Linear Algebra
Prerequisites - continued

Jana Kosecka
kosecka@cs.gmu.edu
Matrices

\[A \in \mathbb{R}^{n \times m} \]

- n x m matrix
- Meaning
- m points from n-dimensional space
- Transformation

\[C = A A^T \]

Example: Covariance matrix - symmetric
Square matrix associated with
The data points (after mean has been subtracted) in 2D

\[C = \begin{bmatrix} \sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i y_i \\ \sum_{i=1}^{n} x_i y_i & \sum_{i=1}^{n} y_i^2 \end{bmatrix} \]

\[A \in \mathbb{R}^{2 \times 2} \]

\[y = A x \]

Special case
Matrix is square
Geometric interpretation

Lines in 2D space - row solution
Equations are considered isolation

\[
2x - y = 1 \\
x + y = 5
\]

Linear combination of vectors in 2D
Column solution

\[
\begin{bmatrix}
2 \\
1
\end{bmatrix} x + \begin{bmatrix}
-1 \\
1
\end{bmatrix} y = \begin{bmatrix}
1 \\
5
\end{bmatrix}
\]

We already know how to multiply the vector by scalar
Linear equations

In 3D

\[
\begin{bmatrix}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{bmatrix}
\begin{bmatrix}
u \\
v \\
w
\end{bmatrix} =
\begin{bmatrix}
5 \\
-2 \\
9
\end{bmatrix}
\]

When is RHS a linear combination of LHS

\[
\begin{bmatrix}
2 \\
4 \\
-2
\end{bmatrix} u + \begin{bmatrix}
1 \\
-6 \\
7
\end{bmatrix} v + \begin{bmatrix}
1 \\
0 \\
2
\end{bmatrix} w = \begin{bmatrix}
5 \\
-2 \\
9
\end{bmatrix}
\]

Solving linear n equations with n unknowns

If matrix is invertible - compute the inverse

Columns are linearly independent

\[A x = y\]

\[\det(A) \neq 0\]

\[A^{-1} A x = A^{-1} y\]

\[x = A^{-1} y\]
Linear equations

Not all matrices are invertible

- inverse of a 2x2 matrix (determinant non-zero)
- inverse of a diagonal matrix

Computing inverse - solve for the columns
Independently or using Gauss-Jordan method

\[
\begin{bmatrix}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Vector spaces (informally)

- Vector space in n-dimensional space \mathbb{R}^n
- n-dimensional columns with real entries
- Operations of addition, multiplication and scalar multiplication
- Additions of the vectors and multiplication of a vector by a scalar always produces vectors which lie in the space

- Matrices also make up vector space - e.g. consider all 3×3 matrices as elements of \mathbb{R}^9 space
Vector subspace

• A subspace of a vector space is a non-empty set of vectors closed under vector addition and scalar multiplication.

• Example: over constrained system - more equations then unknowns

\[
\begin{bmatrix}
 u_1 & v_1 \\
 u_2 & v_2 \\
 u_3 & v_3
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
=
\begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3
\end{bmatrix}
\]

• The solution exists if \(b\) is in the subspace spanned by vectors \(u\) and \(v\)

\[
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3
\end{bmatrix} x_1 +
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix} x_2 =
\begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3
\end{bmatrix}
\]
Linear Systems

1. When matrix is square and invertible
2. When the matrix is square and noninvertible
3. When the matrix is non-square with more constraints than unknowns

\[Ax = b \]

Solution exists when \(b \) is in column space of \(A \)

Special case

All the vectors which satisfy \(Ax = 0 \) lie in the NULLSPACE of matrix \(A \)
Basis

n x n matrix A is invertible if it is of a full rank

• Rank of the matrix - number of linearly independent rows (see definition next page)

• If the rows of columns of the matrix A are linearly independent - the nullspace of contains only 0 vector

• Set of linearly independent vectors forms a basis of the vector space

• Given a basis, the representation of every vector is unique
Basis is not unique (examples)
Linear independence

Definition A.1 (A linear space). A set (of vectors) V is considered as a linear space over the field \mathbb{R}, if its elements, so-called vectors, are closed under two basic operations: scalar multiplication and vector summation. That is, given any two vectors $v_1, v_2 \in V$ and any two scalars $\alpha, \beta \in \mathbb{R}$, the linear combination $v = \alpha v_1 + \beta v_2$ is also a vector in V.

Definition A.4 (Linearly independence). A set of vectors $S = \{v_i\}_{i=1}^m$ is said to be linearly independent if the equation

$$\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_m v_m = 0$$

implies

$$\alpha_1 = \alpha_2 = \cdots = \alpha_m = 0.$$

Definition A.5 (Basis). A set of vectors $B = \{b_i\}_{i=1}^n$ of a linear space V is said to be a basis if B is a linearly independent set and B spans the entire space V (i.e. $V = \text{span}(B)$).
Change of basis

Fact A.6 (Properties of basis). Suppose B and B' are two bases for a linear space V. Then

2. Let $B = \{b_i\}_{i=1}^n$ and $B' = \{b'_i\}_{i=1}^n$, then each base vector of B can be expressed as linear combination of those in B', i.e.

$$b_j = a_{1j}b'_1 + a_{2j}b'_2 + \cdots + a_{nj}b'_n = \sum_{i=1}^{n} a_{ij}b'_i. \quad (A.2)$$

for some $a_{ij} \in \mathbb{R}$, $i, j = 1, 2, \ldots, n$.

3. For any vector $v \in V$, it can be written as a linear combination of vectors in either of the bases

$$v = x_1b_1 + x_2b_2 + \cdots + x_nb_n = x'_1b'_1 + x'_2b'_2 + \cdots + x'_nb'_n \quad (A.3)$$

where the coefficients $\{x_i \in \mathbb{R}\}_{i=1}^n$ and $\{x'_i \in \mathbb{R}\}_{i=1}^n$ are uniquely determined and are called the coordinates of v with respect to each basis.
Change of basis (contd.)

\[
[b_1, b_2, \ldots, b_n] = [b'_1, b'_2, \ldots, b'_n] \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}.
\]

\[
v = [b_1, b_2, \ldots, b_n] \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix} = [b'_1, b'_2, \ldots, b'_n] \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
\]

\[
B^t = BA^{-1}, \quad x^t = Ax.
\]
Linear Equations - Rank

Vector space spanned by columns of A

$$
\begin{bmatrix}
2 & 4 \\
4 & -2
\end{bmatrix} u +
\begin{bmatrix}
1 & 1 \\
-6 & 0
\end{bmatrix} v +
\begin{bmatrix}
1 & 0 \\
7 & 2
\end{bmatrix} w =
\begin{bmatrix}
5 \\
-2 \\
9
\end{bmatrix}
$$

In general

$A \in \mathbb{R}^{n \times m}$

Four basic subspaces

- **Column space of A** - dimension of $C(A)$
 - number of linearly independent columns
 - $r = \text{rank}(A)$

- **Row space of A** - dimension of $R(A)$
 - number of linearly independent rows
 - $r = \text{rank}(A^T)$

- **Null space of A** - dimension of $N(A)$
 - $n - r$

- **Left null space of A** - dimension of $N(A^T)$
 - $m - r$

- **Maximal rank** - $\min(n,m)$ - smaller of the two dimensions
Linear Equations

Vector space spanned by columns of A:

\[
\begin{bmatrix}
2 \\
4 \\
-2
\end{bmatrix} u +
\begin{bmatrix}
1 \\
-6 \\
7
\end{bmatrix} v +
\begin{bmatrix}
1 \\
0 \\
2
\end{bmatrix} w =
\begin{bmatrix}
5 \\
-2 \\
9
\end{bmatrix}
\]

In general, $A \in \mathbb{R}^{n \times m}$

Four basic possibilities, suppose that the matrix A has full rank.

Then:

- if $n < m$ number of equations is less then number of unknowns, the set of solutions is $(m-n)$ dimensional vector subspace of \mathbb{R}^m
- if $n = m$ there is a unique solution
- if $n > m$ number of equations is more then number of unknowns, there is no solution
Structure induced by a linear map

\[x_r \rightarrow Ax_r = Ax \]

\[Ax_n = 0 \]

\[x \rightarrow Ax \]

\[\text{Ra}(A) \]

\[\text{Nu}(A) \perp \]

\[\text{Nu}(A^T) \]

\[\text{Ra}(A)^\perp \]
Linear Equations - Square Matrices

1. A is square and invertible
2. A is square and non-invertible

3. System $Ax = b$ has at most one solution - columns are linearly independent rank = n
 - then the matrix is invertible $x = A^{-1}y$

2. Columns are linearly dependent rank < n
 - then the matrix is not invertible
Linear Equations – non-square matrices

The solution exist when \(b \) is aligned with \([2,3,4]^T \)

If not we have to seek some approximation – least squares

Least squares solution - find such value of \(x \) that the error is minimized (take a derivative, set it to zero and solve for \(x \))

Short for such solution

\[
\begin{align*}
e^2 &= (2x - b_1)^2 + (3x - b_2)^2 + (4x - b_3)^2 \\
e^2 &= \|ax - b\|^2
\end{align*}
\]
Linear equations – non-squared matrices

Similarly when A is a matrix

\[
\begin{bmatrix}
1 & 2 \\
1 & 3 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
x
\end{bmatrix} =
\begin{bmatrix}
4 \\
5 \\
6
\end{bmatrix}
\]

\[e^2 = \|Ax - b\|^2\]

\[Ax = b\]
\[A^T A x = A^T b\]
\[x = (A^T A)^{-1} A^T b\]

• If A has linearly independent columns $A^T A$ is square, symmetric and invertible

\[A^\dagger = (A^T A)^{-1} A^T\]

is so called pseudoinverse of matrix A
Homogeneous Systems of equations

\[Ax = 0 \]

When matrix is square and non-singular, there a Unique trivial solution \(x = 0 \)

If \(m \geq n \) there is a non-trivial solution when rank of \(A \) is \(\text{rank}(A) < n \)

We need to impose some constraint to avoid trivial Solution, for example

\[\| x \| = 1 \]

Find such \(x \) that \(\| Ax \|^2 \) is minimized

\[\| Ax \|^2 = x A^T A x \]

Solution: eigenvector associated with the smallest eigenvalue

Eigenvalues and Eigenvectors

- Motivated by solution to differential equations
- For square matrices

\[
A \in \mathbb{R}^{n \times n} \quad \dot{u} = Au
\]

\[
A = \begin{bmatrix}
4 & -5 \\
2 & -3
\end{bmatrix}
\]

For scalar ODE’s

\[
\dot{u} = au
\]

\[
u(t) = e^{\lambda t} y
\]

\[
w(t) = e^{\lambda t} z
\]

We look for the solutions of the following type exponentials

Substitute back to the equation

\[
\lambda e^{\lambda t} y = 4e^{\lambda t} y - 5e^{\lambda t} z
\]

\[
\lambda e^{\lambda t} z = 2e^{\lambda t} y - 3e^{\lambda t} z
\]

\[
x = \begin{bmatrix} y \\ z \end{bmatrix} \quad \lambda x = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} x
\]
Eigenvalues and Eigenvectors

\[\lambda \mathbf{x} = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} \mathbf{x} \quad A\mathbf{x} = \lambda \mathbf{x} \]

Solve the equation:

\[(A - \lambda I)\mathbf{x} = 0 \quad (1) \]

\[\mathbf{x} - \text{is in the null space of} \quad (A - \lambda I) \]
\[\lambda \quad \text{is chosen such that} \quad (A - \lambda I) \quad \text{has a null space} \]

Computation of eigenvalues and eigenvectors (for dim 2,3)
1. Compute determinant
2. Find roots (eigenvalues) of the polynomial such that determinant = 0
3. For each eigenvalue solve the equation (1)

For larger matrices - alternative ways of computation
Eigenvalues and Eigenvectors

For the previous example

\[\lambda_1 = -1, \ x_1 = [1, 1]^T \quad \lambda_2 = -2, \ x_2 = [5, 2]^T \]

We will get special solutions to ODE \(\dot{u} = Au \)

\[Au = e^{\lambda_1 t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad u = e^{\lambda_2 t} \begin{bmatrix} 5 \\ 2 \end{bmatrix} \]

Their linear combination is also a solution (due to the linearity of \(\dot{u} = Au \))

\[u = c_1 e^{\lambda_1 t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{\lambda_1 t} \begin{bmatrix} 5 \\ 2 \end{bmatrix} \]

In the context of diff. equations - special meaning
Any solution can be expressed as linear combination
Individual solutions correspond to modes
Eigenvalues and Eigenvectors

\[Ax = \lambda x\]

Only special vectors are eigenvectors
- such vectors whose direction will not be changed by the transformation \(A\) (only scale)
- they correspond to normal modes of the system act independently

Examples

\[
A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}
\]

\[
eigenvalues = 2, 3, \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

Whatever \(A\) does to an arbitrary vector is fully determined by its eigenvalues and eigenvectors

\[Ax = 2\lambda_1 v_1 + 5\lambda_2 v_2\]
Eigenvalues and Eigenvectors - Diagonalization

• Given a square matrix A and its eigenvalues and eigenvectors - matrix can be diagonalized

\[A = S \Lambda S^{-1} \]

Matrix of eigenvectors \(AS = \Lambda S \)

\[A \begin{bmatrix} x_1 & x_2 & \ldots & x_n \end{bmatrix} = \begin{bmatrix} \lambda_1 x_1 & \lambda_2 x_2 & \ldots & \lambda_n x_n \end{bmatrix} \]

\[\begin{bmatrix} \lambda_1 x_1 & \lambda_2 x_2 & \ldots & \lambda_n x_n \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \ldots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \lambda_2 & \ldots & \lambda_n \end{bmatrix} \]

\[A = S \Lambda S^{-1} \]

• If some of the eigenvalues are the same, eigenvectors are not independent
Trace

- Only defined for square matrices
- Sum of the elements on the main diagonal

\[
\text{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn} = \sum_{i=1}^{n} a_{ii}
\]

- Sum of eigenvalues \(\text{tr}(A) = \sum_{i=1}^{\lambda_i} \lambda_i \)

It is a linear operator with the following properties

- Additivity: \(\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B) \)
- Homogeneity: \(\text{tr}(c \cdot A) = c \cdot \text{tr}(A) \)
- Pairwise commutative: \(\text{tr}(AB) = \text{tr}(BA) \), \(\text{tr}(ABC) \neq \text{tr}(ACB) \)

Trace is similarity invariant \(\text{tr}(P^{-1}AP) = \text{tr}((AP^{-1})P) = \text{tr}(A) \)

Trace is transpose invariant \(\text{tr}(A) = \text{tr}(A^T) \)
Diagonalization

• If there are no zero eigenvalues - matrix is invertible
• If there are no repeated eigenvalues - matrix is diagonalizable
• If all the eigenvalues are different then eigenvectors are linearly independent

For Symmetric Matrices

If A is symmetric:

$$A = QΛQ^T$$

Diagonal matrix of eigenvalues
orthonormal matrix of eigenvectors

i.e. for a covariance matrix
or some matrix $B = A^TA$
Symmetric matrices (contd.)

\[A^T \tilde{A} = V \text{diag}\{\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2\} V^T \]

\[\|A\|_f = \sqrt{\sum_{i,j} a_{i,j}^2}. \]

\[\|A\|_f = \sqrt{\text{trace}(A^T A)} = \sqrt{\sigma_1^2 + \sigma_2^2 + \cdots + \sigma_n^2}. \]
Example - line fitting

Equation of a line

\[ax + by = d \]

Line normal

\[n = [a, b] \]

Distance to the origin

\[d \]

Error function

\[e(a, b, d) = \sum_{i=1}^{n} (ax_i + by_i - d)^2 \]

Differentiate with respect to \(a,b,d\)
set the first derivative to 0 and solve for the parameters