping between
observations and landmarks is unknown

• Picking wrong data associations can have
catastrophic consequences

• Pose error correlates data associations

Robot pose
uncertainty

12

7

13

SLAM:
Simultaneous Localization and Mapping

• Full SLAM:

•Online SLAM:

Integrations (marginalization) typically
done one at a time

),|,(:1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,(-ò ò ò= ttttttt dxdxdxuzmxpuzmxp !

Estimates most recent pose and map!

Estimates entire path and map!

13

14

Graphical Model of Full SLAM:

),|,(:1:1:1 ttt uzmxp

14

8

15

Graphical Model of Online SLAM:

121:1:1:1:1:1 ...),|,(),|,(-ò ò ò= ttttttt dxdxdxuzmxpuzmxp !

15

16

Graphical Model: Models

"Motion model"

"Observation model"

16

9

17

Techniques for Generating
Consistent Maps

•Scan matching
•EKF SLAM
• Fast-SLAM
•Probabilistic mapping with a single

map and a posterior about poses
Mapping + Localization
•Graph-SLAM, SEIFs

17

18

Scan Matching

Maximize the likelihood of the i-th pose and
map relative to the (i-1)-th pose and map.

Calculate the map according to “mapping
with known poses” based on the poses and
observations.

{ })ˆ,|()ˆ ,|(maxargˆ 11
]1[

--
- ×= ttt
t

tt
x

t xuxpmxzpx
t

robot motioncurrent measurement
map constructed so far

][ˆ tm

18

10

19

Kalman Filter Algorithm
1. Algorithm Kalman_filter(µt-1, St-1, ut, zt):

2. Prediction:
3.
4.

5. Correction:
6.
7.
8.

9. Return µt, St

ttttt uBA += -1µµ

t
T
tttt RAA +S=S -1

1)(-+SS= t
T
ttt

T
ttt QCCCK

)(tttttt CzK µµµ -+=

tttt CKI S-=S)(

19

Extended Kalman Filter

• Previously Extended Kalman Filter
line features detected from range data

• Now review extended Kalman Filter for
landmark model

• Digression – (with slightly different
notation)

20

20

11

Kalman Filter Components
(also known as: Way Too Many Variables…)

Linear discrete time dynamic system (motion model)

ttttttt wGuBxFx ++=+1

Measurement equation (sensor model)

1111 ++++ += tttt nxHz

State transition
function

Control input
function

Noise input
function with covariance Q

State Control input Process noise

StateSensor reading Sensor noise with covariance R

Sensor function Note:Write these down!!!

21

At last! The Kalman Filter…

Propagation (motion model):

T
ttt

T
tttttt

ttttttt

GQGFPFP

uBxFx

+=

+=

+

+

//1

//1 ˆˆ

Update (sensor model):

tttt
T

ttttttt

tttttt

t
T

tttt

t
T

ttttt

ttt

tttt

PHSHPPP

rKxx
SHPK

RHPHS

zzr
xHz

/11
1

11/1/11/1

11/11/1

1
11/11

11/111

111

/111

ˆˆ

ˆ
ˆˆ

++
-

++++++

+++++

-
++++

+++++

+++

+++

-=

+=
=

+=

-=
=

22

12

In words …

Propagation (motion model):

Update (sensor model):

- State estimate is updated from system
dynamics
- Uncertainty estimate GROWS

- Compute expected value of sensor reading

- Compute the difference between expected and
“true”
- Compute covariance of sensor reading

- Compute the Kalman Gain (how much to correct
est.)
- Multiply residual times gain to correct state
estimate
- Uncertainty estimate SHRINKS

T
ttt

T
tttttt

ttttttt

GQGFPFP

uBxFx

+=

+=

+

+

//1

//1 ˆˆ

tttt
T

ttttttt

tttttt

t
T

tttt

t
T

ttttt

ttt

tttt

PHSHPPP

rKxx
SHPK

RHPHS

zzr
xHz

/11
1

11/1/11/1

11/11/1

1
11/11

11/111

111

/111

ˆˆ

ˆ
ˆˆ

++
-

++++++

+++++

-
++++

+++++

+++

+++

-=

+=
=

+=

-=
=

23

Linearized Motion Model
for a Robot

R

X

Y

w

xy

G

v
tt

t

tt

y
Vx

wf =

=
=

!

!

!

0
From a robot-centric

perspective, the
velocities look like

this:

From the global
perspective, the

velocities look like
this: tt

ttt

ttt

Vy
Vx

wf

f
f

=

=
=

!

!

!

sin
cos

The discrete time state
estimate (including
noise) looks like this:

tw

twVyy

twVxx

t

t

t

ttt

tVttt

tVttt

dwff

fd

fd

w)(ˆˆ

ˆsin)(ˆˆ

ˆcos)(ˆˆ

1

1

1

++=

++=

++=

+

+

+
Problem! We don’t
know linear and
rotational velocity
errors. The state
estimate will
rapidly diverge if
this is the only
source of
information!

24

13

Linearized Motion Model
for a Robot

111

111

111

~ˆ

~ˆ

~ˆ

+++

+++

+++

=-

=-
=-

ttt

ttt

ttt

yyy
xxx

fff

The indirect Kalman filter derives the pose equations
from the estimated error:

In order to linearize the system, the following small-angle

assumptions are made:

ff

f
~~sin

1~cos

@

@

Now, we have to compute the covariance matrix

Propagation equations.

25

Linearized Motion Model
for a Robot

ttttt

V
R

R

t

t

t

m

m

t

t

t

WGXFX

w
w

t
t
t

y
x

tV
tV

y
x

t

t

+=

ú
û

ù
ê
ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é

-
-
-

+
ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é -
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

+

+

+

+

~~
0

0sin
0cos

~
~
~

100

ˆcos10

ˆsin01

~
~
~

1

1

1

1

wd
fd
fd

f
fd
fd

f

From the error-state propagation equation, we can obtain the
State propagation and noise input functions F and G :

From these values, we can easily compute the
standard covariance propagation equation:

T
ttt

T
tttttt GQGFPFP +=+ //1

26

14

Sensor Model for a Robot with a
Perfect Map

R

X

Y

xy

G

L

z
ú
ú
ú

û

ù

ê
ê
ê

ë

é
+
ú
ú
ú

û

ù

ê
ê
ê

ë

é

=

+

+

+

+

ff n
n
n

y
x

z y

x

L

L

L

t

t

t

t

1

1

1

1

From the robot,
the measurement

looks like this:

From a global
perspective, the
measurement

looks like:

ú
ú
ú

û

ù

ê
ê
ê

ë

é
+
ú
ú
ú

û

ù

ê
ê
ê

ë

é

-
-
-

ú
ú
ú

û

ù

ê
ê
ê

ë

é -
=

+

+

+

++

++

+

+

+

+

fff
ff
ff

n
n
n

yy
xx

z y

x

tL

tL

tL

tt

tt

t

t

t

t

1

1

1

11

11

1

1

1

1

100
0cossin
0sincos

The measurement equation is nonlinear and must also be linearized!

27

Sensor Model for a Robot with a
Perfect Map
Now, we have to compute the linearized sensor
function.
Once again, we make use of the indirect Kalman filter
where the error in the reading must be estimated.
In order to linearize the system, the following small-
angle assumptions are made:

ff

f
~~sin

1~cos

@

@

The final expression for the error in the sensor reading is:

ú
ú
ú

û

ù

ê
ê
ê

ë

é
+
ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é

-

-+----

=
ú
ú
ú

û

ù

ê
ê
ê

ë

é

+

+

+

+++++

++++ +

+

+

+

ff
ffff
ffff

f n
n
n

y
x

yyxx
yyxx

y
x

y

x

t

t

t

tLttLttt

tLttLtt

L

L

L t

t

t

t

1

1

1

11111

1111

~
~
~

100
)ˆ(ˆsin)ˆ(ˆcosˆcosˆsin
)ˆ(ˆcos)ˆ(ˆsinˆsinˆcos

~
~
~

1

1

1

1

28

15

29

• end of digression

29

EKF SLAM: State representation
• Localization

3x1 pose vector
3x3 cov. matrix

• SLAM

Landmarks are simply added to the state.
Growing state vector and covariance matrix!

30

30

16

31

÷÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

çç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

=

2

2

2

2

2

2

2

1

21

2221222

1211111

21

21

21

,),(

NNNNNN

N

N

N

N

N

llllllylxl

llllllylxl

llllllylxl

lllyx

ylylylyyxy

xlxlxlxxyx

N

tt

l

l
l

y
x

mxBel

ssssss

ssssss
ssssss
ssssss
ssssss
ssssss

q

q

q

q

qqqqqq

q

q

!

"#"""""

!

!

!

!

!

"

• Map with N landmarks:(3+2N)-dimensional
Gaussian

• Can handle hundreds of dimensions

(E)KF-SLAM

31

EKF SLAM: Building the Map

Filter Cycle, Overview:

1.State prediction (odometry)
2.Measurement prediction
3.Observation
4.Data Association
5.Update
6.Integration of new landmarks

32

32

17

•State Prediction

EKF SLAM: Building the Map

33

Odometry:

(skipping time index k)

Robot-landmark cross-
covariance prediction:

33

EKF SLAM: Building the Map

•Measurement Prediction

34

Global-to-local
frame transform h

34

18

•Observation

EKF SLAM: Building the Map

35

(x,y)-point landmarks

35

Associates predicted
measurements
with observation

•Data Association

EKF SLAM: Building the Map

36

? (Gating)

36

19

EKF SLAM: Building the Map

• Filter Update

37

The usual Kalman
filter expressions

37

• Integrating New Landmarks

EKF SLAM: Building the Map

38

State augmented by

Cross-covariances:

38

20

41

EKF-SLAM

Map Correlation matrix

41

42

EKF-SLAM

Map Correlation matrix

42

21

44

Victoria Park Data Set

[courtesy by E. Nebot]

44

45

Victoria Park Data Set Vehicle

[courtesy by E. Nebot]

45

22

46

Data Acquisition

[courtesy by E. Nebot]

46

47

SLAM

[courtesy by E. Nebot]

47

23

48

Map and Trajectory

Landmarks

Covariance

[courtesy by E. Nebot]

48

49

Landmark Covariance

[courtesy by E. Nebot]

49

24

50

Estimated Trajectory

[courtesy by E. Nebot]

50

51

EKF SLAM Application

[courtesy by John Leonard]

51

25

52

EKF SLAM Application

odometry estimated trajectory

[courtesy by John Leonard]

52

53

• Local submaps
[Leonard et al.99, Bosse et al. 02, Newman et al. 03]

• Sparse links (correlations)
[Lu & Milios 97, Guivant & Nebot 01]

• Sparse extended information filters
[Frese et al. 01, Thrun et al. 02]

• Thin junction tree filters
[Paskin 03]

• Rao-Blackwellisation (FastSLAM)
[Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03]

Approximations for SLAM

53

26

55

EKF-SLAM Summary

• Quadratic in the number of landmarks: O(n2)
• Convergence results for the linear case.
• Can diverge if nonlinearities are large!
• Have been applied successfully in large-scale

environments.
• Approximations reduce the computational

complexity.

55

Graph SLAM

• Full SLAM Technique
• Generates probabilistic links
• Computes map only occasionally

56

56

27

Graph SLAM

57

57

Graph SLAM

58

58

28

59

59

Graph SLAM

60

60

29

Graph SLAM

61

61

Graph SLAM
• Full SLAM – with loop closure
• Constructs link graph between poses and

landmarks
• Graph is sparse number of edges is linear in

number of nodes
• Build information matrix and vector in linearized

form
• Map recovered by reduction to robot poses,

followed by conversion to moment representation,
followed by estimation of landmark positions

• ML estimate by minimization of JgraphSLAM

62Examples of outdoor mapping 108 features 103 poses

62

