Probabilistic Robotics

SLAM

The SLAM Problem

SLAM is the process by which a robot builds
a map of the environment and, at the same
time, uses this map to compute its location

® Localization: inferring location given a map

® Mapping: inferring a map given a location

® SLAM: learning a map and locating the robot
simultaneously




The SLAM Problem The SLAM Problem

SLAM is considered one of the most
fundamental problems for robots to become
truly autonomous

A variety of different approaches to address the
SLAM problem have been presented

® SLAM is a chicken-or-egg problem: Probabilistic methods rule
— A map is needed for localizing a robot

— A pose estimate is needed to build a map

History of SLAM dates back to the mid-eighties

(stone-age of mobile robotics)

e Thus, SLAM is (regarded as) a hard problem in
robotics




The SLAM Problem

Given:

e The robot’ s controls

Uor = {ug, uz, - -+, ug) e
e Relative observations

Zo, =1{z1,22, - , 2t} .
Wanted: 0

e Map of features
m = {m17m2v S vmil}

e Path of the robot

X():/\’ = {XO’ X1,y xk}

Structure of the Landmark-
based SLAM-Problem

Vehicle-Feature Relative
Observation

Mobile Vehicle

Global Reference Frame




SLAM Applications

Undersea

Representations

® Grid maps or scans A

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras,
99; Haehnel, 01;...]

® | andmark-based

‘N '
I(X

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...
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Why is SLAM a hard problem?

SLAM: robot path and map are both unknown

Robot path error correlates errors in the map
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Why is SLAM a hard problem?
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e In the real world, the mapping between
observations and landmarks is unknown

® Picking wrong data associations can have
catastrophic consequences

® Pose error correlates data associations
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Robotpose __— o

uncertainty
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SLAM:

Simultaneous Localization and Mapping

® Full SLAM: |Estimates entire path and map! |

p(xl:t’m | Zl:t’”l:t)

® Online SLAM:

pGxom| z,u,) = [ [ pOrm] 2,0u,) didy,..dx,

Integrations (marginalization) typically
done one at a time

| Estimates most recent pose and map! |
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Graphical Model of Full SLAM:
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p(xlzt > M | Zl:t 4 ul:t)
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Graphical Model of Online SLAM:

(m)

plx,m|z,,u,)= II---J-p(xlztsm | 21,5ty ) A dxy..dX,
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Graphical Model: Models

z, = h(x;, m)
"Observation model"
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Techniques for Generating
Consistent Maps

® Scan matching
e EKF SLAM
® Fast-SLAM

® Probabilistic mapping with a single
map and a posterior about poses
Mapping + Localization

® Graph-SLAM, SEIFs
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Scan Matching

Maximize the likelihood of the i-th pose and
map relative to the (i-1)-th pose and map.

& =argmax {p(z, |3, ™) p(, |, .5,

Xy

current measurement robot motion

map constructed so far

Calculate the map m!"! according to “mapping
with known poses” based on the poses and
observations.
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Kalman Filter Algorithm
1. Algorithm Kalman_filter( ps;, Zi;, Uy Z4):

2. Prediction:
Ho= A+ By,
T =43, A" +R,

=117

W

Correction:

K, =%.CI(CECI+0)"
H=H, +Kt(zt:ct/ut)
X, =(I-K,C)Z

© @ N W

Return Ut Zt
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Extended Kalman Filter

® Previously Extended Kalman Filter
line features detected from range data

e Now review extended Kalman Filter for
landmark model

e Digression - (with slightly different
notation)
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Kalman Filter Components
(also known as: Way Too Many Variables...)

Linear discrete time dynamic system (motion model)

Stia'gc‘ontro’l/inputyess noise

xt+1 = F;xt +Btut + Gtwt

N

State transitionControl input Noise input

function function function with covariance Q
Measurement equation (sensor model)

Sensor\r‘eadingStjateSensor noise with covariance R

Zt+l = Ht+1xt+1 + nt+1

Sensor function Note:Write these down!!!

Propagation (motion model):
‘)%tH/t = F;)’e

B

+Bu,

F;T +G[Q[GIT

tt

e =EE),

Update (sensor model):

Zen T H Xy,
T = 2 _2”[
Sr+l = Ht+1Pt+l/tH:+lT + Rt+l
KHI = R+I,’LH1+ITS1+171
)et+1/r+l = )’exﬂ/z + Kf+lrr+l
Boen =By =B H 'S, 'H,.P,

t+1/t7 041 Ml 17 11/t
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At last! The Kalman Filter...
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In words ...

Propagation (motion model):
‘)?"Hl/t = F;)’é +Btut

F;T +G[Q[GIT

tt

F..=FF

t/'t

Update (sensor model):

Zen T H Xy,
T = 2 _2”1
Sr+l = Ht+1Pt+l/tH:+lT + Rt+l
KHI = R+I,’1H1+ITS1+171
')et+l/l+l = )’exﬂ/z + Kf+lrr+l
Boen =B *Pm,’sz+1TSz+171Hr+1Pr+1/:

- State estimate is updated from system
dynamics
- Uncertainty estimate GROWS

- Compute expected value of sensor reading

- Compute the difference between expected and

“true”
- Compute covariance of sensor reading

- Compute the Kalman Gain (how much to correct
est.)
- Multiply residual times gain to correct state

estimate
- Uncertainty estimate SHRINKS

Linearized Motion Model
for a Robot

y X

)

o

G X

From a robot-centric
perspective, the

velocities look like

this:

From the global
perspective, the
velocities look like

this:

The discrete time state 3, =, +(¥, +w, ) cosg,

estimate (including
noise) looks like this:

)’}HI =j>1 +(V1 +Wl/,)5tSin¢t
¢?r+1 = ¢?z + (wr + qu, )é‘t

x =V,
»,=0
¢ =0
X, =V, cosg,
v, =V;sing,
b =0,

Problem! We don’t
know linear and
rotational velocity
errors. The state
estimate will
rapidly diverge if
this is the only
source of
information!

23

24

12



Linearized Motion Model
for a Robot

Now, we have to compute the covariance matrix

Propagation equations.
The indirect Kalman filter derives the pose equations

Xevt = X1 = X
Vit =Vt = Vi
¢t+l _¢t+1 = ¢t+l

In order to linearize the system, the following small-angle

from the estimated error:

assumptions are made:

Linearized Motion Model
for a Robot

From the error-state propagation equation, we can obtain the
State propagation and noise input functions Fand G :

X0 1 0 -V ésing [%] [-dtcosg, 0

I w,
Fal=l0 1 V dtcos || 7 |+| -dtsing, 0 [WV}
é.1 100 1 4 0 —&t

)?HI =F;)?z +G1VVL

=

From these values, we can easily compute the
standard covariance propagation equation:

P..=FP,F +GOG,/

t+1/t
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Sensor Model for a Robot with a Sensor Model for a Robot with a
Perfect Map Perfect Map

Now, we have to compute the linearized sensor

function.
From the robot T | | i indi i
Y ro € robot, | Once again, we make use of the indirect Kalman filter
the measurement  z.,=| v, |+|7, where the error in the reading must be estimated.
L looks like this: p n ) ) .
y X L ¢ In order to linearize the system, the following small-
4 From a global angle assumptions are made:
perspective, the cosg =1
measurement M
looks like: sing = ¢
X . ) . . L
G cosg,, —sing, Ofx, —x.| |n The final expression for the error in the sensor reading is:
z,,,=|sing,, cosd, Oy, —y.|+|n, N N N N
- 01 I 01 I 1 ¢,M _¢l 1 n¢ )NCL,‘, 7COS¢H] 7Sin¢z+| 7Sin¢”, (xL 7£t+])+cos¢z(yL 7JA):+|) )?Hl ny
L., 1+1 _ LA ~ ~ N . A ~ ~
yL,‘, = Sln¢t+l —COS¢H1 _Cos¢r+1(xL_xr+l)_Sln¢t(yL_yz+1) Ve | T ny
The measurement equation is nonlinear and must also be linearized! 4., 0 0 -1 Sl |1y
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e end of digression
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EKF SLAM: State representation

e Localization

3x1 pose vector , 0% Ouy Oup
. Xp=| Uk Crh=| 0ya 0F o0y
3x3 cov. matrix o, Gor Gig &

e SLAM

Landmarks are simply added to the state.
Growing state vector and covariance matrix!

XR Cr  Crvy Crm, -+ Cru,
m; Cuir  Cwuy Cvim, - Cuym,

Xp = | M2 Co=| Cmer Cromy Cry -+ Capm,
m, |, Cm,r Cm,m, Cumom, -+ Cm, |,

30
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(E)KF-SLAM

e Map with N landmarks:(3+2N)-dimensional

Gaussian
X af o, 0Oy
yi|o, ayz O,
0| |0, Oy 03
- , ..

e Can handle hundreds of dimensions
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EKF SLAM: Building the Map

Filter Cycle, Overview:

1.State prediction (odometry)
2.Measurement prediction
3.0bservation

4.Data Association

5.Update

6.Integration of new landmarks

32
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EKF SLAM: Building the Map

® State Prediction

W

XR Cr  Crm,
m; Cmr Cumy
xp = | M2 Cp= | Omar CMomy
m,, Cv,r CMm.M,
k

Odometry:
iR — f(XR7 ll)
Cr=F,CrFI +F,UFT

Robot-landmark cross-
covariance prediction:

ORMi = F; Cru,

(skipping time index k)

CryM, -+ Cgwm,

Cwim, - Cwmym,
Cyv, -+ Cuym,

Cuam, - Cum, |y
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EKF SLAM: Building the Map

® Measurement Prediction

Global-to-local
frame transform #
’
2 = h(%y)
XR Cr  Crmy Crm, -+ Crm,
mj CMlR CM1 CM1M2 CMlM"
xp = | M2 Cp=| Cmar Crmory, Cmy -+ Chom,
m, |, Cv,r CMmumy Cumun, -+ Cm, |

34
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EKF SLAM: Building the Map

® Observation
(x,y)-point landmarks

& e

XR Cr  Crmy Crm, -+ Crm,
m; Cwmir Cumy Cmm, -+ Cumym,

xp = | M2 Cp=| Cmar Crmonty Cwy - Cwmym,
m, |, Cu,r CMmumy Cumun, -+ Cm, |
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EKF SLAM: Building the Map

® Data Association

measurements 2% )
with observation z],
B o=
S¢ = R4+HEHGHT
‘ a? (Gating)
XR Cr  Crvy Crm, -+ Cru,
my Cwir Cumy  Cwmym, -+ Cayu,
xp = | M2 Cp=| Omer Crorsy, Cmy -+ Chpm,
m, |, Cv,r CMmumy Cumun, -+ Cm, |

Associates predicted

36
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EKF SLAM: Building the Map

e Filter Update
The usual Kalman

0 filter expressions

Ky = ék HTS];1

G Xy =X + K vg
l Cr.= - Ky H)C,

XR Cr  Crvy CrMp -+ Cru,
m; Cuir Cvy  Cmym, - Cmym,
xp = | M2 Cp=| Cmar Crvomy, O, -+ Cipm,
my |, Cm,r Cmmy CMamz -+ Cm, |

37

I a CM,. R = GRCR

EKF SLAM: Building the Map

® Integrating New Landmarks
State augmented by

* my, 1 = g(XR,2;)

Cu,,, =GrCrGE + G, R; GT
G Cross-covariances:
CM, 1 M; = GrCRru;

CrM,  CRM.pa

Cr Crmy CruM,
Cuim, | COMaMuys

Xg
m; Cwmyr Cr,y Chrym,
my - Crzr Crpmy Cu, Crom,, Oy
X = . k:— . » . -
my, Cum.r Cuunm,  Cumog Cm,  |CMyM,y,
mu |, CMpiik CMupiy CMpyivs 0 CmMpiam, Oy |, 38
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EKF-SLAM

Correlation matrix

41

41

EKF-SLAM

2 R
s EEETE o
g ! S,

Correlation matrix
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&\ 4 O

[courtesy by E. Nebot]
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Victoria Park Data Set Vehicle

[courtesy by E. Nebot]
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Data Acquisition

[courtesy by E. Nebot]
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SLAM

[courtesy by E. Nebot]

200
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Map and Trajectory
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[courtesy by E. Nebot] 48
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Landmark Covariance
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[courtesy by E. Nebot] 49

49

23



250

Estimated Trajectory

200
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[courtesy by E. Nebot]
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EKF SLAM Application

[courtesy by John Leonard]
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Odometry Profie of the Robot Locations.
T T T T

odometry

EKF SLAM Application

estimated trajectory

[courtesy by John Leonard]
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Approximations for SLAM

® [ocal submaps
[Leonard et al.99, Bosse et al. 02, Newman et al. 03]

® Sparse links (correlations)
[Lu & Milios 97, Guivant & Nebot 01]

e Sparse extended information filters
[Frese et al. 01, Thrun et al. 02]

e Thin junction tree filters
[Paskin 03]

e Rao-Blackwellisation (FastSLAM)
[Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03]
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EKF-SLAM Summary

Quadratic in the number of landmarks: O(n?)
Convergence results for the linear case.

Can diverge if nonlinearities are large!

Have been applied successfully in large-scale
environments.

Approximations reduce the computational
complexity.
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Graph SLAM

e Full SLAM Technique
e Generates probabilistic links
e Computes map only occasionally

56

55

56

26



Graph SLAM

Xy

m [l ]
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Graph SLAM
m J San
% b w1
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Graph SLAM

T
Xo Q%

[x, = gy, x) R [, — g1y, x,))

(22 = h(my x)f Q7' [z, —hOmy, x,)]

1= 2 x)1 R [x = gy, )]

i 2= bl 3 07 2= )]
L2y = hOm, )T Q7' 2, = hOmy,x)]) ?

fzy =m0V Tz, ~h(m, 21—

[x, = gy, x)T R™' [, = gt x)]
Sum of all constraints:

Tomsian = %o Qo Xo+ 2 [%, = (. x, ) R [x,— g(w,.x, )+ X[z, ~h(m, . x)I' Q7' [z, —h(m, . x)]

60
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Graph SLAM

e Use scan patches to detect loop closure

e Add new position constraints
e Deform the network based on covariances of
matches

Before loop closure After loop closure
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Graph SLAM

e Full SLAM - with loop closure

® Constructs link graph between poses and
landmarks

e Graph is sparse number of edges is linear in
number of nodes

e Build information matrix and vector in linearized
form

® Map recovered by reduction to robot poses,
followed by conversion to moment representation,
followed by estimation of landmark positions

® ML estimate by minimization of Jg.zpnsiam

Examples of outdoor mapping 108 features 103 poses 62
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