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Perception

• Sensors
• Uncertainty
• Features, models of environments 

Perception Motion Control

Cognition

Real World
Environment

Localization

PathEnvironment Model
Local Map

"Position" 
Global Map
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BibaBot, BlueBotics SA, Switzerland

Pan-Tilt Camera

Omnidirectional Camera

IMU
Inertial Measurement Unit

Sonar Sensors

Laser Range Scanner

Bumper

Emergency Stop Button

Wheel Encoders
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Robotic Navigation     Robotic Manipulation
• Stanford Stanley Grand 

Challenge
• Outdoors unstructured env., 

single vehicle
• Urban Challenge
• Outdoors structured env., mixed 

traffic, traffic rules

IGQ REG GQ-Adv-Phys GQ-Adv GQ-S GQ

Success Rate (%) 60±13 52±14 68±13 74±12 72±12 80±11

Precision (%) N/A N/A 68 87 92 100

Robust Grasp Rate (%) N/A N/A 100 30 48 58

Planning Time (sec) 1.8 3.4 0.7 0.7 0.8 0.8

TABLE IV: Performance of grasp planning methods on our grasping bench-
mark with the test dataset of 10 household objects with 95% confidence
intervals for the success rate. Each method was tested for 50 trials, and
details on the methods used for comparison can be found in Section VI-C.
GQ performs best in terms of success rate and precision, with 100% precision
(zero false positives among 29 positive classifications). Performance decreases
with smaller training datasets, but the GQ-CNN methods outperform the
image-based grasp quality metrics (IGQ) and point cloud registration (REG).

Generalization Objects Order Fulfillment

Fig. 7: (Left) The test set of 40 household objects used for evaluating the
generalization performance of the Dex-Net 2.0 grasp planner. The dataset
contains rigid, articulated, and deformable objects. (Right) The experimental
setup for order fulfillment with the ABB YuMi. The goal is to grasp and
transport three target objects to a shipping container (box on right).

(CEM) [33], which iteratively samples a set of candidate
grasps and re-fits the candidate grasp distribution to the grasps
with the highest predicted robustness, in order to find better
maxima of the robust grasping policy. More details can be
found in the supplemental file. The CEM-augmented Dex-Net
2.0 grasp planner achieved 94% success and 99% precision
(68 successes out of 69 grasps classified as robust), and it
took an average of 2.5s to plan grasps.

H. Application: Order Fulfillment
To demonstrate the modularity of the Dex-Net 2.0 grasp

planner, we used it in an order fulfillment application with
the ABB YuMi. The goal was to grasp and transport a set
of three target objects to a shipping box in the presence of
three distractor objects when starting with the objects in a pile
on a planar worksurface, illustrated in Fig. 7. Since the Dex-
Net 2.0 grasp planner assumes singulated objects, the YuMi
first separated the objects using a policy learned from human
demonstrations mapping binary images to push locations [31].
When the robot detected an object with sufficient clearance
from the pile, it identified the object based on color and used
GQ-L-Adv to plan a robust grasp. The robot then transported
the object to either the shipping box or a reject box, depending
on whether or not the object was a distractor. The system
successfully placed the correct objects in the box on 4 out of
5 attempts and was successful in grasping on 93% of 27 total
attempts.

I. Failure Modes
Fig. 8 displays some common failures of the GQ-CNN

grasp planner. One failure mode occured when the RGB-D

RGB-D Sensor Noise Misclassified Collisions

+ + +

Execution

Planned
Grasp

Fig. 8: Four examples of failed grasps planned using the GQ-CNN from Dex-
Net 2.0. The most common failure modes were related to: (left) missing sensor
data for an important part of the object geometry, such as thin parts of the
object surface, and (right) collisions with the object that are misclassified as
robust.

sensor failed to measure thin parts of the object geometry,
making these regions seem accessible. A second type of failure
occured due to collisions with the object. It appears that the
network was not able to fully distinguish collision-free grasps
in narrow parts of the object geometry. This suggests that
performance could be improved with more accurate depth
sensing and using analytic methods to prune grasps in collsion.

VII. DISCUSSION AND FUTURE WORK

We developed a Grasp Quality Convolutional Neural Net-
work (GQ-CNN) architecture that predicts grasp robustness
from a point cloud and trained it on Dex-Net 2.0, a dataset
containing 6.7 million point clouds, parallel-jaw grasps, and
robust grasp metrics. In over 1,000 physical evaluations, we
found that the Dex-Net 2.0 grasp planner is as reliable and
3⇥ faster a method based on point cloud registration, and had
99% precision on a test set of 40 novel objects.

In future work, our goal is to approach 100% success on
known objects by using active learning to adaptively acquire
grasps using a policy initialized with a GQ-CNN. Additionally,
we plan to exend the method to grasp objects in clutter [16, 33]
by using simulated piles of rigid objects from Dex-Net and
by augmenting the grasping policy with an option to push and
separate objects when no robust grasp is available. We also
intend to extend the method to use point clouds from multiple
viewpoints and in grasping tasks with sequential structure,
such as regrasping for assembly. Furthermore, we plan to
release a subset of our code, dataset, and the trained GQ-CNN
weights to facilitate further research and comparisons.
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• Ability to detect objects and 
their pose

• Challenges – clutter
• Previously unseen objects

4

Localization

Mapping Semantic Understanding 
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• Terrain mapping using lasers

• Determining obstacle course, scene understanding   

6

7Car detections Semantic Segmentation

Drivable Areas Lane Markings

source: UC Berkeley Deep Drive

Robust Visual, Multi-modal Perception
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• Exploit the single view parsing of indoor environment 
satisfying Manhattan constraints 

• Assign each pixel in the image to one of the floor or walls
• Single view parses can be temporally inconsistent 
• Local structure of the scene changes little between 

consecutive views: the prior wall layout is used as one of the 
constraints to infer the layout of the current frame.

Mapping and Localization 

8

• The basic ingredients: estimation of visual motion and
• 3D structure
• Difficulties: data association, correspondences, invariance
• Choice of features, choice of models, context
• Sparse features, large number of views  

• How can learning alleviate some of the difficulties ? 
• How to build representations for more sophisticated tasks ?
• How can the use of semantic information help ? 

Mapping and Localization

9
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Graph SLAM and Loop Closure

• Manhattan constraints lead to robust and consistent rotation 
estimates

• Need to global alignment to account to translation drift
• Graph SLAM optimization on (x, y): the camera has fixed 

height and the estimated rotations are accurate.
• Keyframe based loop closure detection: a frame with visible 

junction or T-junction is set to be a keyframe. Two keyframes
are matched if the GIST score is less than 0.025 and the 
distance between to keyframe is less than 5m.

11

12



10/14/21

6

13

B. GMU sequences
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Fetch bottle of milk from 
the fridge

1
5

• Need to characterize the entities in the image in term of their semantic 
and geometric relationship

Semantic Scene Understandning

15

Scene Understanding

Detecting Fridge and its 3D 
orientation
1
6

Fetch bottle of milk from 
the fridge
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3D Pose Estimation

• Definition: Estimating rotation and translation for each object

17

17

Scene Understanding

What are the obstacles?
Where are they in 3D world?

Fetch bottle of milk from 
the fridge

18
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Plan a safe path

Fetch bottle of milk from 
the fridge

Scene Understanding

19
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Conclusions 
• Multiview 3D object proposals outperform singleview 3D 
proposals and are comparable to established proposal techniques. 
• Training on similar backgrounds as the test set leads to much 
better performing detectors, however that data are hard to 
acquire.  Training on random backgrounds helps just slightly, 
which suggests that more sophisticated approaches are needed. 
• Comparative experiments on the WRGB-D [2] show that the 
Kitchen scenes dataset is more challenging. 

Contributions: 
• A new RGB-D dataset of cluttered kitchen 
scenes, annotated in both 2D and 3D, for 
detection and recognition of hand-held 
objects in realistic settings. Some objects 
were taken from the BigBird dataset [1]. 
URL: http://cs.gmu.edu/~robot/gmu-
kitchens.html  
 
•A multiview object proposal generation 
method which uses only 3D information. 
 
• Detection baselines that investigate how 
different training strategies can affect the 
performance of CNNs. 

Procedure: 
• Collected the scenes with Kinect V2 (1920x1080). 
• Sparse reconstructions are created with the latest 
structure from motion (SfM) software COLMAP. 
• Dense point clouds are created using the estimated 
camera poses to project all points to the world 
coordinate frame. 
 

Contents: 
• 9 RGB-D kitchen video sequences (6735 images). 
• 10-15 object instances per scene, with 23 instances 
in total. 
• Bounding box annotations for all objects. 
• 3D point labeling for each scene. 

Steps: 
1) Removal of large planar 

surfaces from the dense 
point cloud. 

2) Mean-shift clustering of 
remaining points in 
multiple ranges. 

3) Cuboid fitting for removing 
outlier points. 

Baselines training: 
1) Turntable: Cropped object images from BigBird[1]. 
2) Turntable background: Same as (1) augmented with 

images superimposed on random backgrounds.  
3) HMP Folds: Scenes are split into three training-test folds 

and HMP[2] is used. 
4) CNN Folds: Same as (3) but we train a CNN instead of 

HMP. Baselines (1),(2),(4), train a CNN. 
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Classification of Sensors

• Proprioceptive sensors 
• measure values internally to the system (robot), 
• e.g. motor speed, wheel load, heading of the robot, battery 

status 
• Exteroceptive sensors 

• information from the robots environment
• distances to objects, intensity of the ambient light, unique 

features.
• Passive sensors 

• energy coming for the environment (cameras)  
• Active sensors 

• emit their proper energy and measure the reaction 
• better performance, but some influence on environment 

4.1.1

25
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Jana Kosecka

Role of Perception in Robotics 

• Where am I relative to the world?
• sensors: vision, stereo, range sensors, acoustics
• problems: scene modeling/classification/recognition
• integration:  localization/mapping  algorithms (e.g. SLAM)
• pose estimation

• What is around me?
• sensors: vision, stereo, range sensors, acoustics, sounds, 

smell
• problems: object recognition, 3D reconstruction, semantic 

understanding
• integration: collision avoidance/navigation, learning

26

Role of Perception in Robotics

• How can I safely interact with environment (including 
people!)?
• sensors: vision, range, haptics (force+tactile)
• problems: 3D structure/range estimation, tracking, 

materials, size, weight, 
• integration: navigation, manipulation, control, learning

• How can I solve “new” problems (generalization)?
• sensors: vision, range, haptics, undefined new sensor
• problems: categorization by function/shape/context/??
• integrate: inference, navigation, manipulation, control, 

learning

Jana Kosecka

27
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Visual Perception Topics 

• range sensing, Obstacle detection, environment interaction 

• Mapping, registration, localization, recognition

• Manipulation

• Single view geometry  

• Feature detection and matching 

• 3D reconstruction

Techniques

Applications in Robotics:

30

J. Kosecka, GMU

Image Formation

Pinhole

Frontal
pinhole

31
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Pinhole Camera Model 

2-D coordinates

Homogeneous coordinates

• Image coordinates are nonlinear function of world coordinates
• Relationship between coordinates in the camera frame and sensor plane

32

CS482, Jana Kosecka

Image Coordinates

pixel
coordinates

Linear transformation

metric
coordinates

• Relationship between coordinates in the sensor plane and image

33
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Jana Kosecka, CS 685 34

Camera parameters – Radial Distortion 

Nonlinear transformation along the radial direction

Distortion correction: make lines straight

34

Calibration Matrix and Camera Model

Pinhole camera Pixel coordinates

• Adding transformation between camera coordinate systems 
and world coordinate system 
• Extrinsic Parameters

• Relationship between coordinates in the world frame and image
• Intrinsic parameters 

35
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Jana Kosecka, CS 685 36

Homogeneous coordinates of a 3-D point

Homogeneous coordinates of its 2-D image

Image of a Point 

Projection of a 3-D point to an image plane

36

Jana Kosecka, CS 685 37

Homogeneous representation of a 3-D line

Image of a Line 

Homogeneous representation of its 2-D image

Projection of a 3-D line to an image plane

37
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Fitting

38

Plane Fitting

Jana Kosecka, CS 685 39
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Fitting: Overview

• If we know which points belong to the line, how do 
we find the “optimal” line parameters?
• Least squares

• What if there are outliers?
• Robust fitting, RANSAC

• What if there are many lines?
• Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
• Model selection

40

Least squares line fitting

• Data: (x1, y1), …, (xn, yn)
• Line equation: yi = m xi + b
• Find (m, b) to minimize 
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Problem with “vertical” least squares

• Not rotation-invariant
• Fails completely for vertical lines

42

Total least squares

•Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d| å =

-+=
n

i ii dybxaE
1

2)( (xi, yi)

ax+by=d
Unit normal: 

N=(a, b)
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Total least squares

•Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d|
•Find (a, b, d) to minimize the sum of 
squared perpendicular distances
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Unit normal: 
N=(a, b)
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Total least squares
• Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d|
• Find (a, b, d) to minimize the sum 
of squared perpendicular distances å =
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Total least squares
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Total least squares
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Least squares: Robustness to noise

• Least squares fit to the red points:

50

Least squares: Robustness to noise

• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
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Robust estimators
• General approach: find model parameters θ that minimize

ri (xi, θ) – residual of ith point w.r.t. model parameters θ
ρ – robust function with scale parameter σ

( )( )sqr ;,iii xrå

The robust function 
ρ behaves like 
squared distance for 
small values of the 
residual u but 
saturates for larger 
values of u

52

Choosing the scale: Just right

The effect of the outlier is minimized
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The error value is almost the same for every
point and the fit is very poor

Choosing the scale: Too small

54

Choosing the scale: Too large

Behaves much the same as least squares

55
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Robust estimation: Details

• Robust fitting is a nonlinear optimization problem 
that must be solved iteratively

• Least squares solution can be used for initialization
• Adaptive choice of scale: approx. 1.5 times median 

residual (F&P, Sec. 15.5.1)

56

RANSAC
• Robust fitting can deal with a few outliers – what if 

we have very many?
• Random sample consensus (RANSAC): 

Very general framework for model fitting in the 
presence of outliers

• Outline
• Choose a small subset of points uniformly at 

random
• Fit a model to that subset
• Find all remaining points that are “close” to the 

model and reject the rest as outliers
• Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting 
with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, 
Vol 24, pp 381-395, 1981. 

57

http://www.ai.sri.com/pubs/files/836.pdf
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RANSAC for line fitting example

Source: R. Raguram
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RANSAC for line fitting example

Least-squares fit

Source: R. Raguram
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

Source: R. Raguram
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

Source: R. Raguram
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

Source: R. Raguram
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

Source: R. Raguram
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Uncontaminated sample

Source: R. Raguram
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram
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RANSAC for line fitting

• Repeat N times:
• Draw s points uniformly at random
• Fit line to these s points
• Find inliers to this line among the remaining points 

(i.e., points whose distance from the line is less 
than t)

• If there are d or more inliers, accept the line and 
refit using all inliers

68

Choosing the parameters
• Initial number of points s
• Typically minimum number needed to fit the 

model
• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95) 
• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
• Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys

69



10/14/21

31

RANSAC pros and cons

• Pros
• Simple and general
• Applicable to many different problems
• Often works well in practice

• Cons
• Lots of parameters to tune
• Doesn’t work well for low inlier ratios (too many 

iterations, 
or can fail completely)

• Can’t always get a good initialization 
of the model based on the minimum 
number of samples

74

Previously 

• Camera model
• Stereo matching, triangulation

• Features
• Least Squares Fitting 
• RANSAC

• Today 
• Camera pose estimation in the world coordinate 

frame
• Relative Pose Estimation

Jana Kosecka, CS 685 75
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Jana Kosecka, CS 685 76

Calibration with a Rig
Use the fact that both 3-D and 2-D coordinates of feature 
points on a pre-fabricated object (e.g., a cube) are known. 

76
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Calibration with a Rig

• Eliminate unknown scales

• Factor the        into                   and     using QR decomposition

• Solve for translation 

• Recover projection matrix

• Given 3-D coordinates on known object  

77
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78

More details
• Direct calibration by recovering and decomposing the projection matrix  

2 constraints per point

�s = [�11, �12, �13, �14, �21, �22, �23, �24, �31, �32, �33, �34]T

78
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More details

• Factor the  R’ into                   and  K using QR decomposition

• Solve for translation 

• Recover projection matrix

• Collect the constraints from all N points into matrix M (2N x 12)

• Solution eigenvector associated with the smallest eigenvalue

• Unstack the solution and decompose into rotation and translation 
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80

Calibration with a planar pattern

To eliminate unknown depth, multiply both sides by 

80

88

Robust technique

88


