Homework 1
Due date: February 6

Be as concise as possible.

1. Set up the website where you will be posting your coding solutions and email the link to the instructor.

2. (5) Consider rigid body transformations in the plane. Draw a right triangle defined by three points $A = (2, 1), B = (4, 1), C = (4, 6)$.

 - Consider a rotation matrix

 $$
 T_1 = \begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
 \end{bmatrix}
 $$

 a. What is the determinant of the matrix?

 - Consider transformation matrix

 $$
 T_2 = \begin{bmatrix}
 \sin \theta & \cos \theta \\
 \cos \theta & -\sin \theta
 \end{bmatrix}
 $$

 a. Is the matrix orthonormal? What is the determinant of the matrix?

 c. Is T_2 rigid body transformation? What is the difference between T_1 and T_2, how are the results different?

3. (5) Point $P_A = [p_1, p_2, p_3]^T$ expressed in a stationary frame A is rotated about axis Z_A by θ degrees and then rotated around axis X_A by ϕ degrees. Give a rotation matrix that accomplishes these two rotations. Both of the rotations are around stationary frame.

4. Let $R \in SO(3)$ be a rotation matrix generated by rotating about a unit vector ω by θ radians that satisfies $R = exp(\hat{\omega} \theta)$.

 Consider following rotation matrix:

 $$
 R = \begin{bmatrix}
 0.1729 & -0.1468 & 0.9739 \\
 0.9739 & 0.1729 & -0.1468 \\
 -0.1468 & 0.9739 & 0.1729
 \end{bmatrix}
 $$

 Use the formulas given in class to compute the rotation axis and the associated angle. b) Use Matlab function `eig` to compute the eigenvalues and eigenvectors of the above rotation matrix R. What is the eigenvector associated with unit eigenvalue? Can you explain it’s physical meaning?
5. (10) Write a Matlab program to simulate the motion a differential drive robot.

- The function should take as an input vector ξ_0 specifying the initial pose $[x_0, y_0, \theta_0]$ and velocities v, ω and time t denotes number of time steps and δt the length of the time step. You should return resulting path as three vectors each $1 \times n$ long where n is the number of time steps. The output will correspond to pose indexed by time.

$$[x, y, \theta] = \text{diffDrive}([x_0, y_0, \theta_0], v, \omega, t, \delta t)$$

- For the following example assume that at time $t = 0$ the configuration (pose) of the robot is $\xi_0 = [x, y, \theta] = [100, 50, 45^\circ]$. Robot starts moving with some angular and linear velocity $\omega = 2^\circ/s$ and $v = 1 \text{ m/s}$. How is the path affected by the choice of δt? Hand in the plot of the code and the plot of the path in x-y plane.