Robot Control Basics
CS 685
Control basics

• Use some concepts from control theory to understand and learn how to control robots
• Control Theory – general field studies control and understanding of behavior of dynamical systems (robots, epidemics, biological systems, stock markets etc.)
Control basics

• Basic ingredients
 - state of the system $\vec{x} = [x, y, \theta]$ current position of the robot
 - dynamics behavior of the systems as a function of time
 (description how system state changes as a function of time)
 - system of differential equations $\dot{x} = f(x, u)$

$$\begin{align*}
\dot{x} &= v \cos \theta \\
\dot{y} &= v \sin \theta \\
\dot{\theta} &= \omega
\end{align*}$$

- control input which can affect the behavior $u = [v, \omega]$
- controller which takes some function of the goal, the state
Control basics

• Basic ingredients
 - controller which takes some function of the goal, the state
 - y output, measurement of some aspect of the state
• Feedback control – how to compute the control based on output (state) and the desired objective

\[x_{k+1} = f(x_k, u_k) \]
Simple control strategies

• Moving to a point – go to a point
• Consider a problem of moving to a point \((x,y)\)
• How to control angular and linear velocity of the mobile robot
• Linear velocity – proportional to distance
• Angular velocity – steer towards the goal

• Following a line – steer toward a line
• Angular velocity proportional to the combination distance from the line and also to alignment with the line
Moving to a point

- Differential drive robot – go from the current pose \([x, y, \theta]^T\) to desired point with coordinates \([x^*, y^*]^T\)

\[
\theta^* = \tan^{-1} \frac{y^* - y}{x^* - x}
\]

\[
v = K_v \sqrt{(x^* - x)^2 + (y^* - y)^2}
\]

\[
\omega = K_h (\theta^* - \theta)
\]

Source P. Corke: Robotics, Vision and Control. Springer
Moving to a line

- Equation of a line
- Shortest distance of the robot to the line
- Orientation of the line

\[
\begin{align*}
[x, y, \theta]^T & \quad \theta^* = \tan^{-1} \frac{-a}{b} \\
\omega &= -K_d d + K_h (\theta^* - \theta)
\end{align*}
\]

\[
\begin{align*}
ad + by + c &= 0 \\
d &= \frac{[a, b, c][x, y, 1]^T}{\sqrt{a^2 + b^2}} \\
\alpha_d &= -K_d d \quad K_d > 0 \\
\alpha_h &= K_h (\theta^* - \theta)
\end{align*}
\]
Following a path

- Same as going to the point – now sequence of waypoints \(x(t), y(t) \)

\[
\theta^* = \tan^{-1} \frac{y^* - y}{x^* - x}
\]

\[
e = K_v \sqrt{(x^* - x)^2 + (y^* - y)^2} - d^*
\]

\(d^*\) distance behind the pursuit point

\[
v = K_v e + K_i \int e dt
\]

\[
\omega = K_h (\theta^* - \theta)
\]

Source P. Corke: Robotics, Vision and Control. Springer
Feedback control

- More suitable alternative
- Use state feedback controller
- At each instance of time compute a control law
- Given the current error between current and desired position Δy
Kinematic Position Control

The kinematic of a differential drive mobile robot described in the initial frame \(\{x_I, y_I, \theta\} \) is given by,

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{bmatrix} =
\begin{bmatrix}
\cos \theta & 0 \\
\sin \theta & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
v \\
\omega
\end{bmatrix}
\]

relating the linear velocities in the direction of the \(x_I \) and \(y_I \) of the initial frame.

Let \(\alpha \) denote the angle between the \(x_R \) axis of the robots reference frame and the vector connecting the center of the axle of the wheels with the final position.
Motion Control (kinematic control)

- The objective of a kinematic controller is to follow a trajectory described by its position and/or velocity profiles as function of time.

- Motion control is not straightforward because mobile robots are non-holonomic systems.

- However, it has been studied by various research groups and some adequate solutions for (kinematic) motion control of a mobile robot system are available.

- Most controllers are not considering the dynamics of the system.
Motion Control: Feedback Control

- Set intermediate positions lying on the requested path.
- Given a goal how to compute the control commands for linear and angular velocities to reach the desired configuration.

Problem statement

- Given arbitrary position and orientation of the robot \([x, y, \theta]\)
 how to reach desired goal orientation and position \([x_g, y_g, \theta_g]\)

© R. Siegwart, I. Nourbakhsh
Motion Control: Feedback Control, Problem Statement

- Find a control matrix K, if it exists

 $K = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \end{bmatrix}$

 - with $k_{ij} = k(t, e)$
 - such that the control of $v(t)$ and $\omega(t)$

 $\begin{bmatrix} v(t) \\ \omega(t) \end{bmatrix} = K \cdot e = K \cdot \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$

 - drives the error e to zero.

 $\lim_{t \to \infty} e(t) = 0$
Motion Control:

Kinematic Position Control

• The kinematic of a differential drive mobile robot described in the initial frame \(\{x_I, y_I, \theta_I\} \) is given by,

\[
\begin{bmatrix}
 \dot{x} \\
 \dot{y} \\
 \dot{\theta}
\end{bmatrix}
= \begin{bmatrix}
 \cos \theta & 0 \\
 \sin \theta & 0 \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 v \\
 \omega
\end{bmatrix}
\]

where \(v \) and \(\omega \) are the linear velocities in the direction of the \(x_I \) and \(y_I \) of the initial frame.

Let \(\alpha \) denote the angle between the \(x_R \) axis of the robots reference frame and the vector connecting the center of the axle of the wheels with the final position.
Kinematic Position Control: Coordinates Transformation

Coordinates transformation into polar coordinates with its origin at goal position:

\[\rho = \sqrt{\Delta x^2 + \Delta y^2} \]

\[\alpha = -\theta + \text{atan2}(\Delta y, \Delta x) \]

\[\beta = -\theta - \alpha \]

System description, in the new polar coordinates

\[
\begin{bmatrix}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{bmatrix} =
\begin{bmatrix}
-\cos \alpha & 0 \\
\sin \alpha & -1 \\
-\sin \alpha / \rho & 0
\end{bmatrix}
\begin{bmatrix}
v \\
\omega
\end{bmatrix}
\]

\[
\begin{bmatrix}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{bmatrix} =
\begin{bmatrix}
\cos \alpha & 0 \\
-\sin \alpha / \rho & 1 \\
\sin \alpha / \rho & 0
\end{bmatrix}
\begin{bmatrix}
v \\
\omega
\end{bmatrix}
\]

For \(\alpha \) from \(I_1 = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \)

for \(I_2 = (-\pi, -\pi/2] \cup (\pi/2, \pi] \)
Kinematic Position Control: Remarks

• The coordinates transformation is not defined at $x = y = 0$; as in such a point the determinant of the Jacobian matrix of the transformation is not defined, i.e. it is unbounded.

• For $\alpha \in I_1$ the forward direction of the robot points toward the goal, for $\alpha \in I_2$ it is the backward direction.

• By properly defining the forward direction of the robot at its initial configuration, it is always possible to have $\alpha \in I_1$ at $t = 0$. However this does not mean that α remains in I_1 for all time t.
Kinematic Position Control: The Control Law

• It can be shown, that with
\[\nu = k_\rho \rho \quad \omega = k_\alpha \alpha + k_\beta \beta \]

the feedback controlled system
\[
\begin{bmatrix}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{bmatrix}
= \begin{bmatrix}
-k_\rho \rho \cos \alpha \\
k_\rho \sin \alpha - k_\alpha \alpha - k_\beta \beta \\
-k_\rho \sin \alpha
\end{bmatrix}
\]

• will drive the robot to \((\rho, \alpha, \beta) = (0,0,0)\)

• The control signal \(\nu\) has always constant sign,
 – the direction of movement is kept positive or negative during movement
 – parking maneuver is performed always in the most natural way and without ever inverting its motion.
Question: How to select the constant parameters k’s so as to achieve that the error will go to zero

• Digression – eigenvectors and eigenvalues review
Eigenvalues and Eigenvectors

• Motivated by solution to differential equations

\[A \in \mathbb{R}^{n \times n} \quad \dot{u} = Au \quad A = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} \]

• For square matrices

\[\begin{bmatrix} \dot{v} \\ \dot{w} \end{bmatrix} = A \begin{bmatrix} v \\ w \end{bmatrix} \]

Suppose solution have this form of exponentials

\[v(t) = e^{\lambda t}y \]
\[w(t) = e^{\lambda t}z \]

For scalar ODE’s

Substitute back to the equation

\[\lambda e^{\lambda t}y = 4e^{\lambda t}y - 5e^{\lambda t}z \]
\[\lambda e^{\lambda t}z = 2e^{\lambda t}y - 3e^{\lambda t}z \]

and denote \(x \) as

\[x = \begin{bmatrix} y \\ z \end{bmatrix} \]

then eq. above is

\[\lambda x = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} x \]
Eigenvalues and Eigenvectors

\[\lambda x = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} x \quad \text{Ax} = \lambda x \]

Solve the equation:

\[(A - \lambda I)x = 0 \] (1)

\(x \) – is in the null space of \((A - \lambda I)\)

\(\lambda \) is chosen such that \((A - \lambda I)\) has a null space

Computation of eigenvalues and eigenvectors (for dim 2,3)
1. Compute determinant
2. Find roots (eigenvalues) of the polynomial such that determinant = 0
3. For each eigenvalue solve the equation (1)

For larger matrices – alternative ways of computation
Eigenvalues and Eigenvectors

For the previous example

\[\lambda_1 = -1, \ x_1 = [1, 1]^T \quad \lambda_2 = -2, \ x_2 = [5, 2]^T \]

We will get special solutions to ODE

\[\dot{u} = Au \]

\[A = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} \quad u = e^{\lambda_1 t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad u = e^{\lambda_2 t} \begin{bmatrix} 5 \\ 2 \end{bmatrix} \]

Their linear combination is also a solution (due to the linearity of \[\dot{u} = Au \])

\[u = c_1 e^{\lambda_1 t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{\lambda_1 t} \begin{bmatrix} 5 \\ 2 \end{bmatrix} \]

In the context of diff. equations – special meaning

Any solution can be expressed as linear combination

Individual solutions correspond to modes
Eigenvalues and Eigenvectors

\[A \mathbf{x} = \lambda \mathbf{x} \]

Only special vectors are eigenvectors
- such vectors whose direction will not be changed by the transformation A (only scale)
- they correspond to normal modes of the system act independently

Examples

\[
A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}
\]

2, 3

\[
\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

Whatever A does to an arbitrary vector is fully determined by its eigenvalues and eigenvectors

\[A \mathbf{x} = 2\lambda_1 \mathbf{v}_1 + 5\lambda_2 \mathbf{v}_2 \]
Previously - Eigenvalues and Eigenvectors

For the previous example

\[\lambda_1 = -1, x_1 = [1, 1]^T \quad \lambda_2 = -2, x_2 = [5, 2]^T \]

We will get special solutions to ODE \(\dot{u} = Au \)

\[
A = \begin{bmatrix}
4 & -5 \\
2 & -3
\end{bmatrix} \quad u = e^{\lambda_1 t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad u = e^{\lambda_2 t} \begin{bmatrix} 5 \\ 2 \end{bmatrix}
\]

The linear combination is also a solution (due to the linearity of \(\dot{u} = Au \))

\[
u = c_1 e^{\lambda_1 t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{\lambda_1 t} \begin{bmatrix} 5 \\ 2 \end{bmatrix}
\]

In the context of diff. equations – special meaning
Any solution can be expressed as linear combination
Individual solutions correspond to modes
Eigenvalues of linear system

• Given linear system of differential equations

\[\dot{x} = Ax \]

• For 2 dimensional system (A is 2 x 2), A has two eigenvalues

• Define \(\Delta = \lambda_1 \lambda_2 \) and \(\tau = \lambda_1 + \lambda_2 \)

• if \(\Delta < 0 \) saddle node

• if \(\Delta > 0 \) we have two cases
 1. \(\tau > 0 \) eigenvalues positive
 2. \(\tau < 0 \) eigenvalues negative: stable nodes of the system
Kinematic Position Control: Resulting Path
Linearization

• But our system is not linear, e.g. cannot be written in the form

\[\dot{x} = Ax \]
Some terminology

• We have derived kinematics equations of the robot

\[
\begin{align*}
\dot{x} & = v \cos \theta \\
\dot{y} & = v \sin \theta \\
\dot{\theta} & = \omega
\end{align*}
\]

• Non-linear differential equation \(\dot{x} = f(x,u) \)

• In our case

\[
\begin{align*}
\dot{x} & = f_1(x,y,\theta,v,\omega) \\
\dot{y} & = f_2(x,y,\theta,v,\omega) \\
\dot{\theta} & = f_3(x,y,\theta,v,\omega)
\end{align*}
\]
Jacobian Matrix

• Suppose you have two dim function

\[
f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix}
\]

• Gradient operator

\[
\nabla_x = \begin{bmatrix} \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \cdots & \frac{\partial}{\partial x_n} \end{bmatrix}^T
\]

• Jacobian is defined as \(F_x = J_F \)

\[
F_x = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x_1} & \cdots & \frac{\partial}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_2}{\partial x_n} \end{bmatrix}
\]

• Linearization of a function

\[
F(x) = F(x_0) + J_F(x_0) dx
\]

• Linearization of system of diff. equations

\[
\dot{x} = J_F(x_0) dx + F(x_0)
\]
Kinematic Position Control: Stability Issue

- Continuous linear time-invariant system is exponentially stable if and only if the system has eigenvalues (i.e. poles of input-to-output systems) with strictly negative real parts.

- Exponential Stability is a form of asymptotic stability.

- In practice the system will not “blow up” give unbounded output, when given an finite input and non-zero initial condition.
Kinematic Position Control: Stability Issue

- It can further be shown, that the closed loop control system is locally exponentially stable if

\[k_\rho > 0 \ ; \ k_\beta < 0 \ ; \ k_\alpha - k_\rho > 0 \]

- Proof: linearize around equilibrium

for small \(x \rightarrow \cos x = 1, \sin x = x \)

\[
\begin{bmatrix}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{bmatrix} =
\begin{bmatrix}
-k_\rho & 0 & 0 \\
0 & -(k_\alpha - k_\rho) & -k_\beta \\
0 & -k_\rho & 0
\end{bmatrix}
\begin{bmatrix}
\rho \\
\alpha \\
\beta
\end{bmatrix}
\]

\[A =
\begin{bmatrix}
-k_\rho & 0 & 0 \\
0 & -(k_\alpha - k_\rho) & -k_\beta \\
0 & -k_\rho & 0
\end{bmatrix}
\]

- and the characteristic polynomial of the matrix \(A \) of all roots have negative real parts.

\[
(\lambda + k_\rho)(\lambda^2 + \lambda(k_\alpha - k_\rho) - k_\rho k_\beta)
\]
Quadcopters model

- Upward thrust $T_i = b\omega_i^2$ moving up in the negative z dir.
- Lift const. b depends on air density, blade radius and chord length
Quadcopters

• Translational dynamics (Newton’s law – includes mass/acceleration/forces) (Gravity – Total thrust (rotated to the world frame))

\[m \ddot{v} = \begin{bmatrix} 0 \\ 0 \\ mg \end{bmatrix} - R_B^0 \begin{bmatrix} 0 \\ 0 \\ T \end{bmatrix}, \quad T = \sum_{i=1..4} T_i \]

• Rotations are generated by pairwise differences in rotor thrusts (\(d \) distance from the center)

• Rolling and pitching torques around \(x \) and \(y \)

• Torque in \(z \) – yaw torque

\[Q_i = k \omega_i^2 \quad \text{Torque applied by the motor as opposed to Aerodynamic drag} \]

\[\tau_x = dT_4 - dT_2 \]

\[\tau_x = db(\omega_4^2 - \omega_2^2) \]

\[\tau_y = db(\omega_1^2 - \omega_3^2) \]
Quadcopter dynamics

- **Rotational Dynamics**, rot. acceleration in the airframe, Euler’s eq. of motion
 \[
 J\dot{\omega} = -\omega \times J\omega + \Gamma, \quad \Gamma = [\tau_x, \tau_y, \tau_z]^T
 \]

- Where \(J \) is 3x3 inertia matrix
- Forces and torques acting of the airframe obtained integrating forward the eq. above and Newton’s second law (prev. slide)

\[
\begin{bmatrix}
 T \\
 \tau_x \\
 \tau_y \\
 \tau_z
\end{bmatrix} =
\begin{bmatrix}
 -b & -b & -b & -b \\
 0 & -db & 0 & db \\
 db & 0 & -db & 0 \\
 k & -k & k & -k
\end{bmatrix}
\begin{bmatrix}
 \omega_1^2 \\
 \omega_2^2 \\
 \omega_3^2 \\
 \omega_4^2
\end{bmatrix} = A^{-1}
\begin{bmatrix}
 T \\
 \tau_x \\
 \tau_y \\
 \tau_z
\end{bmatrix}
\]

- The goal of control is then derive proper thrust and torque to achieve desired goal – compute the rotor speeds
- Substitute these to translational and rotational dynamics and get forward dynamics equations of quadropter
Inertia Matrix

• Rotational Inertia of a body in 3D is represented by a 3x3 symmetric matrix J

$$J = \begin{bmatrix}
J_{xx} & J_{xy} & J_{xz} \\
J_{xy} & J_{yy} & J_{yz} \\
J_{xz} & J_{yz} & J_{zz}
\end{bmatrix}$$

• Diagonal elements are moments of inertia and off-diagonal are products of inertia

• Inertia matrix is a constant and depends on the mass and the shape of the body