

Robotic Navigation

- Stanford Stanley Grand Challenge •
- Outdoors unstructured env., • single vehicle
- Urban Challenge •
- Outdoors structured env., mixed • traffic, traffic rules

Robotic Manipulation

- Ability to detect objects and their pose
- Challenges clutter
- Previously unseen objects •

RANSAC

- Robust fitting can deal with a few outliers what if we have very many?
- Random sample consensus (RANSAC): Very general framework for model fitting in the presence of outliers
- Outline
 - Choose a small subset of points uniformly at random
 - Fit a model to that subset
 - Find all remaining points that are "close" to the model and reject the rest as outliers
 - Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting</u> <u>with Applications to Image Analysis and Automated Cartography</u>. Comm. of the ACM, Vol 24, pp 381-395, 1981.

RANSAC for line fitting

- Repeat **N** times:
- Draw *s* points uniformly at random
- Fit line to these *s* points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than *t*)
- If there are *d* or more inliers, accept the line and refit using all inliers

More details ecover projection matrix □ = [KR, KT] = [R', T'] min ||M □^S||² subject to ||□^S||² = 1 □^S = [π₁, π₂₁, π₃₁, π₁₂, π₂₂, π₃₂, π₁₃, π₂₃, π₃₃, π₁₄, π₂₄, π₃₄]^T olect the constraints from all N points into matrix M (2N x 12) olution eigenvector associated with the smallest eigenvalue M^TM onstack the solution and decompose into rotation and translation extern the R' intoR ∈ SO(3) and K using QR decomposition olve for translation T = K⁻¹T'

