Probabilistic Robotics

SLAM
The SLAM Problem

SLAM is the process by which a robot builds a map of the environment and, at the same time, uses this map to *compute its location*

- **Localization**: inferring location given a map
- **Mapping**: inferring a map given a location
- **SLAM**: learning a map and locating the robot simultaneously
The SLAM Problem

- SLAM is a **chicken-or-egg problem**:
 → A map is needed for localizing a robot
 → A pose estimate is needed to build a map

- Thus, SLAM is (regarded as) a **hard problem** in robotics
The SLAM Problem

• SLAM is considered one of the most fundamental problems for robots to become truly autonomous

• A variety of different approaches to address the SLAM problem have been presented

• Probabilistic methods rule

• History of SLAM dates back to the mid-eighties (stone-age of mobile robotics)
The SLAM Problem

Given:

- The robot’s controls
 \[U_{0:k} = \{u_1, u_2, \cdots, u_k \} \]
- Relative observations
 \[Z_{0:k} = \{z_1, z_2, \cdots, z_k \} \]

Wanted:

- Map of features
 \[m = \{m_1, m_2, \cdots, m_n \} \]
- Path of the robot
 \[X_{0:k} = \{x_0, x_1, \cdots, x_k \} \]
Structure of the Landmark-based SLAM-Problem
SLAM Applications

Indoors

Space

Undersea

Underground
Representations

• Grid maps or scans

 [Lu & Milios, 97; Gutmann, 98; Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

• Landmark-based

 [Leonard et al., 98; Castelanos et al., 99; Dissanayake et al., 2001; Montemerlo et al., 2002;…]
Why is SLAM a hard problem?

SLAM: robot path and map are both unknown

Robot path error correlates errors in the map
Why is SLAM a hard problem?

- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations
SLAM: Simultaneous Localization and Mapping

- Full SLAM: Estimates entire path and map!
 \[p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) \]

- Online SLAM: Integrations (marginalization) typically done one at a time
 \[p(x_t, m \mid z_{1:t}, u_{1:t}) = \int \int \ldots \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) \, dx_1 dx_2 \ldots dx_{t-1} \]
 Estimates most recent pose and map!
Graphical Model of Full SLAM:

\[p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) \]
Graphical Model of Online SLAM:

\[
p(x_t, m \mid z_{1:t}, u_{1:t}) = \int \cdots \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) \, dx_1 \, dx_2 \cdots dx_{t-1}
\]
Graphical Model: Models

\[x_k = f(x_{k-1}, u_k) \]

"Motion model"

\[z_k = h(x_k, m) \]

"Observation model"
Techniques for Generating Consistent Maps

- Scan matching
- EKF SLAM
- Fast-SLAM
- Probabilistic mapping with a single map and a posterior about poses
- Mapping + Localization
- Graph-SLAM, SEIFs
Scan Matching

Maximize the likelihood of the i-th pose and map relative to the (i-1)-th pose and map.

$$\hat{x}_t = \arg\max_{x_t} \left\{ p(z_t \mid x_t, \hat{m}^{[t-1]}) \cdot p(x_t \mid u_{t-1}, \hat{x}_{t-1}) \right\}$$

Calculate the map $\hat{m}^{[t]}$ according to “mapping with known poses” based on the poses and observations.
Kalman Filter Algorithm

1. Algorithm \texttt{Kalman_filter}(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t):

2. Prediction:

3. \ \ \ \ \ \ \ \mu_t = A_t \mu_{t-1} + B_t u_t

4. \ \ \ \ \ \ \ \Sigma_t = A_t \Sigma_{t-1} A_t^T + R_t

5. Correction:

6. \ \ \ \ \ \ \ \ K_t = \Sigma_t C_t^T (C_t \Sigma_t C_t^T + Q_t)^{-1}

7. \ \ \ \ \ \ \ \ \mu_t = \mu_t + K_t (z_t - C_t \mu_t)

8. \ \ \ \ \ \ \ \ \Sigma_t = (I - K_t C_t) \Sigma_t

9. Return \ \mu_t, \ \Sigma_t
Extended Kalman Filter

• Previously Extended Kalman Filter line features detected from range data

• Now review extended Kalman Filter for landmark model

• Digression – (with slightly different notation)
Kalman Filter Components
(also known as: Way Too Many Variables...)

Linear discrete time dynamic system (motion model)

\[x_{t+1} = F_t x_t + B_t u_t + G_t w_t \]

Measurement equation (sensor model)

\[z_{t+1} = H_{t+1} x_{t+1} + n_{t+1} \]

State transition function
Control input function
Process noise function

Sensor reading function
Sensor noise function with covariance R

State transition function
Control input function
Noise input function

Note: Write these down!!!
At last! The Kalman Filter...

Propagation (motion model):

\[
\hat{x}_{t+1/t} = F_t \hat{x}_{t/t} + B_t u_t
\]
\[
P_{t+1/t} = F_t P_{t/t} F_t^T + G_t Q_t G_t^T
\]

Update (sensor model):

\[
\hat{z}_{t+1} = H_{t+1} \hat{x}_{t+1/t}
\]
\[
r_{t+1} = z_{t+1} - \hat{z}_{t+1}
\]
\[
S_{t+1} = H_{t+1} P_{t+1/t} H_{t+1}^T + R_{t+1}
\]
\[
K_{t+1} = P_{t+1/t} H_{t+1}^T S_{t+1}^{-1}
\]
\[
\hat{x}_{t+1/t+1} = \hat{x}_{t+1/t} + K_{t+1} r_{t+1}
\]
\[
P_{t+1/t+1} = P_{t+1/t} - P_{t+1/t} H_{t+1}^T S_{t+1}^{-1} H_{t+1} P_{t+1/t}
\]
In words ...

Propagation (motion model):

\[
\hat{x}_{t+1/t} = F_t \hat{x}_{t/t} + B_t u_t
\]
\[
P_{t+1/t} = F_t P_{t/t} F_t^T + G_t Q_t G_t^T
\]

- State estimate is updated from system dynamics
- Uncertainty estimate GROWS

Update (sensor model):

\[
\hat{z}_{t+1} = H_{t+1} \hat{x}_{t+1/t}
\]
\[
r_{t+1} = z_{t+1} - \hat{z}_{t+1}
\]
\[
S_{t+1} = H_{t+1} P_{t+1/t} H_{t+1}^T + R_{t+1}
\]
\[
K_{t+1} = P_{t+1/t} H_{t+1}^T S_{t+1}^{-1}
\]
\[
\hat{x}_{t+1/t+1} = \hat{x}_{t+1/t} + K_{t+1} r_{t+1}
\]
\[
P_{t+1/t+1} = P_{t+1/t} - P_{t+1/t} H_{t+1}^T S_{t+1}^{-1} H_{t+1} P_{t+1/t}
\]

- Compute expected value of sensor reading
- Compute the difference between expected and “true”
- Compute covariance of sensor reading
- Compute the Kalman Gain (how much to correct est.)
- Multiply residual times gain to correct state estimate
- Uncertainty estimate SHRINKS
Linearized Motion Model for a Robot

From a robot-centric perspective, the velocities look like this:

\[
\begin{align*}
\dot{x}_t &= V_t \\
\dot{y}_t &= 0 \\
\dot{\phi}_t &= \omega_t
\end{align*}
\]

From the global perspective, the velocities look like this:

\[
\begin{align*}
\dot{x}_t &= V_t \cos \phi_t \\
\dot{y}_t &= V_t \sin \phi_t \\
\dot{\phi}_t &= \omega_t
\end{align*}
\]

Problem! We don’t know linear and rotational velocity errors. The state estimate will rapidly diverge if this is the only source of information!

The discrete time state estimate (including noise) looks like this:

\[
\begin{align*}
\hat{x}_{t+1} &= \hat{x}_t + (V_t + w_{V_t}) \delta t \cos \hat{\phi}_t \\
\hat{y}_{t+1} &= \hat{y}_t + (V_t + w_{V_t}) \delta t \sin \hat{\phi}_t \\
\hat{\phi}_{t+1} &= \hat{\phi}_t + (\omega_t + w_{\omega_t}) \delta t
\end{align*}
\]
Linearized Motion Model for a Robot

Now, we have to compute the covariance matrix Propagation equations.

The indirect Kalman filter derives the pose equations from the estimated error:

\[x_{t+1} - \hat{x}_{t+1} = \tilde{x}_{t+1} \]
\[y_{t+1} - \hat{y}_{t+1} = \tilde{y}_{t+1} \]
\[\phi_{t+1} - \hat{\phi}_{t+1} = \tilde{\phi}_{t+1} \]

In order to linearize the system, the following small-angle assumptions are made:

\[\cos \tilde{\phi} \approx 1 \]
\[\sin \tilde{\phi} \approx \tilde{\phi} \]
Linearized Motion Model for a Robot

From the error-state propagation equation, we can obtain the State propagation and noise input functions F and G:

\[
\begin{bmatrix}
\tilde{x}_{t+1} \\
\tilde{y}_{t+1} \\
\tilde{\phi}_{t+1}
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & -V_m \delta t \sin \hat{\phi} \\
0 & 1 & V_m \delta t \cos \hat{\phi} \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\tilde{x}_t \\
\tilde{y}_t \\
\tilde{\phi}_t
\end{bmatrix}
+
\begin{bmatrix}
-\delta t \cos \phi_R & 0 \\
-\delta t \sin \phi_R & 0 \\
0 & -\delta t
\end{bmatrix}
\begin{bmatrix}
w_{V_t} \\
w_{\omega_t}
\end{bmatrix}
\]

\[
\tilde{X}_{t+1} = F_t \tilde{X}_t + G_t W_t
\]

From these values, we can easily compute the standard covariance propagation equation:

\[
P_{t+1/t} = F_t P_{t/t} F_t^T + G_t Q_t G_t^T
\]
Sensor Model for a Robot with a Perfect Map

From the robot, the measurement looks like this:

\[z_{t+1} = \begin{bmatrix} x_{L_{t+1}} \\ y_{L_{t+1}} \\ \phi_{L_{t+1}} \end{bmatrix} + \begin{bmatrix} n_x \\ n_y \\ n_\phi \end{bmatrix} \]

From a global perspective, the measurement looks like:

\[
\begin{bmatrix}
\cos \phi_{t+1} & -\sin \phi_{t+1} & 0 \\
\sin \phi_{t+1} & \cos \phi_{t+1} & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_{L_{t+1}} - x_{t+1} \\
y_{L_{t+1}} - y_{t+1} \\
\phi_{L_{t+1}} - \phi_{t+1}
\end{bmatrix} +
\begin{bmatrix}
n_x \\
n_y \\
n_\phi
\end{bmatrix}
\]

The measurement equation is nonlinear and must also be linearized!
Sensor Model for a Robot with a Perfect Map

Now, we have to compute the linearized sensor function.

Once again, we make use of the indirect Kalman filter where the error in the reading must be estimated.

In order to linearize the system, the following small-angle assumptions are made:

\[
\cos \tilde{\phi} \equiv 1 \\
\sin \tilde{\phi} \equiv \tilde{\phi}
\]

The final expression for the error in the sensor reading is:

\[
\begin{bmatrix}
\tilde{x}_{t+1} \\
\tilde{y}_{t+1} \\
\tilde{\phi}_{t+1}
\end{bmatrix} =
\begin{bmatrix}
-\cos \hat{\phi}_{t+1} & -\sin \hat{\phi}_{t+1} & -\sin \hat{\phi}_{t+1} (x_L - \hat{x}_{t+1}) + \cos \hat{\phi}_t (y_L - \hat{y}_{t+1}) \\
\sin \hat{\phi}_{t+1} & -\cos \hat{\phi}_{t+1} & -\cos \hat{\phi}_{t+1} (x_L - \hat{x}_{t+1}) - \sin \hat{\phi}_t (y_L - \hat{y}_{t+1}) \\
0 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
\hat{x}_{t+1} \\
\hat{y}_{t+1} \\
\hat{\phi}_{t+1}
\end{bmatrix} +
\begin{bmatrix}
n_x \\
n_y \\
n_\phi
\end{bmatrix}
\]
• end of digression
EKF SLAM: State representation

• Localization

3x1 pose vector
\[x_k = \begin{bmatrix} x_k \\ y_k \\ \theta_k \end{bmatrix} \]
3x3 cov. matrix
\[C_k = \begin{bmatrix} \sigma_x^2 & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{yx} & \sigma_y^2 & \sigma_{y\theta} \\ \sigma_{\theta x} & \sigma_{\theta y} & \sigma_{\theta}^2 \end{bmatrix} \]

• SLAM

Landmarks are **simply added** to the state.
Growing state vector and covariance matrix!

\[x_k = \begin{bmatrix} x_R \\ m_1 \\ \vdots \\ m_n \end{bmatrix} \]
\[C_k = \begin{bmatrix} C_R & C_{RM_1} & C_{RM_2} & \ldots & C_{RM_n} \\ C_{M_1R} & C_{M_1} & \ldots & \ldots & \ldots \\ C_{M_2R} & C_{M_2M_1} & C_{M_2} & \ldots & \ldots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{M_nR} & C_{M_nM_1} & C_{M_nM_2} & \ldots & C_{M_n} \end{bmatrix} \]
(E)KF-SLAM

- Map with N landmarks: (3+2N)-dimensional Gaussian

\[
\text{Bel}(x_t, m_t) = \begin{pmatrix}
 x \\ y \\ \theta \\ l_1 \\ l_2 \\ \vdots \\ l_N
\end{pmatrix}, \begin{pmatrix}
 \sigma^2_x & \sigma_{xy} & \sigma_{x\theta} \\
 \sigma_{xy} & \sigma_y^2 & \sigma_{y\theta} \\
 \sigma_{x\theta} & \sigma_{y\theta} & \sigma_{\theta}^2 \\
 \sigma_{l_1} x & \sigma_{l_1} y & \sigma_{l_1} \theta \\
 \sigma_{l_2} x & \sigma_{l_2} y & \sigma_{l_2} \theta \\
 \vdots & \vdots & \vdots \\
 \sigma_{l_N} x & \sigma_{l_N} y & \sigma_{l_N} \theta
\end{pmatrix}
\]

- Can handle hundreds of dimensions
EKF SLAM: Building the Map

Filter Cycle, Overview:

1. State prediction (odometry)
2. Measurement prediction
3. Observation
4. Data Association
5. Update
6. Integration of new landmarks
EKF SLAM: Building the Map

- State Prediction

Odometry:
\[
\hat{x}_R = f(x_R, u)
\]
\[
\hat{C}_R = F_x C_R F_x^T + F_u U F_u^T
\]

Robot-landmark cross-covariance prediction:
\[
\hat{C}_{RM_i} = F_x C_{RM_i}
\]
(skipping time index \(k\))
EKF SLAM: Building the Map

- Measurement Prediction

\[\hat{z}_k = h(\hat{x}_k) \]

\[
\begin{bmatrix}
 x_R \\
 m_1 \\
 m_2 \\
 \vdots \\
 m_n
\end{bmatrix}_k = \begin{bmatrix}
 C_R & C_{RM_1} & C_{RM_2} & \cdots & C_{RM_n} \\
 C_{M_1 R} & C_{M_1} & C_{M_1 M_2} & \cdots & C_{M_1 M_n} \\
 C_{M_2 R} & C_{M_2 M_1} & C_{M_2} & \cdots & C_{M_2 M_n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 C_{M_n R} & C_{M_n M_1} & C_{M_n M_2} & \cdots & C_{M_n}
\end{bmatrix}_k
\]
EKF SLAM: Building the Map

- Observation

\[x_k = \begin{bmatrix} x_R \\ m_1 \\ m_2 \\ \vdots \\ m_n \end{bmatrix}_k \]

\[C_k = \begin{bmatrix} C_R & C_{RM_1} & C_{RM_2} & \cdots & C_{RM_n} \\ C_{M_1R} & C_{M_1} & C_{M_1M_2} & \cdots & C_{M_1M_n} \\ C_{M_2R} & C_{M_2M_1} & C_{M_2} & \cdots & C_{M_2M_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{M_nR} & C_{M_nM_1} & C_{M_nM_2} & \cdots & C_{M_n} \end{bmatrix}_k \]

\[z_k = \begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \]

\[R_k = \begin{bmatrix} R_1 & 0 \\ 0 & R_2 \end{bmatrix} \]
EKF SLAM: Building the Map

- **Data Association**

Associates predicted measurements \(\hat{z}_k^i \) with observation \(z_k^j \)

\[
\nu_{k}^{i,j} = z_k^j - \hat{z}_k^i \\
S_{k}^{i,j} = R_k^j + H^i \hat{C}_k H^i \text{T}
\]

(Gating)

\[
x_k = \begin{bmatrix} x_R \\ m_1 \\ m_2 \\ \vdots \\ m_n \end{bmatrix}_k \\
C_k = \begin{bmatrix} C_R & C_{RM_1} & C_{RM_2} & \cdots & C_{RM_n} \\
C_{M_1 R} & C_{M_1} & C_{M_1 M_2} & \cdots & C_{M_1 M_n} \\
C_{M_2 R} & C_{M_2 M_1} & C_{M_2} & \cdots & C_{M_2 M_n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{M_n R} & C_{M_n M_1} & C_{M_n M_2} & \cdots & C_{M_n} \end{bmatrix}_k
\]
EKF SLAM: Building the Map

- Filter Update

The usual Kalman filter expressions

\[K_k = \hat{C}_k H^T S_k^{-1} \]
\[x_k = \hat{x}_k + K_k \nu_k \]
\[C_k = (I - K_k H) \hat{C}_k \]

\[x_k = \begin{bmatrix} x_R \\ m_1 \\ m_2 \\ \vdots \\ m_n \end{bmatrix}_k \]

\[C_k = \begin{bmatrix}
C_R & C_{RM_1} & C_{RM_2} & \cdots & C_{RM_n} \\
C_{M_1R} & C_{M_1} & C_{M_1M_2} & \cdots & C_{M_1M_n} \\
C_{M_2R} & C_{M_2M_1} & C_{M_2} & \cdots & C_{M_2M_n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{M_nR} & C_{M_nM_1} & C_{M_nM_2} & \cdots & C_{M_n}
\end{bmatrix}_k \]
Integrating New Landmarks

State augmented by
\[m_{n+1} = g(x_R, z_j) \]
\[C_{M_{n+1}} = G_R C_R G^T_R + G_z R_j G^T_z \]

Cross-covariances:
\[C_{M_{n+1}M_i} = G_R C_{RM_i} \]
\[C_{M_{n+1}R} = G_R C_R \]
EKF-SLAM

Map

Correlation matrix
EKF-SLAM

Map

Correlation matrix
Victoria Park Data Set

[courtesy by E. Nebot]
Victoria Park Data Set Vehicle

[courtesy by E. Nebot]
Data Acquisition

[courtesy by E. Nebot]
SLAM

[courtesy by E. Nebot]
Map and Trajectory

[courtesy by E. Nebot]
Landmark Covariance

[courtesy by E. Nebot]
Estimated Trajectory

courtesy by E. Nebot
EKF SLAM Application

[courtesy by John Leonard]
EKF SLAM Application

odometry

estimated trajectory

[courtesy by John Leonard]
Approximations for SLAM

- **Local submaps**
 [Leonard et al. 99, Bosse et al. 02, Newman et al. 03]

- **Sparse links (correlations)**
 [Lu & Milios 97, Guivant & Nebot 01]

- **Sparse extended information filters**
 [Frese et al. 01, Thrun et al. 02]

- **Thin junction tree filters**
 [Paskin 03]

- **Rao-Blackwellisation (FastSLAM)**
 [Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03]
EKF-SLAM Summary

- Quadratic in the number of landmarks: $O(n^2)$
- Convergence results for the linear case.
- Can diverge if nonlinearities are large!
- Have been applied successfully in large-scale environments.
- Approximations reduce the computational complexity.