Perception

* Sensors
* Uncertainty
* Features, models of environments

"Position"
Global Map

Environment Model Path

Locall Map
. \ Real World

BibaBot, BlueBotics SA, Switzerland

Omnidirectional Camera

Pan-Tilt Camera
IMU

Inertial Measurement Unit i
Sonar Sensors

Emergency Stop Button

Laser Range Scanner

Wheel Encoders
Bumper
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Robotic Navigation  Robotic Manipulation

Stanford Stanley Grand * Ability to detect objects and
Challenge their pose

Outdoors unstructured env., « Challenges — clutter
single vehicle

* Previously unseen objects
Urban Challenge

Outdoors structured env., mixed
traffic, traffic rules

Localization

= Camera m‘

50
60 80 100 30

o w0 o W m
i .
| |
{“‘ O |
! -
A p \

N\

Mapping Semantic Understanding
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+ Terrain mapping using lasers

Y ﬁ &%
¢ " uneaplorad wermain
s

o~

6
Robust Visual, Multi-modal Perception
» : ,‘ ;
Car detections 7 Semantic Segmentation
source: UC Berkeley Deep Drive
7
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Mapping and Localization

Exploit the single view parsing of indoor environment
satisfying Manhattan constraints

Assign each pixel in the image to one of the floor or walls
Single view parses can be temporally inconsistent

Local structure of the scene changes little between
consecutive views: the prior wall layout is used as one of the
constraints to infer the layout of the current frame.

Mapping and Localization

The basic ingredients: estimation of visual motion and
3D structure

Difficulties: data association, correspondences, invariance
Choice of features, choice of models, context

Sparse features, large number of views

How can learning alleviate some of the difficulties ?

How to build representations for more sophisticated tasks ?
How can the use of semantic information help ?

10/14/21



Graph SLAM and Loop Closure

Manhattan constraints lead to robust and consistent rotation
estimates

Need to global alignment to account to translation drift

Graph SLAM optimization on (x, y): the camera has fixed
height and the estimated rotations are accurate.

Keyframe based loop closure detection: a frame with visible
junction or T-junction is set to be a keyframe. Two keyframes
are matched if the GIST score is less than 0.025 and the
distance between to keyframe is less than 5m.

11

projected wal labsls best walllabel 1

projected wal labels

12
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Single View Reconstruction

Superiny

position of Walls From Hultiple Frames

13

B. GMU sequences

14
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Semantic Scene Understandning

Fetch bottle of milk from
the fridge

* Need to characterize the entities in the image in term of their semantic
and geometric relationship 1
5

15

Scene Understanding

Fetch bottle of milk from
the fridge

Detecting Fridge and its 3D
1orientation

6

16
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3D Pose Estimation

Definition: Estimating rotation and translation for each object

17

17

Scene Understanding

ch bottle of milk from
“$he fridge

What are the obstacles?
Where are they in 3D world?

18
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Scene Understanding

Fetch bottle of milk from
the fridge

Plan a safe path

19

Semantic Scene Understanding

[ Cabinet

. Microwave
Prop

i Towel

L Box
. Structure

Semantic Labelling

Object Detection, 3D Pose Mapping and Localization

20



22

Classification of Sensors

Proprioceptive sensors
* measure values internally to the system (robot),

* e.g. motor speed, wheel load, heading of the robot, battery
status

Exteroceptive sensors
¢ information from the robots environment

» distances to objects, intensity of the ambient light, unique
features.

Passive sensors
* energy coming for the environment (cameras)
Active sensors
* emit their proper energy and measure the reaction
* better performance, but some influence on environment

25
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Role of Perception in Robotics

Where am I relative to the world?
* sensors: vision, stereo, range sensors, acoustics

 integration: localization/mapping algorithms (e.g. SLAM)
* pose estimation

What is around me?

* sensors: vision, stereo, range sensors, acoustics, sounds,
smell

* integration: collision avoidance/navigation, learning

Jana Kosecka

26

Role of Perception in Robotics

* How can I safely interact with environment (including
people!)?
* sensors: vision, range, haptics (force+tactile)

* integration: navigation, manipulation, control, learning

* How can I solve “new” problems (generalization)?
* sensors: vision, range, haptics, undefined new sensor

* integrate: inference, navigation, manipulation, control,
learning

Jana Kosecka

27
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Visual Perception Topics

Techniques

« Single view geometry
» Feature detection and matching

¢ 3D reconstruction

Applications in Robotics:

¢ range sensing, Obstacle detection, environment interaction
e Mapping, registration, localization, recognition

e Manipulation

30
Image Formation

Pinhole

Frontal

pinhole

X
J. Kosecka, GMU

31
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Pinhole Camera Model

» Image coordinates are nonlinear function of world coordinates
« Relationship between coordinates in the camera frame and sensor plane

2-D coordinates xr = v = i X
= y =7y
Homogeneous coordinates
T fX gf
r — |y | = % fYy [, X — PRE
1 1
0 foojfrooo0]|y
Zly|l=|0 f0||0 100 7
1 0 0 1 O 010 1
Y h'd
32
Image Coordinates
« Relationship between coordinates in the sensor plane and image
x Sy Sp Oxm x
=y |=]|0 sy oy Y metric
1 O 0 1 1 coordinates -7
Linear transformation ~ Ks " -
I T
pixel
coordinates Y
CS482, Jana Kosecka
33
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Camera parameters — Radial Distortion

Nonlinear transformation along the radial direction

z = c+ f(r)(®g—c), r=xg—C|
f(’l‘) = 1-|—a,1r+a2r2—|—a,3r3+a47“4+~'

Distortion correction: make lines straight

Jana Kosecka, CS 685 34
34
Calibration Matrix and Camera Model
« Relationship between coordinates in the world frame and image
e Intrinsic parameters
Pinhole camera Pixel coordinates
Aw:KfI'IOX a:lzKSa:
+ Adding transformation between camera coordinate systems
and world coordinate system
« Extrinsic Parameters
fse fsg 02 ][1 00 0] o f,“’
A/=| 0 fsy o |0 100 {01} 7
0 0 1 0010 1“’
Ax = KfI"IOgX =nNnx
35
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Image of a Point

Homogeneous coordinates of a 3-D point b
X=[X,v,ZwW]T eR* W=1)
Homogeneous coordinates of its 2-D image
z=[x,y,2]L €R3, (2=1)

Projection of a 3-D point to an image plane

Ax = MNX

AER, M=[R,T] e R3*4

A/ =NX

ANER, M= [KR,KT] € R3*4

Jana Kosecka, CS 685

(R> T) \*\\

36

36

Image of a Line

Homogeneous representation of a 3-D line

= +

|41
Va

l’ll V3 b
0

Homogeneous representation of its 2-D image
l=1a,b,c]’ eR3

Projection of a 3-D line to an image plane

Te=1TNX =0

M= [KR,KT] € R3%4
Jana Kosecka, CS 685

L

37
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Plane Fittin

[

Jana Kosecka, CS 685

39

39
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Fitting: Overview

If we know which points belong to the line, how do
we find the “optimal” line parameters?

e Least squares

What if there are outliers?
* Robust fitting, RANSAC

What if there are many lines?
* Voting methods: RANSAC, Hough transform

What if we're not even sure it's a line?
* Model selection

40
Least squares line fitting
. y=mx+b
e Data: (x;, 1), ..., (xp, 1) 1
. Line equation: y.,- = n?x,- +b I (xi;yi)
* Find (m, b) to minimize
E= Z:l:l (y; —mx, _b)r2 !
i x o1 m
v=|i| x-|: i s { }
b
Va x, 1
E= ||Y—XB||2 =(Y-XB)' (Y-XB)=Y"Y-2(XB)"Y +(XB)" (XB)
9E o xTxB-2XTY =0
dB
‘ YT XB = XTy‘ Normal equations. least squares solution to
XB=Y
41
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Problem with “vertical” least squares

e Not rotation-invariant

e Fails completely for vertical lines

42
Total least squares
. . Unit normal:
*Distance between point (x;, y;) and . -
line ax-+by=d (a+b?=1): [ax; + by, — d o (eyy) NH@h)
43
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Total least squares

ax+by=d
*Distance between point (x;, y;) and . ]
line ax+by=d (a>+b2=1): |ax; + by, - d| . Unit normal:
. Lo (Xi, yl) Nﬁ(ar b)
*Find (a, b, d) to minimize the sum of
squared perpendicular distances >
n 2
E=)" (ax,+by,—d)
a4
Total least squares
* Distance between point (x;, y;) and _
line ax-+by=d (a®+b2=1Y: |ax, + by, — d| ax+by=d
* Find (a, b, d) to minimize the sum . Unit normal:
of squared perpendicular distances (x;, v;) N=(a b)
— n _ )2 .
E=Y" (ax,+by,—d)
aE n a n b n - p—
a - Zizl_z(axi +by,—d)=0 d :;Zizlxi +;Zi:1yi =ax+by
_ 2
X=X n-y
n —_ —_ 2 . a T
E=Y" (a(x,~X)+b(y,~ 7)) = : M = (UN)" (UN)
X, =X y,—Y

dE

dN

2UTU)N =0

Solution to (UTU)N = 0, subject to ||N]|>= 1: eigenvector of U'U
associated with the smallest eigenvalue (least squares solution
to homogeneous linear system UN = 0)

45
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Total least squares

X=X 3=y YE-9  D-H0-)
U = : UTU = ., i=1 i=l .
X —X y _y Z('xi_f)(yi_y) Z(y,.—y)z
second moment matrix
46
Total least squares
X=X 3=y Yo -® -0 -
U = . . U'U = i=1 i=1
X —-X y _y Z(xi_f)(yi_y) Z(yi_y)z
n n i=1 i=1
y second moment matrix
S N=(a, b)
GO (5=X%y )
d (x,y) p o °
X
47
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Least squares: Robustness to noise

* Least squares fit to the red points:

“Cia -12 -10 -8 -6 4 -2 0 2 4 ]

50
Least squares: Robustness to noise
 Least squares fit with an outlier:
—n_ % -
Problem: squared error heavily penalizes outliers
51
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Robust estimators
e General approach: find model parameters 6 that minimize

%, p(r;(x.,0)0)
r; (x;, 0) — residual of ith point w.r.t. model parameters 6
p — robust function with scale parameter ¢

The robust function
p behaves like
squared distance for
small values of the
residual v but
saturates for larger
values of v

52
Choosing the scale: Just right
-12+
The effect of the outlier is minimized
53
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Choosing the scale: Too small

[ TR P T R 5 3 ) 0 2 4
The error value is almost the same for every
point and the fit is very poor

54
Choosing the scale: Too large
4|
2L
o
0 2
//,7V1
2
4L
6
-8
-10)
-12+
[ T e T —— 5 p 3 0 2 4
Behaves much the same as least squares
55
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Robust estimation: Details

e Robust fitting is a nonlinear optimization problem
that must be solved iteratively

e Least squares solution can be used for initialization

e Adaptive choice of scale: approx. 1.5 times median
residual (F&P, Sec. 15.5.1)

56

RANSAC

e Robust fitting can deal with a few outliers — what if
we have very many?

e Random sample consensus (RANSAC):
Very general framework for model fitting in the
presence of outliers

e Qutline

* Choose a small subset of points uniformly at
random

* Fit a model to that subset

* Find all remaining points that are “close” to the
model and reject the rest as outliers

* Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting

Vol 24, pp 381-395, 1981.

with Applications to Image Analysis and Automated Cartography. Comm. of the ACM,

57
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http://www.ai.sri.com/pubs/files/836.pdf

Source: R. Raguram

RANSAC for line fitting example

o
.

58

Source: R. Raguram

RANSAC for line fitting example

Least-squares fit

59
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Source: R. Raguram

RANSAC for line fitting example

o
.

1. Randomly select
minimal subset
of points

60

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

61
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Source: R. Raguram

RANSAC for line fitting example

. Randomly select

minimal subset
of points

. Hypothesize a

model

. Compute error

function

62

Source: R. Raguram

RANSAC for line fitting example

. Randomly select

minimal subset
of points

. Hypothesize a

model

. Compute error

function

. Select points

consistent with
model

63
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Source: R. Raguram

RANSAC for line fitting example

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

Select points
consistent with
model

Repeat
hypothesize-and-
verify loop

64

Source: R. Raguram

RANSAC for line fitting example

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

Select points
consistent with
model

Repeat
hypothesize-and-
verify loop

65

65
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Source: R. Raguram

RANSAC for line fitting example

Uncontaminated sample

.. '. .. /.
. o /2/./
) A

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

Select points
consistent with
model

Repeat
hypothesize-and-
verify loop

66

66

Source: R. Raguram

RANSAC for line fitting example

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

Select points
consistent with
model

Repeat
hypothesize-and-
verify loop

67
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RANSAC for line fitting

* Repeat Ntimes:
e Draw s points uniformly at random
e Fit line to these s points

e Find inliers to this line among the remaining points
(i.e., points whose distance from the line is less
than &)

e If there are dor more inliers, accept the line and
refit using all inliers

68
Choosing the parameters
e Initial number of points s
* Typically minimum number needed to fit the
model
e Distance threshold ¢
* Choose tso probability for inlier is p (e.g. 0.95)
« Zero-mean Gaussian noise with std. dev. o: t2=3.8402
e Number of samples NV
* Choose Nso that, with probability p, at least one random
sample is free from outliers (e.g. p=0.99) (outlier ratio: €)
Source: M. Pollefeys
69
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RANSAC pros and cons

e Pros
* Simple and general
* Applicable to many different problems
» Often works well in practice
e Cons
* Lots of parameters to tune

* Doesn't work well for low inlier ratios (too many
iterations,

or can fail completely)

* Can't always get a good initialization
of the model based on the minimum
number of samples

74
Previously
* Camera model
 Stereo matching, triangulation
* Features
 Least Squares Fitting
* RANSAC
* Today
* Camera pose estimation in the world coordinate
frame
* Relative Pose Estimation
Jana Kosecka, CS 685 75
75
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Calibration with a Rig

Use the fact that both 3-D and 2-D coordinates of feature
points on a pre-fabricated object (e.g., a cube) are known.

Jana Kosecka, CS 685 76

76

Calibration with a Rig
» Given 3-D coordinates on known object
M= [KR,KT]X mmp X\x' =NX at ”i
)\ - 7T2
o Eliminate unknown scales 4
xi(ﬂ'g:X) = W{X,
yi(ﬂ§X) = ’/TgX

Xi
Yi
Zi

e Recover projection matrix M = [KR,KT] = [R',T']
min ||[MN%)|2  subject to |52 =1
N = [r11, 721, 731, 712, 722, 732, T13, 723, T33, W14, 724, 734] T
e Factor the into R € SO(3) and  using QR decomposition

e Solve for translation 7 = K177

77

77
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More details
« Direct calibration by recovering and decomposing the projection matrix
j X
xt wi );Z z T M2 M3 T4 v
Aoyt | = | 73 i 2| Yy | =| T T M3 Ty 7
1 4 1 1 T31 T3z 733 T34 1

_muXi+meYi+msZi+ma wor X + meY; + me3Z; + Mo

Ti= =
" w3 X, + Y + s 4 may m31X; + w3aY; + W33 Z; + T34

z; (131X, + 32Y; + M33Z; + M34) = 11X + m12Y; + M13Z; + 714
Yi(m31X; + m32Y; + T33Z; + ma4) = M1 X; + Moo + Moz Z; + Moy

xz(wg ) = 71X,

2 constraints per point
y (71' X) = W%X

X’ia}/'iaZi’laOaO 0 0 xiXia_xi}/za —Z; Zza_ ]
70’0aX'u)/7, A ]- le’H_yZY J

— T
s = [m11, T12, T13, T14, T21, T22, W23, T24, T31, T32, T33, T34] 78

78

More details

e Recover projection matrix M = [KR,KT] = [R',T']
min ||[MN%)|2  subject to ||N%]|2 =1
NS = [r11, 721, ™31, 712, 722, 732, 713, 723, 133, 714, 724, 734] 1
o Collect the constraints from all N points into matrix M (2N x 12)

« Solution eigenvector associated with the smallest eigenvalue M7™ M

» Unstack the solution and decompose into rotation and translation

e Factor the R’ intoR € SO(3) and K using QR decomposition

e Solve for translation 7 = K177

79

79

10/14/21

33



Calibration with a planar pattern

e

T

H = K[r,r,T] €R¥® A |:y’

1

To eliminate unknown depth, multiply both sides by

T H[X,Y, 1T =0.

80

80

Robust technique

(a) correspondences. (b) identified inliers. (c) identified outliers.

88

88
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