Towards Mutation Analysis of Android Apps

Lin Deng, Nariman Mirzaei, Paul Ammann, and Jeff Offutt
Department of Computer Science
George Mason University
Fairfax, Virginia, USA
{ldeng2, nmirzaei, pammann, offutt} @ gmu.edu

Abstract—Android applications (apps) have the highest number
of releases, purchases, and downloads among mobile apps. How-
ever, quality is a known problem, and hence there is significant
research interest in better methods for testing Android apps. We
identify three reasons to extend mutation testing to Android apps.
First, current testing approaches for Android apps use simple
coverage criteria such as statement coverage; extending mutation
coverage to Android apps promises more sophisticated testing.
Second, testing researchers inventing other test methods for
Android apps need to evaluate the quality of their test selection
strategies, which mutation excels at. Finally, some approaches
to test generation for Android apps, specifically combinatorial
testing approaches, generate very large numbers of tests. This is
particularly problematic because running Android tests is slow.
For these reasons, this paper proposes an innovative mutation
analysis approach specific for Android apps. We define mutation
operators specific to the characteristics of Android apps, such
as the extensive use of XML files to specify behavior. We have
implemented a prototype tool for generating, installing, and
executing mutants on Android systems. We report preliminary
results that show that mutation testing is feasible for Android
apps, and we identify challenges that need to be addressed for
mutation analysis to be effective.

Index Terms—Android, Software Testing, Mutation Testing

I. INTRODUCTION

A mobile application is a software program that runs on a
mobile device such as a smartphone or a tablet. The number
of mobile applications (apps) is growing tremendously as
more platforms become available, prices drop, and more users
acquire more devices. The Android operating system currently
dominates the market with 83.1% of sales in the third quarter
of 2014 (i0S was second with 12.7%) [26]. Over a million
apps are available to Android users on the Google Play store,
the most widely used Android app store [6], and thousands
are added every day.

Not surprisingly, quality is a serious and growing problem.
Many apps reach the market containing significant faults,
which often result in failures during use. Although part of the
problem is a lack of software engineering process (little or no
testing), a significant technical problem also exists. Android
apps involve several new programming features and we have
very little knowledge for how to test them. This results in weak
and ineffective testing. In fact, even among developers who
attempt to test their apps well, random value generation is quite

2015 IEEE Eighth International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW)
10th International Workshop on Mutation Analysis (Mutation 2015)
978-1-4799-1885-0/15/$31.00 (©2015 IEEE

common [40]. Although several researchers have proposed
improved test techniques [13], [14], [18], [38], [40], these have
not reached actual practice.
The goal of this research project is to develop testing
techniques that can allow developers to find faults in Android
apps before release, especially in the parts of the code that
use new programming features (as described in Section II).
Specifically, we propose to use mutation analysis, a high end
testing technique that is known for yielding powerful tests.
We start by analyzing the unique technical features of
Android apps, and design novel mutation operators for those
features. Tests that kill those mutants can be expected to
reveal many faults in the use of the features. We have built
a proof-of-concept mutation analysis tool that implements the
new Android mutation operators as well as more traditional
mutation operators.
Our Android mutation analysis tool can be used in three
different ways. As a method for test case design, mutation
analysis is one of the most powerful test criteria known.
Thus mutation can be used to design very powerful tests.
Second, once completed, polished, and made available to other
researchers, a mutation analysis tool can be used to evaluate
other test techniques for Android apps. Third, if a tester has
a large number of pre-existing tests, many are likely to be
redundant. This is particularly troublesome for Android testers,
because for a variety of technical reasons, test execution tends
to be quite slow. However, identifying which ones to keep and
which ones to dispose of is a challenging problem. Mutation
analysis allows tests to be filtered by keeping only tests that
increase the mutation score.
The paper makes the following contributions:
o It defines eight novel mutation operators specific to
Android apps.

o It evaluates these mutation operators on an example
Android app.

« It identifies future research areas for mutation analysis of
Android apps.

This paper is organized as follows. Section II describes how
Android apps are programmed, including some of the unique
aspects of programming in the framework, and introduces
how mutation analysis works. Section III defines eight novel
mutation operators that mutate new programming features
such as the Intent and event handlers. Section IV outlines
how mutation analysis is applied in the Android framework,
which is quite different from traditional languages such as

Java. Section V presents an Android app, shows how mutation
analysis can be used to test it, and provides preliminary results
of the empirical study. The paper concludes with an overview
of the related research in Section VI, and a discussion of our
planned future work in Section VIIL

II. BACKGROUND

This research project is applying an existing testing tech-
nique, mutation testing, to a new type of software, mobile
apps. Android apps are built differently from traditional
software, and use new structures and new control and data
connections. So before going into our research, we need to
provide a brief overview of how Android app works, followed
by an overview of mutation.

A. Programming Android Applications

Android comes with a development environment called
the Android Application Development Framework (ADF).
Android ADF provides an API to help build apps, create
GUIs, and access data on the device. Android includes an
operating system based on Linux, including middleware, pre-
installed applications, and system libraries. Android used the
Dalvik Virtual Machine [5] to execute Java programs before
the version of 4.4 (KitKat). The most recent release, Android
5.0 (Lollipop), replaced Dalvik with Android Runtime (ART).
However, as stated by Google, most apps developed for Dalvik
should work without any changes under ART [4]. The change
does not affect the general structure or programming method-
ology of Android apps. Android apps can also publish their
features for other apps to use, subject to certain constraints.

Android apps are built according to a novel structure with a
mandatory manifest file and four types of components. Man-
ifest files are written in XML and provide information about
the app to the ADF, including configuration and descriptions
of the apps’ components.

Android apps have four types of components: Activities,
Services, Broadcast Receivers, and Content Providers. An Ac-
tivity presents a screen to the user based on one or more layout
designs. These layouts can include different configurations
for different sized screens. The layouts define view widgets,
which are GUI controls. A configuration file in XML is used
to describe the controls and how they are laid out with a
unique identifier for each widget. Service components run on
the device in the background. They perform tasks that do
not require interaction with the user such as counting steps,
monitoring set alarms, and playing music. Services do not
interact with the screen, although they may interact with an
Activity, which in turn interacts with the screen. A Content
Provider stores and provides access to structured data stored in
the file system, including calendar, photographs, contacts, and
stored music. Finally, a Broadcast Receiver handles messages
that are announced system-wide such as low battery.

An Android component is activated by using an Intent
message, which includes an action that the component should
carry out, and data that the component needs. Android supports
run-time binding Infent messages. This is enabled by having

Activity is
launched

1. onCreate ()
2. onStart ()
3. onResume ()

Running
Activity is visible in
foreground

_,‘

onResume ()

onPause ()
Y
Paused
Activity is partially
visible, not in focus

1. onRestart ()
2.onStart)
3. onResume ()

onStap ()

Y

Stopped
Activity is hidden

l onDestray ()
© Activity is
destroyed

Fig. 1. Lifecycle of Activity in Android apps

calls go through the Android messaging service, rather than
being explicitly present in the app.

Android requires all major components such as Services
and Activities to behave according to a pre-specified lifecycle
[1]. The ADF manages these behaviors. Figure 1 shows
the lifecycle of an Activity as a collection of events and
states. The states are Running, Paused, and Stopped. The
Running state is reached after events onCreate(), onStart(), and
onResume(). onPause() sends the Activity to the Paused state,
then onStop() sends it to Stopped and onResume() sends it back
to Running. From Stopped, the Activity can go to Running with
onRestart(), onStart() and onResume() or it can exit with an
onDestroy() event. ADF calls lifecycle event handlers and are
integral to our research, as explained later.

B. Mutation Analysis

This paper proposes the use of mutation of Android app
components to design effective tests. Mutation testing modifies
a software artifact such as a program, requirements specifi-
cation, or a configuration file to create new versions called
mutants [21]. The mutants are usually intended to be faulty
versions and are created by applying rules for changing the
syntax of the software artifact. These rules are called mutation
operators. The tester then creates tests that cause different
outputs on the original and each mutated version, called killing
the mutant. For example, the ROR operator for Java replaces
every instance of every relational operator (for example, <=)
with all other relational operators (<, ==, >, >=, | =)

plus trueOp and falseOp, which set the condition to true and
false [16]. Mutation operators sometimes create changes that
are similar to programmer mistakes, and sometimes introduce
changes that force testers to design test inputs that are likely
to find faults.

Each mutant is run against the tests in the test suite to
measure the percentage of mutants killed by the tests. This is
called the mutation adequacy score. Mutation testing has been
measured to usually be stronger than other test criteria. One
source of that strength is that it does more than just apply local
requirements, such as reach a statement or tour a subpath in the
control flow graph (reachability), but it also requires that the
mutated statement result in an error in the program’s execution
state (infection), and that erroneous state propagate to incorrect
external behavior of the mutated program (propagation) [16],
[22], [43].

Some mutants have the same behavior as the original
program on every input, so cannot be killed. These mutants
are called equivalent. Identifying and eliminating equivalent
mutants from consideration is a major cost of mutation testing.
Some mutants do not compile because the change makes
the program syntactically incorrect. While these stillborn can
usually be avoided if the mutation operators are well designed
and properly implemented, some do occur. A mutation system
must be prepared to recognize stillborn mutants and remove
them from consideration.

Mutation operators have been created for many different
languages, including C, Java, and Fortran [12], [31], [33], [36].
Mutation operators have also been defined for aspect-oriented
software in Aspect] [35], and applied to modeling languages
such as finite state machines [24], [28], statecharts [51], Petri
nets [25], and timed automata [44]. Mutation operators for
Android apps focus on the novel features of Android, including
the manifest file, activities, services, etc.

III. ANDROID MUTATION OPERATORS

Mutation analysis relies on mutation operators, which are
syntactic rules for changing the program or artifact. Good mu-
tation operators can lead to very effective tests, but poor muta-
tion operators can lead to ineffective tests or large numbers of
redundant tests. Mutation operators are usually defined using
one of two approaches. When available, mutation operators
are defined from fault models where each type of fault is
used to design a mutation operator that creates instances of
those faults. The mulJava class-level operators [37], [47] were
based on a previous fault model by Alexander [45]. A second
approach is to analyze every syntactic element of the language
being mutated, and design mutants to modify the syntax in
ways that typical programmers might make mistakes. Since
we have not been found a fault model for Android apps, we
used the second approach. Thus, we designed operators to fully
cover the novel features used in Android apps. The following
subsections define eight operators, divided into four categories:
Intent related, event handler related, activity lifecycle related,
and XML related.

[Original Type | Default Value]

int, short, long, float, double, char 0
String «“r
Array null
boolean true / false
TABLE T

IPR DEFAULT VALUES

A. Intent Mutation Operators

As described in Section II, an Intent is an abstraction of an
operation to be performed among Android components [2].
They are usually used to launch an activity and transmit data
or messages between activities.

1) Intent Payload Replacement (IPR): An Intent can carry
different types of data (called payload) as key-value pairs. The
putExtra() method takes the key name as the first parameter,
and the value as the second parameter. The IPR operator
mutates the second parameter to a default value that depends
on the underlying data type. These default values are listed
in Table I. Objects with primitive types, such as int, short,
long, etc., are replaced by the value of zero, String objects are
replaced by empty strings, and boolean variables are replaced
by both true and false. Figure 2 shows an example IPR mutant.
The String object message is replaced with an empty String.
This mutant challenges the tester to design test cases to ensure
the value passed by an Intent object is correct.

2) Intent Target Replacement (ITR): Developers use an
explicit Intent to specify which component should be started by
declaring the Intent with the target component’s name within
an app.

Figure 3 shows an Intent object that is declared with
ActivityB.class as the target. The ITR operator first looks up all
the classes within the same package of the current class, and
then replaces the target of each Intent with all possible classes.
This challenges the tester to design test cases that check that
the target activity or service is launched successfully after the
Intent is executed.

B. Event Handler Mutation Operators

Android apps are event-based, so event handlers are nor-
mally used to recognize and respond to events. Common user
actions are clicking and touching, each of which generates
an event. Thus, we define two mutation operators for event
handlers, the OnClick Event Replacement (ECR) operator, and
the OnTouch Event Replacement (ETR) operator.

1) OnClick Event Replacement (ECR): ECR first searches
and stores all event handlers that respond to OnClick events
in the current class. Then, it replaces each handler with every
other compatible handler. Figure 4 shows an ECR mutant
where the event handler for the button mPrepUp has been
replaced by the event handler for the button mPrepDown.
To kill ECR mutants, each widget’s OnClick event has to be
executed by at least one test.

2) OnTouch Event Replacement (ETR): This operator re-
places the event handlers for each OnTouch event. It works
exactly the same as the ECR mutation operator.

public void test (View view)

Intent intent = new Intent (this, DisplayMessageActivity.class);
EditText editText = (EditText) findViewByld (R.id.edit_message);
String message = editText.getText().toString();

intent.putExtra (EXTRA_MESSAGE, message);

startActivity (intent);

}

public void test (View view)

{
Intent intent = new Intent (this, DisplayMessageActivity.class);
EditText editText = (EditText) findViewById (R.id.edit_message);
String message = editText.getText().toString();
intent.putExtra (EXTRA_MESSAGE, ‘”);
startActivity (intent);

Original

Mutant

Fig. 2. Intent Payload Replacement Mutation Operator

public void startActivityB (View v)

Intent intent = new Intent (ActivityA.this, ActivityB.class);
startActivity (intent);

public void startActivityB (View v)

Intent intent = new Intent (ActivityA.this, ActivityC.class);
startActivity (intent);

Original
Fig. 3.

Mutant

Intent Target Replacement Mutation Operator

mPrepUp.setOnClickListener (new OnClickListener()

public void onClick (View v) {
incrementPrepTime();

}
)35

mPrepDown.setOnClickListener (new OnClickListener()

public void onClick (View v) {
decrementPrepTime();

}
b

mPrepUp.setOnClickListener (new OnClickListener()

public void onClick (View v) {
decrementPrepTime();

}
s

mPrepDown.setOnClickListener (new OnClickListener()

public void onClick (View v) {
decrementPrepTime();
}

s

Original

Mutant

Fig. 4. Intent Target Replacement Mutation Operator

C. An Activity Lifecycle Mutation Operator

Section II describes the pre-specified lifecycle followed by
major components. This was illustrated in Figure 1. Compo-
nents use seven methods to fulfill transitions among different
states in the lifecycle. This operator modifies those methods.

1) Lifecycle Method Deletion (MDL): Developers override
these methods to define transitions among states. MDL deletes
each overriding method to force Android to call the version in
the super class. This requires the tester to design tests that
ensure the app is in the correct expected state. The MDL
operator is similar to the Overriding Method Deletion mutation
operator (IOD) in muJava [37], but only considers the methods
related to the Activity lifecycle.

D. XML Mutation Operators

Android uses many XML files, not just the manifest file.
XML files are used to define user interfaces, to store config-
uration data such as permissions, to define the default launch
activity, and more. These three operators are unusual in that
they do not modify executable code, but static XML.

1) Button Widget Deletion (BWD): The button widget is
used by nearly all Android apps in many ways. BWD deletes
buttons one at a time from the XML layout file of the UL
Killing the BWD mutants requires tests that ensure that every
button is successfully displayed. Figure 5 shows an original
screen on the left, and two mutants on the right. The middle
screen is a BWD mutant where the button “7” is deleted from

$ Tippy Tipper

$ Tippy Tipper

Original BWD Mutant TWD Mutant

Fig. 5. Button Widget Deletion (BWD) and EditText Widget Deletion (TWD)
Example

the UL This mutation operator forces the tester to design tests
that use each button in a way that affects the output behavior.

2) EditText Widget Deletion (TWD): The EditText widget
is used to display text to users. The TWD mutation operator
removes each EditText widget, one at a time. The rightmost
screen in Figure 5 shows an example TWD mutant where the
bill amount cannot be displayed. To kill this mutant, a test
must use the bill amount.

3) Activity Permission Deletion (APD): The Android op-
erating system grants each app a set of permissions, such as
the ability to access cameras or load location data from GPS

sensors. These permissions are requested from the user when
an app is first installed, and stored in the app’s manifest file
(AndroidManifest.xml).

APD mutants delete an app’s permissions from its Android-
Manifest.xml file, one at a time. If this mutant cannot be killed
by any tests, it means that the app asked for a permission it
did not need. This is a security vulnerability that can threaten
the system beyond the app.

These eight mutation operators are defined on several unique
and novel aspects of Android apps. Although a beginning,
these should not, as yet, be considered a complete set of
mutation operators.

IV. APPROACH OVERVIEW

Mutation analysis cannot be performed the same way for
Android apps as for traditional Java programs. One reason
the process must be different is that, whereas Java mutation
analysis tools mutate only Java files, we have designed An-
droid operators that also apply to XML layout and configu-
ration files. A second reason is because Android apps require
additional processing before being deployed. Traditional Java
mutation analysis tools typically compile mutated Java source
files to bytecode Java class files. The Java bytecode files are
then dynamically linked by the language system during execu-
tion. Android apps have the additional requirement that each
Android mutant must be compiled as an Android application
package (APK) file so that it can be installed and executed on
mobile devices and emulators. This has a significant impact
on how mutation analysis tools run.

Figure 6 illustrates how the mutation analysis engine works.
Below are the steps for conducting mutation analysis on
Android apps. Note that step 3, 4, 6, and 7 are different from
traditional mutation testing processes.

1) First, the tester selects which mutation operators should
be used. Our current mutation analysis engine imple-
ments the eight new Android operators proposed in
Section III. Additionally, we reuse 15 types of method
level muJava selective operators from muJava [37], and
four deletion operators [20], [23]. The Android mutation
analysis tool uses part of the muJava [37] mutant gen-
eration engine to implement these mutation operators.

2) For the traditional Java mutation operators, the system
modifies the original Java source code, and compiles
them to bytecode class files.

3) XML mutation operators are applied directly to the
XML file, creating a new copy of the file for each mu-
tant. They are swapped into place for dynamic binding
when the APK file is created.

4) For each mutated Java bytecode class file and XML file,
the mutation system generates a mutated APK file by
including the mutated source and other project files.
Some mutants might cause compilation errors. These
stillborn mutants are discarded immediately and not used
in the final results.

5) The Android testing framework extends JUnit [7] to sup-
port the testing of different types of Android components

Original App

XML Files Java Files

Mutation
Operator

Mutation
Operator

Mutation
Operator

/

Apk F|Ie .

Apk File | Apk File

Emulator

/ Execute Engine

Test Cases

0)

7)

Results

Fig. 6. Performing mutation analysis on Android apps

[3]. In addition, testers can write test cases with the
support of external Android test automation frameworks,
such as Robotium [9]. Our Android mutation analysis
tool is implemented to run both kinds of test cases above.
Tests are either designed by the tester to target mutants,
or an externally created set of pre-existing tests can be
used. Each test is imported and compiled as an APK test
file.

After generating mutants and compiling them to APK
files, the system loads the original (non-mutated) version
of the app under test into an emulator or onto a mobile
device. Then the system executes all test cases on the
original app and records the outputs as expected results.
The results of the mutant executions are compared
with the results of the original app to determine which
mutants are killed.

Then, each mutant is loaded into an emulator or onto a
mobile device. The mutation system executes all the test
cases against the mutants and stores the outputs as the
actual results. With the current tool, running Robotium
test cases is very time-consuming. According to the
developer of Robotium, higher test execution speed may
make the execution unstable on emulators. In fact, each
test requires hours to run against all mutants. We plan
several optimizations to the tool to reduce this cost in

$ Tippy Tipper $ Tippy Tipper

10% 15% 20%

Round Down l Round Up

Split Bill

Fig. 7. Empirical Subject

the future.

8) After collecting all the results, the mutation system
compares the expected results with the actual results.
If the actual result on a test differs from the expected
result on the same test, that mutant is marked as having
been killed by that test.

9) Finally, the mutation score is computed as a percentage
of the mutants killed by the tests. Currently, the tool does
not implement any heuristics to help identify equivalent
mutants, so these must all be evaluated manually. En-
couragingly, based on the evidence in Section V, the
Android mutation operators do not seem to create many
equivalent mutants.

V. EVALUATION

To evaluate our proposed approach, we developed a new
mutation analysis tool to generate mutants, compile the APK
files, install the APK files into an emulator, execute tests
against the mutants, and compute and report the final results.
We present results of applying this tool to a small Android

app.
A. Empirical Subject

TippyTipper [10] is an Android app that can calculate tips
after taxes are added and split bills among several customers.
According to the Google Play store, the latest version 2.0 was
released in December 2013 and currently has a 4.6 star rating
from 761 users who rated it. We tested it by downloading
the source from its homepage. TippyTipper has five Activities:
TippyTipper, SplitBill, Total, Settings, and About. It also has
one Service: TipCalculatorService. Figure 7 illustrates three
Activities of it: TippyTipper is on the left, the middle screen
is SplitBill, and the rightmost one is Total.

We selected the main Activity TippyTipper and its corre-
sponding XML layout file main.xml to test. The entire app has
12 Java classes distributed among five Java packages. It has
eight XML layout files and one XML configuration file. We
tested the main class, TippyTipper.java, which has 103 lines
of code as calculated by Emma [50]. We determined that one
line was dead code during testing. We also tested the XML
layout file main.xml, which contained 93 lines as counted by
our editor.

[Class
[TippyTipper |

| Method Coverage | Block Coverage | Line Coverage |
82% 0% [8% |

TABLE IT
STRUCTURAL COVERAGE MEASURES OF TEST CASES

B. Test Data Generation

We used the evolutionary algorithm-based tool EvoDroid
[40] to generate test inputs. EvoDroid generated 744 test cases
through multiple generations. We chose ten tests from the last
generation that appeared to have good coverage. This study
was not trying to measure the test generation technique, but to
demonstrate feasibility of the mutation analysis approach, thus
the particulars of the tests we generated were not important.
The test cases generated by EvoDroid do not contain test
oracles, so we added them by hand. We measured coverage
by inserting assertions into the source before and after each
action sent to the emulator. Table II shows that the test
set covered 82% of the methods, 90% of the blocks, and
85% of the statements in the main Activity TippyTipper.java.
According to the evaluation results of EvoDroid [40], the test
set generated by EvoDroid is able to cover 82% of statements
of the entire TippyTipper app. As a second step, we augmented
the EvoDroid tests to achieve full statement coverage. We were
able to do that with one additional test, designed by hand, thus
achieving 100% statement code with the exception of one line
of dade code.

C. Mutant Generation

Using the eight Android mutation operators, our mutation
system tried to generate 287 mutants for TippyTipper.java and
13 for main.xml. 110 mutants could not be compiled into
APK files (stillborn) and thus were not counted. As stated
in Section II, some mutants are stillborn because of incorrect
syntax. Another reason is that Android apps use integers as
the identification for pre-defined resources and values that are
saved in a separate file. Some mutation operators mutate the
identification integers, which makes it impossible for Android
to locate these pre-defined values, and further prevents APK
files from being compiled. Thus 190 mutants were created
and compiled into APK files. Our mutation system generated
105 mutants from the 19 method level operators borrowed
from mulJava [37]. Of the 190 valid mutants, 35 crashed
immediately after launching, including 16 AOIU, 16 LOI, 1
ITR, and 2 SDL mutants. These trivial mutants are marked as
killed by all tests. Three operators, ETR, IPR, and APD did
not create any mutants for TippyTipper.

On a MacBook Pro with a 2.6 GHz Intel i7 processor and
16 GB memory, generating a mutant and compiling it as an
APK file took up to two seconds.

D. Empirical results on TippyTipper

Table III summarizes results from running the new Android
mutants on the app. 57 of 85 Android mutants were killed
by the automatically-generated test set for a mutation score
of 67.06%. Based on our hand analysis, the Android mutation
operators did not generate any equivalent mutants.

Operators Total Killed Equivalent | Mutation
Mutants | Mutants Mutants Scores

ECR 66 45 0 68.18%
MDL 1 1 0 100.00%
ITR 5 5 0 100.00%
BWD 12 6 0 50.00%
TWD 1 0 0 0.00%
Total 85 57 0 67.06 %

TABLE 1T

EMPIRICAL RESULTS FOR THE ANDROID MUTATION OPERATORS

Operators Total Killed Equivalent | Mutation

Mutants | Mutants Mutants Scores

AOIS 8 0 4 0.00%
AOIU 20 17 0 85.00%
AORB 8 0 0 0.00%
CDL 2 0 0 0.00%
LOI 18 17 0 94.44%
ODL 4 0 0 0.00%
SDL 43 21 0 48.84%
VDL 2 0 0 0.00%
Total 105 55 4 54.46 %

TABLE T

EMPIRICAL RESULTS FOR THE TRADITIONAL MUTATION OPERATORS

On the same MacBook Pro and an emulator with Android
4.4.2, installing one mutant APK file in the emulator and
executing it against 11 test cases took up to eight minutes.
The entire execution cost nearly 20 hours.

Table IV summarizes results from running the traditional
mutants on the app. 55 of 105 traditional mutants were
killed. Four AOIS mutants were easily hand-identified to be
equivalent, as they conducted post increment/decrement after
a value was returned. So the mutation score is 54.46%.

Table V shows the results from the test set after it was
augmented to reach 100% statement coverage. This table
combines both types of mutants, Android and traditional. This
improved test set killed 155 of 190 mutants in total, for a
mutation score of 83.33%.

Operators Total Killed Equivalent | Mutation
Mutants | Mutants Mutants Scores
Android Mutants
ECR 66 66 0 100.00%
MDL 1 1 0 100.00%
ITR 5 5 0 100.00%
BWD 12 12 0 100.00%
TWD 1 0 0 0.00%
Traditional Mutants
AOIS 8 0 4 0.00%
AOIU 20 18 0 90.00%
AORB 8 0 0 0.00%
CDL 2 0 0 0.00%
LOI 18 18 0 100.00%
ODL 4 0 0 0.00%
SDL 43 35 0 81.40%
VDL 2 0 0 0.00%
[Total [190 [155 [4 [83.33%]
TABLE V

EMPIRICAL RESULTS FROM THE 100% STATEMENT COVERAGE TEST SET

E. Discussion

Figure 8 compares results between two test sets. Once the
test set was augmented to achieve 100% statement coverage,
the mutation score on the Android mutants was very high.
This set killed all but one Android mutant. This could be
interpreted to mean that statement coverage is a very effective
way to test Android apps, which from the field’s long term
experience with statement coverage seems unlikely. A more
likely interpretation is that the current collection of Android
mutants is not strong enough. We return to this point in future
work.

VI. RELATED WORK

This section describes relevant research in two areas: An-
droid testing and mutation testing.

A. Android Testing

Android’s development environment includes its own test
framework [3], which extends the ubiquitous JUnit. Many
testers also use Robotium [9], a powerful open source Android
test automation framework, to write unit, system, and user
acceptance tests. It enables people to write tests with very little
knowledge of the implementation details of the app under test.
Because it provides APIs that directly interact with Android
GUI components by run-time binding, it is possible to test
an app with Robotium even if only its APK file is available.
However, to maintain a stable test execution on emulators and
mobile devices, Robotium is set to run tests at a relatively low
speed. Another framework for Android apps is Robolectric [8],
which splits tests from the emulator, making it possible to run
tests by directly referencing the Android library files. All three
frameworks automate execution, but none supports test value
generation, test criteria, or any other type of test design.

Several research papers have been based on random test
value creation. Amalfitano et al. [13], [14] presented an
approach that starts with random inputs, then uses a code-
crawling algorithm to generate test cases. Hu and Neamtiu [29]
generated GUI test inputs randomly, and executed them with
Android Monkey. The tool Dynodroid [38] creates random
values and sequences of events, and uses heuristics to increase
the speed of Android Monkey.

Some researchers have extracted models to test Android
apps. ORBIT [54] creates a GUI model of the app and then
generates tests. A3E [18] uses static taint analysis algorithms
to build a model of the app, which is then used to automatically
explore the Activities in the app. These papers focus on
constructing models from which tests can be designed, as
opposed to applying a test criterion such as mutation.

Jensen et al. [30] combined symbolic execution with test
sequence generation to support system testing. Their goal was
to find valid sequences and inputs that would reach locations in
the code. Our research tries to maximize test case effectiveness
through mutation testing, an exceptionally strong coverage
criterion.

70

B Total number of mutants

E485% statement coverage

@ 100% statement coverage

AOIS AOIU AORB CDL

LOI ODL SDL VDL

ECR ITR M™MDL BWD TWD

Fig. 8. Results Comparison between 85% Statement Coverage and 100% Statement Coverage

Anand et al. [17] used dynamic symbolic execution [34],
[46] in the form of concolic testing [27], to test an An-
droid library. Their testing used pixel coordinates to identify
valid GUI events. Finally, several papers used evolutionary
search [39], [40] and symbolic execution [42] to test Android
apps. They focused on generating inputs for GUI testing of
Android apps, instead of using test criteria.

B. Mutation Testing

Mutation testing [21], [22] makes syntactic changes to an
original program (mutants), then challenges the tester to design
tests to kill the mutants by finding tests that cause each mutant
to behave differently from the original. Mutation analysis can
also be used to evaluate the strength a given test set or to guide
testers to design effective tests. Mutation testing has been
applied to many languages, including Fortran 77 [22], [33],
C [19], Java [32], [37], Javascript [41], and web applications
[49]. To our knowledge, mutation has not been applied to
mobile apps.

Mutation testing subsumes other test criteria by incor-
porating appropriate mutation operators. Designing effective
mutation operators is the most important task when applying
mutation to new technology, because the operators directly
determine the strength of the resulting tests.

The cost of mutation testing is very high, as it has the largest
number of test requirements among all of test coverage criteria.
To reduce this cost, selective mutation was proposed by Wong
and Mathur by only choosing a subset of mutation operators
[52], [53]. The muJava tool selects 15 operators to preserve

almost the same test coverage as non-selected mutation [37].

Offutt and Xu approached the problem of input data val-
idation for web services by designing mutation operators
that modified XML schemas [48]. The approach was verified
through experiments on web service applications. The paper
used the term perturbation instead of mutation to emphasize
that the mutation operators were perturbing the input space.
Our approach is slightly different. We mutate XML files, but
the XML files we mutate do not define input data, they help
configure the app.

VII. CONCLUSION AND FUTURE WORK

This paper proposes an innovative approach to conduct
mutation analysis for Android apps. We defined new mutation
operators specific to Android apps, implemented them in a mu-
tation analysis tool, and conducted a preliminary experiment
with a simple subject. The results show that mutation testing
can fruitfully be extended to accommodate program structures
novel to Android development. Our approach provides more
comprehensive testing for Android apps by considering not
only Java characteristics, but also XML layout, configuration
information, and other Android characteristics.

While promising, the work done so far requires significant
additional research.

1) We are unaware of any comprehensive fault models for
Android apps. Instead, we relied on Android syntax to
define the new Android mutation operators in this paper.
An Android fault model could improve the power of
our mutation operators by providing a reference against

2)

3)

4)

5)

which to evaluate mutation operators. We are currently
developing an Android fault model by investigating
actual faults in open source repositories.

In this paper, we defined eight new Android mutation
operators, from mutating Java source code, XML layout,
to Android permissions. However, there are aspects of
Android apps that we have not yet considered. For
instance, one important distinct characteristic of mo-
bile apps is that they are context-aware. For example,
location-aware apps behave differently when the owner
of the phone is moving in a vehicle vs. sitting at a desk.
This difference in behavior is not reflected directly in
the app code; rather the difference is in how often the
app receives an event notification about location.

As another example, most mobile devices usually have
two orientations: landscape and portrait. Mobile applica-
tions should be adaptive to both orientations, as well as
different screen resolutions. Our mutation system should
definitely incorporate screen size and orientation. This
is challenging because most issues with screen size and
orientation show up as usability problems rather than
functional failures.

Our Android mutation tool is very much a prototype
and requires additional development, such as designing
better mutation operators and algorithms. In particular,
we need to make our tool generate fewer stillborn
mutants, fewer crashed mutants, and more hard to kill
mutants. Also, we would like to employ external well-
established frameworks, such as Xposed [11], to facili-
tate our mutation analysis.

The experiment we discussed in this paper is quite
limited. For the subject, we selected a single main
activity in a single Android app. Clearly, we plan to
do more experimentation with more apps.

The cost of mutation testing Android apps is especially
expensive due to the slow speed of Android test execu-
tion with Robotium. Our small experiment required 20
hours for a single iteration.

One possible solution is to evaluate mutants in parallel.
A more interesting approach would be to choose mu-
tants more carefully. Work in general program mutation
suggests that only a small number of generated mutants
are necessary [15]; this result may extend to Android
mutation as well.

ACKNOWLEDGMENT

Offutt is partially funded by The Knowledge Foundation

(KK

S) through the project 20130085, Testing of Critical

System Characteristics (TOCSYC).

[1]
[2]
[3]

REFERENCES

Android developers guide. Last access January 2015. [Online].
Available: http://developer.android.com/guide/topics/fundamentals.html
Android intent. Last access January 2015. [Online]. Available:
http://developer.android.com/reference/android/content/Intent.html

Android testing framework. Last access January 2015. [Online].

Available: http://developer.android.com/guide/tog)ics/testing/
RT and Dalvik. Last access March 2015. [Online]. Available:

https://source.android.com/devices/tech/dalvik/index.html

[5]
[6]

[7]
[8]

[9]
[10]

(1]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Dalvik - code and documentation from Android’s VM team. Last access
January 2015. [Online]. Available: http://code.google.com/p/dalvik/
Google play. Last access January 2015. [Online]. Available: https:
/Iplay.google.com/store

JUnit. Last access January 2015. [Online]. Available: http://junit.org
Robolectric. Last access January 2015. [Online]. Available: https:
//github.com/robolectric/robolectric

Robotium. [Online]. Available: http://code.google.com/p/robotium/
TippyTipper. Last access January 2015. [Online]. Available: https:
/lcode.google.com/p/tippytipper

Xposed Framework. Last access March 2015. [Online]. Available:
http://repo.xposed.info

H. Agrawal et al., “Design of mutant operators for the C programming
language,” Software Engineering Research Center, Purdue University,
West Lafayette IN, Technical Report SERC-TR-41-P, March 1989.

D. Amalfitano, A. Fasolino, and P. Tramontana, “A GUI crawling-
based technique for Android mobile application testing,” in Software
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on, March 2011, pp. 252-261.

D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using GUI ripping for automated testing of Android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2012. New
York, NY, USA: ACM, 2012, pp. 258-261.

P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in 7th IEEE International Conference on
Software Testing, Verification and Validation (ICST 2014), Cleveland,
Ohio, March 2014.

P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge,
UK: Cambridge University Press, 2008, iSBN 978-0-521-88038-1.

S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE "12. New York, NY, USA: ACM, 2012, pp. 59:1-59:11.

T. Azim and 1. Neamtiu, “Targeted and depth-first exploration for
systematic testing of Android apps,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA 13. New York, NY,
USA: ACM, 2013, pp. 641-660.

M. E. Delamaro and J. C. Maldonado, “Proteum-A tool for the assess-
ment of test adequacy for C programs,” in Proceedings of the Conference
on Performability in Computing Systems (PCS 96), New Brunswick, NJ,
July 1996, pp. 79-95.

M. E. Delamaro, J. Offutt, and P. Ammann, “Designing deletion mu-
tation operators,” in 7th IEEE International Conference on Software
Testing, Verification and Validation (ICST 2014), Cleveland, Ohio,
March 2014.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE Computer, vol. 11,
no. 4, pp. 3441, April 1978.

R. A. DeMillo and J. Offutt, “Constraint-based automatic test data
generation,” IEEE Transactions on Software Engineering, vol. 17, no. 9,
pp- 900-910, September 1991.

L. Deng, J. Offutt, and N. Li, “Empirical evaluation of the statement
deletion mutation operator,” in 6th IEEE International Conference on
Software Testing, Verification and Validation (ICST 2013), Luxembourg,
March 2013.

S. C. P. F. Fabbri, J. C. Maldonado, M. E. Delamaro, and P. C. Masiero,
“Mutation analysis testing for finite state machines,” in 5th [EEE
International Symposium on Software Reliability Engineering (ISSRE
94), Monterey, CA, November 1994, pp. 220-229.

S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E. Delamaro, and
E. W. Wong, “Mutation analysis applied to validate specifications based
on Petri nets,” in Proceedings of the 8th International Conference on
Formal Description Techniques (FORTE’95), Quebec, Canada, October
1995, pp. 329-337.

Gartner, “Gartner says sales of smartphones grew 20
percent in third quarter of 2014,” Online, December 2014,
https://www.gartner.com/newsroom/id/2944819/, last access January
2015.

P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in 2005 ACM SIGPLAN conference on Programming
Language Design and Implementation, Chicago Illinois, USA, June
2005, pp. 213-223.

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

R. Hierons and M. Merayo, “Mutation testing from probabilistic finite
state machines,” in Third Workshop on Mutation Analysis (IEEE Muta-
tion 2007), Windsor, UK, September 2007, pp. 141-150.

C. Hu and I. Neamtiu, “Automating GUI testing for Android applica-
tions,” in Proceedings of the 6th International Workshop on Automation
of Software Test, ser. AST "11. New York, NY, USA: ACM, 2011, pp.
77-83.

C. S. Jensen, M. R. Prasad, and A. Mgller, “Automated testing with
targeted event sequence generation,” in Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis, ser. ISSTA 2013.
New York, NY, USA: ACM, 2013, pp. 67-77.

S. Kim, J. A. Clark, and J. A. McDermid, “Investigating the applicability
of traditional test adequacy criteria for object-oriented programs,” in
Proceedings of ObjectDays 2000, October 2000.

, “Investigating the effectiveness of object-oriented strategies with
the mutation method,” in Proceedings of Mutation 2000: Mutation
Testing in the Twentieth and the Twenty First Centuries, San Jose, CA,
October 2000, pp. 4-100, Wiley’s Software Testing, Verification, and
Reliability, December 2001.

K. N. King and J. Offutt, “A Fortran language system for mutation-based
software testing,” Software-Practice and Experience, vol. 21, no. 7, pp.
685-718, July 1991.

B. Korel, “A dynamic approach of test data generation,” in Conference
on Software Maintenance-1990, San Diego, CA, 1990, pp. 311-317.
0. A. L. Lemos, F. C. Ferrari, P. C. Masiero, and C. V. Lopes, “Testing
aspect-oriented programming pointcut descriptors,” in Proceedings of
the 2nd workshop on testing aspect-oriented programs. ACM, 2006,
pp. 33-38.

Y.-S. Ma, Y.-R. Kwon, and J. Offutt, “Inter-class mutation operators for
Java,” in Proceedings of the 13th International Symposium on Software
Reliability Engineering. Annapolis MD: IEEE Computer Society Press,
November 2002, pp. 352-363.

Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “Mulava : An automated class
mutation system,” Software Testing, Verification, and Reliability, Wiley,
vol. 15, no. 2, pp. 97-133, June 2005.

A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for Android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2013. New
York, NY, USA: ACM, 2013, pp. 224-234.

R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and
A. Stavrou, “A whitebox approach for automated security testing of
Android applications on the cloud,” in 2012 7th International Workshop
on Automation of Software Test (AST), Jun. 2012, pp. 22-28.

R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evo-
lutionary testing of Android apps,” in Proceedings of the 2014 ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, ser. FSE "14. Hong Kong, China: ACM, November 2014.

S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Efficient JavaScript

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

mutation testing,” in Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on, March 2013, pp.
74-83.

N. Mirzaei, S. Malek, C. S. Pisidreanu, N. Esfahani, and R. Mahmood,
“Testing Android apps through symbolic execution,” SIGSOFT Softw.
Eng. Notes, vol. 37, no. 6, pp. 1-5, Nov. 2012.

L. J. Morell, “A theory of fault-based testing,” IEEE Transactions on
Software Engineering, vol. 16, no. 8, pp. 844-857, August 1990.

R. Nilsson, J. Offutt, and J. Mellin, “Test case generation for mutation-
based testing of timeliness,” in Proceedings of the 2nd International
Workshop on Model Based Testing, Vienna, Austria, March 2006, pp.
102-121.

J. Offutt, R. Alexander, Y. Wu, Q. Xiao, and C. Hutchinson, “A fault
model for subtype inheritance and polymorphism,” in Proceedings of
the 12th International Symposium on Software Reliability Engineering.
Hong Kong China: IEEE Computer Society Press, November 2001, pp.
84-93.

J. Offutt, Z. Jin, and J. Pan, “The dynamic domain reduction approach to
test data generation,” Software-Practice and Experience, vol. 29, no. 2,
pp. 167-193, January 1999.

J. Offutt, Y.-S. Ma, and Y.-R. Kwon, “The class-level mutants of
mulava,” in Workshop on Automation of Software Test (AST 2006),
Shanghai, China, May 2006, pp. 78-84.

J. Offutt and W. Xu, “Testing web services by XML perturbation,” in

Proceedings of the 16th International Symposium on Software Reliability
Engineering. Chicago, IL: IEEE Computer Society Press, November

2005.

U. Praphamontripong and J. Offutt, “Applying mutation testing to web
applications,” in Sixth Workshop on Mutation Analysis (IEEE Mutation
2010), Paris, France, April 2010.

V. Roubtsov, “Emma,” Online, 2006, http://emma.sourceforge.net/, last
access January 2015.

M. Trakhtenbrot, “New mutations for evaluation of specification and
implementation levels of adequacy in testing of statecharts models,” in
Third Workshop on Mutation Analysis (IEEE Mutation 2007), Windsor,
UK, September 2007, pp. 151-160.

W. E. Wong, M. E. Delamaro, J. C. Maldonado, and A. P. Mathur,
“Constrained mutation in C programs,” in Proceedings of the S8th
Brazilian Symposium on Software Engineering, Curitiba, Brazil, October
1994, pp. 439-452.

W. E. Wong and A. P. Mathur, “Reducing the cost of mutation testing:
An empirical study,” Journal of Systems and Software, Elsevier, vol. 31,
no. 3, pp. 185-196, December 1995.

W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for automated
GUI-model generation of mobile applications,” in Proceedings of the
16th International Conference on Fundamental Approaches to Software
Engineering, ser. FASE’13. Berlin, Heidelberg: Springer-Verlag, 2013,
pp. 250-265.

