Previously

• Representation of rigid body motion
• Two different interpretations
 - as transformations between different coord. frames
 - as operators acting on a rigid body
• Representation in terms of homogeneous coordinates
• Composition of rigid body motions
• Inverse of rigid body motion
Rigid Body Transform

Translation only t_{AB} is the origin of the frame B expressed in the Frame A

$$X_A = X_B + t_{AB}$$

Composite transformation:

$$X_A = R_{AB}X_B + t_{AB}$$

Transformation: $T = (R_{AB}, t_{AB})$

Homogeneous coordinates

$$X_A = \begin{bmatrix} R_{AB} & t_{AB} \\ 0 & 1 \end{bmatrix} X_B$$

The points from frame A to frame B are transformed by the inverse of $T = (R_{AB}, t_{AB})$ (see example next slide)

Kinematic Chains

- We will focus on mobile robots (brief digression)
- In general robotics - study of multiple rigid bodies lined together (e.g. robot manipulator)
- Kinematics – study of position, orientation, velocity, acceleration regardless of the forces
- Simple examples of kinematic model of robot manipulator and mobile robot
- Components – links, connected by joints
Various joints

- In general rigid bodies can be connected by various articulated joints

![Joints Diagram]

- Revolute: 1 Degree of Freedom
- Prismatic: 1 Degree of Freedom
- Screw: 1 Degree of Freedom
- Cylindrical: 2 Degrees of Freedom
- Spherical: 3 Degrees of Freedom
- Planar: 3 Degrees of Freedom

Kinematic Chains

- Given θ_1, θ_2 determine what is X,Y
- Given θ_1, θ_2 determine what is \dot{X},\dot{Y}
- We can control θ_1, θ_2 we want to understand how it affects position of the tool frame
- How does the position of the tool frame change as the manipulator articulates
- Actuators change the joint angles
Forward kinematics for a 2D arm

- Find position of the end effector as a function of the joint angles
 \[f(\theta_1, \theta_2) = \begin{bmatrix} X \\ Y \end{bmatrix} \]

- Blackboard example

Kinematic Chains in 3D

- Additional joints possible (spherical, screw)
- Additional offset parameters, more complicated
- Same idea: set up frame with each link
- Define relationship between links (two rules):
 - use Z-axis as an axis of a revolute joint
 - connect two axes shortest distance

In 2D we need only link length and joint angle to specify the transform
In 3D \(d_i, \theta_i, a_{i-1}, \alpha_{i-1} \) Denavit-Hartenberg parameters (see LaValle (chapter [3]))
Inverse kinematics

- In order to accomplish tasks, we need to know given some coordinates in the tool frame, how to compute the joint angles
- Blackboard example (see handout)
- Use trigonometry to compute θ_1, θ_2
given $[X, Y]$ of the end effector
- Solution may not be unique

Jacobians

- Kinematics enables us study what space is reachable
- Given reachable points in space, how well can be motion of an arm controlled near these points
- We would like to establish relationship between velocities in joint space and velocities in end-effector space
- Given kinematics equations for two link arm
 \[
 x = f_x(\theta_1, \theta_2) \\
 y = f_y(\theta_1, \theta_2)
 \]
- The relationship between velocities is
 - manipulator Jacobian $J(\theta_1, \theta_2)$
 \[
 \begin{bmatrix}
 \dot{x} \\
 \dot{y}
 \end{bmatrix} = \begin{bmatrix}
 \frac{\partial x}{\partial \theta_1} & \frac{\partial x}{\partial \theta_2} \\
 \frac{\partial y}{\partial \theta_1} & \frac{\partial y}{\partial \theta_2}
 \end{bmatrix} \begin{bmatrix}
 \dot{\theta}_1 \\
 \dot{\theta}_2
 \end{bmatrix} = J(\theta_1, \theta_2) \begin{bmatrix}
 \dot{\theta}_1 \\
 \dot{\theta}_2
 \end{bmatrix}
 \]
Manipulator Jacobian

- Determinant of the Jacobian
- If determinant is 0, there is a singularity
- Manipulator kinematics: position of end effector can be determined knowing the joint angles
- Actuators: motors that drive the joint angles
- Motors can move the joint angles to achieve certain position
- Mobile robot actuators: motors which drive the wheels
- Configuration of a wheel does not reveal the pose of the robot, history is important

<table>
<thead>
<tr>
<th>Type of motion</th>
<th>Resistance to motion</th>
<th>Basic kinematics of motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crawl</td>
<td>Friction forces</td>
<td>Longitudinal vibration</td>
</tr>
<tr>
<td>Slicing</td>
<td>Friction forces</td>
<td>Transverse vibration</td>
</tr>
<tr>
<td>Running</td>
<td>Loss of kinetic energy</td>
<td>Oscillatory movement of a multi-link pendulum</td>
</tr>
<tr>
<td>Jumping</td>
<td>Loss of kinetic energy</td>
<td>Oscillatory movement of a multi-link pendulum</td>
</tr>
<tr>
<td>Walking</td>
<td>Gravitational forces</td>
<td>Rolling of a polygon (see figure 2.2)</td>
</tr>
</tbody>
</table>
Locomotion of wheeled robots

• Power the motion from place to place
• Differential Drive (two powered wheels)
• Car Drive (Ackerman Steering)

we also allow wheels to rotate around the z axis

Locomotion of wheeled robots

• Differential Drive (two powered wheels)

• Each wheel has its own motor
• Two wheels can move at different speeds
Differential Drive

- Controls: Instantaneous linear velocity of each wheel \(v_l, v_r \)
- Left and right wheel can move at different speed
- Robots coordinate system attached to the robot (heading in the x-direction)
- Parameters, distance between the wheels \(l \)

\[v_r = \dot{\psi} r \]

\(r \) – wheel radius

Mobile robot kinematics

- Depends on the type of robot
- Position and type of the wheels

Two types of wheels
a) Standard – rotation around (motorized) wheel axle and the contact point
b) Castor wheel – rotation around wheel axes, contact point and castor axle
c) Swedish wheels
d) Ball wheels
Mobile robot kinematics

- Two wheels, with radius r
- Point P centered between two wheels is the origin of the robot frame
- Distance between the wheels l

![Diagram of mobile robot kinematics]

Differential Drive

- Controls: Instantaneous linear velocity of each wheel v_l, v_r
- Motion of the robot
- Turn in place $v_r = -v_l \rightarrow R = 0$
- Go straight $v_r = v_l \rightarrow \omega = 0$

![Diagram of differential drive]
Differential Drive

- Turn in place \(v_r = -v_l \rightarrow R = 0 \)
- Go straight \(v_r = v_l \rightarrow \omega = 0 \)
- More general motion, turning and moving forward
- There must be a point that lies on the wheel axis that the robot rotates around

\[v_r = -v_l \rightarrow R = 0 \]
\[v_r = v_l \rightarrow \omega = 0 \]

Instantaneous Center of Curvature

- When robot moves on a curve at each instance there is a instantaneous center of curvature
Differential Drive

Instantaneous linear velocity of each wheel v_l, v_r

$$\omega(R + l/2) = v_r$$
$$\omega(R - l/2) = v_l$$

Is the angular velocity of the robot's body frame around ICC

$$\omega = \frac{d\theta}{dt} = \frac{V}{R}$$

Forward velocity of the wheel of radius r as it turns with angular rate ψ

$$v_r = \psi r$$

$$ICC = [x - R \sin \theta, y + R \cos \theta]$$

Angular velocity

Differential Drive

Instantaneous linear velocity of each wheel v_l, v_r

- Angular velocity are related via R radius of the curve (subtract two equations for v_l, v_r)
- Linear velocity (add two equations for v_l, v_r)

$$\omega(R + l/2) = v_r$$
$$\omega(R - l/2) = v_l$$

$$R = \frac{l (v_r + v_l)}{2 (v_r - v_l)}$$

$$\omega = \frac{v_r - v_l}{l}$$

$$v = \frac{v_r + v_l}{2}$$

Angular velocity

Linear velocity

$$\omega = \frac{d\theta}{dt} = \frac{V}{R}$$

$$v$$
Differential Drive: Intuition

- When both wheels turn with the same speed robot goes straight \(v_r = v_l \)
- When one wheel turns faster then the other robot turns
- When the wheels turn in opposite direction the robot turns in place \(v_r = -v_l \)
- We can solve for \(\omega \) rate of rotation around ICC two special cases
 - Turn in place \(v_r = v_l \rightarrow \omega = 0 \)
 - Go straight \(v_r = -v_l \rightarrow R = 0 \)

Differential Drive

- Linear and angular velocities in the robot body frame

\[
\begin{align*}
\omega &= \frac{v_r - v_l}{l} \\
v &= \frac{v_r + v_l}{2} \\
R &= \frac{l}{2} (v_l + v_r) \\
\omega &= \frac{1}{2} (v_r + v_l) \\
v &= \begin{bmatrix} v_{x,R} \\ v_{y,R} \\ \omega \end{bmatrix}
\end{align*}
\]
Representing Robot Position

• Previously the velocities were expressed in the robots coordinate frame
• Representing to robot within an arbitrary initial frame
 – Initial frame: \(\{X_I, Y_I\} \)
 – Robot frame: \(\{X_R, Y_R\} \)
 – Robot pose: \(\xi_I = [x, y, \theta]^T \)
 – Mapping between the two frames
 \[
 R(\theta) = \begin{bmatrix}
 \cos\theta & \sin\theta & x \\
 -\sin\theta & \cos\theta & y \\
 0 & 0 & 1
 \end{bmatrix}
 \]
 – Example: Robot aligned with \(Y_I \)
Forward kinematics

- Given a robot at some pose and moving at some angular and linear velocity ω, v during time period t, determine the pose of the robot
- Given some trajectory $x(t), y(t), \theta(t)$ functions of time, so are $\omega(t), v(t)$
- We cannot simply obtain forward kinematics
- We need to use the whole history

\[
\begin{align*}
&\begin{bmatrix}
 v_x \\
 v_y
\end{bmatrix} = \begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix}
 v_x \\
 v_y
\end{bmatrix} \\
&\dot{\theta} = \omega
\end{align*}
\]

Representing Robot Position

- Representing to robot within an arbitrary initial frame
 - Initial frame: $\{X_I, Y_I\}$
 - Robot frame: $\{X_R, Y_R\}$
 - Robot pose: $\xi = [x, y, \theta]^T$
 - We control v, ω in the robot frame
 - Differential robot drive instantaneously moves along x axis
 $v = [v_x, v_y]^T = [v_x, 0]^T$
 - Velocities in the world frame are
 \[
 \begin{bmatrix}
 \dot{x} \\
 \dot{y}
 \end{bmatrix} = \begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
 \end{bmatrix} \begin{bmatrix}
 v_x \\
 v_y
 \end{bmatrix}
 \]
 - Relates velocities in world frame to robot frame
Robots motion

- Velocities in the world frame are
 \[
 \begin{align*}
 \dot{x} &= v \cos \theta \\
 \dot{y} &= v \sin \theta \\
 \dot{\theta} &= \omega
 \end{align*}
 \]

- With the following controls
 \[
 \begin{align*}
 \omega &= \frac{v_r - v_l}{l} \\
 v &= \frac{v_r + v_l}{2}
 \end{align*}
 \]

Differential Drive: Forward Kinematics

- To compute the trajectory we need to integrate the equations

 \[
 \begin{align*}
 x(t) &= \int_0^t v(t') \cos[\theta(t')] \, dt' \\
 y(t) &= \int_0^t v(t') \sin[\theta(t')] \, dt' \\
 \theta(t) &= \int_0^t \omega(t') \, dt'
 \end{align*}
 \]

\[
\begin{bmatrix}
 x' \\
 y' \\
 \theta'
\end{bmatrix} =
\begin{bmatrix}
 \cos(\omega \delta t) & -\sin(\omega \delta t) & 0 \\
 \sin(\omega \delta t) & \cos(\omega \delta t) & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x - \text{ICC}_x \\
 y - \text{ICC}_y \\
 \theta + \omega \delta t
\end{bmatrix} +
\begin{bmatrix}
 \text{ICC}_x \\
 \text{ICC}_y \\
 \omega \delta t
\end{bmatrix}
\]
Differential Drive: Forward Kinematics

To compute the trajectory we need to integrate the equations

\[x(t) = \int_{0}^{t} v(t') \cos[\theta(t')] dt' \]
\[y(t) = \int_{0}^{t} v(t') \sin[\theta(t')] dt' \]
\[\theta(t) = \int_{0}^{t} \omega(t') dt' \]
Differential Drive

- Integral cannot be solved analytically
- $\omega(t), v(t)$ are functions of time
- Option 1: consider special cases of straight line motion and rotation only
- Option 2: simulate the differential equation (see notes)

Unicycle

- Another commonly used model for mobile robots
- Could be viewed as abstract version of differential drive
- Parameters: wheel radius, pedaling velocity, linear velocity, angular velocity controlled directly

- Linear and angular velocity can be controlled directly
Robot’s Motion

• Velocities in the world frame are (same as diff. drive)
 \[\dot{x} = v \cos \theta \]
 \[\dot{y} = v \sin \theta \]
 \[\dot{\theta} = \omega \]

• Expect linear and angular velocities can be controlled directly

Other models

• Car kinematics model (Ackerman steering)
 • Steering angle, forward speed
 \[\dot{x} = v_x \cos \theta \]
 \[\dot{y} = v_x \sin \theta \]
 \[\dot{\theta} = \frac{\tan \phi}{L} v_x \]

• Tractor-trailer model

• Ingredients: how to characterize the pose, velocity
• What are the parameters and control inputs
• See: http://planning.cs.uiuc.edu/node657.html for additional detailed derivations
Mobile Robot Kinematic Models

• Manipulator case – given joint angles, we can always tell where the end effector is
• Mobile robot basis – given wheel positions we cannot tell where the robot is
• We have to remember the history how it got there
• Need to find relationship between velocities and changes in pose
• Presented on blackboard (see handout)
• How is the wheel velocity affecting velocity of the chassis

• Dubins car: inputs {0, 1}
• Reeds Shepp {-1,1,0}
• Small time locally controllable