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Abstract—Mutation analysis is widely considered to be an
exceptionally effective criterion for designing tests. It is also
widely considered to be expensive in terms of the number of
test requirements and in the amount of execution needed to
create a good test suite. This paper posits that simply deleting
statements, implemented with the statement deletion (SDL)
mutation operators in Mothra, is enough to get very good
tests. A version of the SDL operator for Java was designed
and implemented inside the muJava mutation system. The SDL
operator was applied to 40 separate Java classes, tests were
designed to Kill the non-equivalent SDL mutants, and then
run against all mutants.

I. INTRODUCTION

Program mutation analysis [1], [2] creates alternate ver-
sions of programs (mutants), each of which differs from the
original by a small syntactic change, then asks the tester
to design inputs to kill the mutants by causing each mutant
to have a different result from the original version. These
changes are defined by mutation operators, which are rules
that specify changes to syntactic elements in a program.
The ability for mutation testing to help testers design high
quality tests has always depended directly on the mutation
operators. Well designed mutations operators can result in
very powerful testing, but poorly designed operators can
result in ineffective tests.

Mutation operators have been designed for several pro-
gramming languages, including Fortran 77 [2], [3], C [4],
and Java [5], [6]. Jia and Harman surveyed mutation analysis
for programs and other software engineering artifacts [7].
The operators that modify individual statements (statement-
level operators) have been fairly stable since the Mothra
project [3], with the major change being from the selective
operator study [8], where it was found that using five
Mothra mutation operators for Fortran yielded tests that
killed most other mutants. This approach was implemented
in subsequent mutation systems, including muJava [6] with
15 operators for Java.

Howeyver, users of mutation have observed that mutation
creates many test requirements (that is, mutants) relative to
the number of test requirements from other test criteria.
Budd [9], analyzed the number of mutants and found it
to be roughly proportional to the product of the number

of variable references times the number of data objects
(O(Refs * Vars)). Acree et al. [10] later claimed that the
number of mutants is O(Lines * Refs)—assuming that the
number of data objects in a program is proportional to the
number of lines. This was reduced to O(Lines  Lines) for
most programs; this figure appears in most of the literature.

Offutt et al. [8] performed a statistical regression analysis
of actual programs, showing that the number of lines did
not contribute to the number of mutants, but that Budd was
correct. That paper also introduced selective mutation, which
reduces the number of mutants to be proportional to the
number of variable references (O(Refs)).

More recently, Li et al. found that although selective
mutation has far more test requirements than the edge-pair,
all-uses and prime path criteria, it ultimately needs fewer
tests [11]. This implies that many mutants are redundant,
encouraging us to believe that mutation testing can be
effective with fewer mutants.

This paper presents results that investigate a hypothesis
that we can reduce the overlap among mutants with a simple,
direct approach: a single mutation operator. Untch [12]
proposed this idea by using the statement deletion operator
(SDL), and got positive initial results. SDL removes entire
statements from the program, challenging the tester to design
tests that cause each statement to have an effect on the
outcome. Note this is considerably more from statement
coverage, which only requires that a statement be reached,
rather than omitting the statement cause an error. muJava
implements statement coverage with the special “Bomb()”
operator. The SDL operator does not mimic user errors, but
does require very strong tests.

Section II describes similar research into reducing the
cost of applying mutation. Section III then defines the SDL
mutation operator in detail, including subtle decisions that
have to be made to use it in Java. Section IV presents results
from an empirical evaluation of this hypothesis, and section
V presents conclusions and recommendations.

II. BACKGROUND AND RELATED WORK

Statement deletion has been in mutation systems since the
beginning, including the Mothra system [2]. DeMillo, Pan
and Spafford [13] proposed a technique called critical slicing



that was based on SDL and mutation testing. The idea is to
delete statements to help localize faults during debugging.
The purpose of this research is to reduce the expense of
mutation analysis for testing.

Several approaches have been developed to reduce this
expense. Untch categorized the approaches into three strate-
gies, do-fewer, do-smarter, and do-faster [14], [15]. Do-
fewer approaches try to run fewer mutated programs without
incurring intolerable loss in effectiveness. Do-smarter ap-
proaches distribute the computational expense over several
machines or factor the expense over several executions by re-
taining state information between runs. Do-faster approaches
try to generate and run mutant programs more quickly.

An early do-fewer approach [16] randomly sampled from
all created mutants. This is appealing because it is simple
and straightforward, but the resulting tests were significantly
weaker when the sampling rate was made low enough to
yield appreciable savings. Wong and Mathur suggested the
idea of selective mutation, which uses only the most critical
mutation operators [17], [18]. Offutt et al. [8] developed
this idea with a detailed study and recommended reducing
the mutation operators used by Mothra [2] from 22 to five.
This selective set provided almost the same test coverage as
non-selective mutation, and was used in muJava [6] with 15
operators for Java.

More recent work on selective mutation was by Namin
et al. [19]. They viewed selective mutation statistically, and
looked at it as a variable selection or reduction problem.
They started with 108 C mutation operators and used sta-
tistical approaches to find 28 mutation operators that are
sufficient to predict how effective a test suite could be on all
operators. This reduced the number of mutants by 92%, the
highest rate of reduction compared with other approaches.
An interesting point of Namin’s work is that instead of
just looking at how close the selective set comes to 100%
coverage, they looked at the entire range of possible scores.
Tests were chosen randomly from a given pool, which could
have affected the results.

Kaminski et al. investigated a do-fewer approach theo-
retically [20]. The relational operator replacement mutation
operator (ROR) generates seven mutants for every relational
operator in a program. Kaminski proved that if three mu-
tants are killed for each relational operator, those tests are
guaranteed to kill the remaining four mutants. Thus only
three mutants need be created. Just et al. had similar results
with the conditional operator replacement mutation operator
[21].

Most do-smarter approaches have used non-standard com-
puter architectures by distributing the computational expense
of running hundreds of mutants over several machines.
Because each execution is independent, this problem lends
itself very well to parallelism. Mutation analysis has been
adapted to vector processors [22], SIMD machines [23],
Hypercube (MIMD) machines [24].

Another do-smarter approach is weak mutation [25]. Weak
mutation halts execution shortly after the mutated portion
of the program, rather running the program to completion.
The intermediate state is then examined, and the mutant is
killed if the state is incorrect. Although “weak” because
the incorrect state would not always propagate to the end
of execution, experiments showed that weak mutation tests
were almost as effective as strong mutation tests, with a
savings of 50% or more [26].

Do-faster approaches try to generate and run mutants more
quickly. Most early mutation systems used interpretive exe-
cution, which is significantly slower than compiled speeds.
The simplest approach is separate compilation, which in-
dividually creates, compiles, links, and runs each mutant.
This avoids the interpretation cost, but creates a compilation
bottleneck [27], making mutation even slower for most
programs. Moreover separate compilation requires a great
deal of storage. It is, however, very simple to build separate
compilation mutation systems.

Compiler-integrated mutation [28] mutates linked object
code, thus gaining compilation speed without a compilation
bottleneck. However, crafting this type of system on top of
an existing compiler is very difficult, time consuming, and
expensive.

The mutant schema generation (MSG) [29] approach
embeds many mutants into each line of source code, so
that one source file contains all the mutants. This file is
then compiled once, and run with an additional parameter
to specify which mutant should be activated. The muJava
system used a combination of MSG and Java reflection,
which is similar to the compiler-integrated technique, but
modifies Java bytecode rather than executable code.

Untch conducted an experiment across four sufficient
sets of mutation operators, including the sets proposed by
Wong, Offutt, and Namin, in addition to the single statement
deletion operator (SSDL in his work, which was with C
programs) [12]. Untch used regression analysis to show that
SDL generates the fewest mutants, but is best at predicting
the mutation score of the given test suite. Using only the
SDL operator is a do-fewer approach that we call SDL-
mutation. This paper evaluates this preliminary result in two
different directions. First, we implement the SDL operator
for Java, which involves a number of subtle decisions on
the language constructs. Second, we evaluate its benefits in
terms of how well tests generated to kill only SDL mutants
perform when run on all of muJava’s method-level mutants.

III. THE STATEMENT DELETION MUTATION OPERATOR

The statement deletion operator was implemented in
Mothra for Fortran-77, which has simple control structures,
no statement blocks, no conditional returns, and no dynamic
memory. SDL was also defined for C [30] and for Ada
[31], both of which have more complicated control structure
than Fortran-77. SDL requires much more than statement



coverage, because a killing test must cause the statement to
affect the program’s behavior. We define how SDL is applied
to the various control structures in Java, then compare our
Java SDL operator with the C and Ada versions.

We start by defining SDL on single statements, then
extend the definition to other control structures. These
extended rules follow four guidelines:

1) All possible cases: Every possible case must be

considered.

2) Boolean conditions: Most control structures have at

least one Boolean condition, which should be deleted.

3) Inner statements: Statements inside control structures

must be deleted.

4) Nested control structures: Nested control structures

must be treated recursively.

This paper provides enough documentation so that these
results can be replicated in other tools and other experiments.
To do so, we define SDL in terms of language constructs,
and provide explicit examples for clarity.

SDL for single statements. Fortran has a CONTINUE
statement, which only provides a placeholder. Thus, Mothra
[3] implemented SDL by replacing each statement with
CONTINUE. In Java, each statement is commented out, as
shown in figure 1. SDL is not applied to variable declara-
tions, since the mutants would not compile. This example
has five executable statements, so SDL yields five mutants.

When applied to control structures that include a block
of statements, including “if;” “while,” and “for” blocks, the
entire block must be deleted. This is shown in figure 2. In
the example, Mutant 1 deletes the if block, and Mutant 2
deletes the for block.

SDL for while statements. Most while statements include
a Boolean condition and a block of statements. The condition
decides whether to execute the statements in the loop. The
Java SDL operator removes every statement in the loop,
one at a time, then deletes the while condition entirely,
leaving the body. To avoid compilation problems, this is
accomplished by replacing the condition with true. The
example in figure 3 has two statements in the while loop, so
three mutants are created.

The condition is not replaced by false, because that would
be equivalent to deleting the entire while statement, which
is already done. The true mutant will often result in an
infinite loop, which is handled by muJava’s internal “time-
out” counter.

SDL for if statements. The if statement is complicated
by the else clause. The if statement is removed by replacing
the condition with true, as with the while statement, as
illustrated in figure 4, Mutant 1. Then, each statement in
the body of the if statement is deleted (Mutants 2 and
3). Then the entire else clause is deleted (Mutant 4). The
same procedure is applied to the else clauses, replacing the
condition by true and then deleting each statement (Mutants
5, 6, and 7).

[ Return Type | Mutant |
int return O;
boolean return true; / return false;
char return 0;
double return 0;
float return 0;
long return 0;
short return 0;
String return null;
Table I

SDL WITH DIFFERENT RETURN TYPES

SDL for for statements. The for statement includes a
variable declaration, a conditional statement, and an incre-
ment, each of which is treated as a statement by the SDL
operator. A declaration cannot be deleted, but the conditional
and the increment statements are, as shown in figure 5,
Mutants 1 and 2. Then each statement inside the loop is
deleted. If deleting the conditional statement results in an
infinite loop, muJava’s internal “time-out” counter handles
it. Most of these mutants are therefore easy to kill, except
when the program contains a break inside the loop. We did
not develop rules for the For-Each Loop because muJava
does not support Java 1.5.

SDL for switch statements. The SDL operator works at
two levels for the switch statement. First, each case block
is deleted, as shown in figure 6, Mutants 1, 2, and 3. Then
each statement in each case block is deleted. Two of these
are shown in figure 6, Mutants 4 and 5, and the other four
are omitted from the example.

SDL for try-catch blocks. The try-catch blocks are
complicated by Java’s semantic rules for exceptions. If a
statement inside a try block that could raise an exception
is deleted, the corresponding catch block will result in
a compiler error if the exception is checked. Thus, we
also delete the corresponding catch block, unless another
statement can raise the same exception inside the same try
block. Figure 7 shows two examples. In Mutant 1, if the
readLine() statement is deleted, the IOException catch block
must also be deleted. In Mutant 2, if the parselnt() statement
is deleted, the NumberFormatException catch block must
also be deleted. Since SDL is a method-level mutation
operator, it only considers try-catch blocks that are explicitly
defined in the source code. Built-in exceptions are not
mutated.

SDL for return statements. Deleting a return statement
in Java would result in a compile error, so we remove the
effect of the return statement by changing the value to the
default value of the appropriate primitive type, as shown in
table 1.

A. Comparison with C and Ada operators

The SDL operator defined here is more extensive than
the operators that were defined for both C and Ada. The



public void test() public void test() public void test()
{
int a, b; int a, b; int a, b;
a=1; /la=1; a=1;
b=2; b=2; /I'b=2;
} }
Original method Mutant 1 Mutant 2

Figure 1.

General statement deletion mutation operator

public void test()

public void test()

public void test()

{ { {
inta, b, c, t; inta, b, c, t; int a, b, ¢, t;
if (a==0) /1 if (a==0) if (a==0)
1{
b =3; // b=3; b =3;
I}
for (int i = 0; i<5; i++) for (int i = 0; i<5; i++) // for (int i = 0; i<5; i++)
t=t+b+c; t=t+b+c /I t=t+b+cg;
} }
Original method Mutant 1 Mutant 2

Figure 2.

General statement deletion mutation operator for control structures

public void testWhile()
{

int a, b, ¢, t;
while (a<5)

public void testWhile()
{

inta, b, c, t;
while (true)

public void testWhile()
{

int a, b, ¢, t;
while (a<5)

public void testWhile()
{

int a, b, ¢, t;
while (a<5)

t=t+b+c; t=t+b+c; //lt=t+b+c; t=t+b+c;
a++; a++; a++; /I a++;
} } } }
} }
Original method Mutant 1 Mutant 2 Mutant 3
Figure 3. SDL for while statements

Ada operators [31] deleted entire control structures, but not
individual statements or pieces of the control structures. This
is equivalent to how we define the general SDL operator
for control structures, shown in figure 2. The C operators
[30] delete entire control structures, and also deletes each
executable statement within the bodies of control structures.
When compared with figure 3 for the while statement, the
C operators create mutants 2 and 3. The C operators do not
delete the predicate, while leaving the loop body (mutant 1
in figure 3), do not delete the individual components of the
for loop body, do not delete individual cases in the switch
statement, and do not delete the return values of return
statements. Also, C does not have a try-catch block.

IV. EMPIRICAL EVALUATION OF SDL-MUTATION

To evaluate the effectiveness of SDL-Mutation, we im-
plemented the specifications defined in section III in the
muJava mutation system [6]. We designed tests to kill all
SDL mutants for 40 subject classes, eliminating equivalent
mutants by hand, then evaluated those tests by computing
their mutation scores on all of muJava’s method-level mu-
tation operators.

A. Experimental design

muJava allows testers to choose all or any subset of muta-
tion operators to use. The SDL operator was added to the 15

existing method-level mutation operators by modifying the
mulJava source. This allows the SDL operator to be used in
isolation, or in conjunction with other operators by making
a simple selection in the GUL

We chose 40 Java classes as experimental subjects of
varying sizes, purposes, and complexity. They were taken
from textbook examples and open source projects. They
varied in size from 1 to 26 methods, and from 29 to 433
LOC. Statistics from all 40 are shown in table II, along
with results from the study. Although fairly small, the SDL
operator is intended for use during unit testing, so these are
precisely the kinds of classes we would test SDL with.

Tests to kill all SDL mutants were generated by hand, by
the first author. They were generated iteratively, and tests that
did not (strongly) kill additional mutants were discarded.
The mutants that could not be killed were analyzed for
equivalence. Although not many, less than 4% of the SDL
mutants were equivalent. This was a bit surprising, because it
indicates the deleted statement has no affect on the program.
Reasons for this are discussed in section IV-C.

Once an SDL-adequate set of tests was created, these tests
were evaluated against all of muJava’s mutation operators,
which represent the selective set [8]. The theory is that if
SDL-adequate tests can kill all mutants, then we can discard
all other mutation operators and just use SDL. If the SDL-
adequate tests kill very few of the other mutants, then SDL



public void testIf() public void testIf() public void testIf() public void testIf()
{ { { {
inta, b, c, t; inta, b, ¢, t; int a, b, ¢, t; inta, b, c, t;
if (a<5) if (true) if (a<5) if (a<5)
t=t+b+c; t=t+b+c; /lt=t+b+c; t=t+b+c;
at++; at++; a++; /] a++;
} else if (a>20) } else if (a>20) } else if (a>20) } else if (a>20)
{ { { {
t=t+a+c; t=t+a+c; t=t+a+c; t=t+a+c;
b++; b++; b++; b++;
} } } }

Original method Mutant 1 Mutant 2 Mutant 3
public void testlf() public void testIf() public void testIf() public void testIf()
{ { { {

inta, b, c, t; inta, b, c, t; int a, b, ¢, t; inta, b, c, t;

if (a<5) if (a<5) if (a<5) if (a<5)

t=t+b+c; t=t+b+c; t=t+b+c; t=t+b+c;
at++; at++; a++; at++;
} 1 else if (a>20) } else if (true) } else if (a>20) } else if (a>20)

/Rt { {

/I t=t+a+c; t=t+a+c; /lt=t+a+c; t=t+a+c;

/I b++; b++; b++; // b++;

'} } } }

}
Mutant 4 Mutant 5 Mutant 6 Mutant 7
Figure 4. SDL for if statements
public void testFor() public void testFor() public void testFor()
{ { {
int a, b, c; int a, b, c; int a, b, c;
intt=35; intt=35; intt=35;
for (int i = 0; i<t; i++) for (inti=0; ;i++) for (inti = 0; i<t; )
{ { {
a=a+b+c a=a+b+c a=a+b+c
b=b+c; b=b+c; b=b+c;
} } }
}
Original method Mutant 1 Mutant 2
public void testFor() public void testFor()
{ {
int a, b, ¢; int a, b, ¢;
intt=235; intt=35;
for (int i = 0; i<t; i++) for (int i = 0; i<t; i++)
{
//la=a+b+c a=a+b+c;
b=b+c; //b=b+c;
} }
} }
Mutant 3 Mutant 4

Figure 5. SDL for for statements

is not very useful by itself.

B. Experimental results

Table II shows the data from the classes and the study. The
first three columns give the name of the class, the number of
methods, and the number of executable lines of code (LOC).
The number of SDL mutants ranges from 4 (in sum and
checklt) 155 (in CharArraySet). 23 of the classes had no
equivalent SDL mutants, and BoyerMoore had the most with
6. We designed and generated between 1 and 21 tests to kill
all non-equivalent SDL mutants.

The four columns under muJava give the data from
running the SDL-adequate tests on all 15 method-level
muJava mutants. The number of mutants ranged from 9
(in checklt) to 691 (in CharArraySet). Again, equivalent
mutants were determined by hand by the first author from
the remaining live mutants. The mutation scores of the SDL-
adequate tests are shown in the last column, and ranged from
a low of 0.76 (in oddOrPos) to 1.00 in four different classes.
The mean was 0.92 and the median was 0.93.

Figure 8 gives a rough comparison of the cost. For each
class, figure 8 shows the number of method-level mutants



public void testSwitch()

{
intt=35;
switch (t) {
case 10: monthString = ”Oct”;

public void testSwitch()
{
intt=35;
switch (t) {
// case 10: monthString = ”Oct”;

public void testSwitch()

intt=235;
switch (t) {
case 10: monthString = ”Oct”;

break; // break; break;
case 11: monthString = "Nov”; case 11: monthString = "Nov”; // case 11: monthString = "Nov”;
break; break; // break;
default: monthString = Invalid”; default: monthString = “Invalid”; default: monthString = “Invalid”;
break; break; break;
} } }
} }
Original method Mutant 1 Mutant 2
public void testSwitch() public void testSwitch() public void testSwitch()
{ { {
intt=35; intt=235; intt=35;

switch (t) {
case 10: monthString = ”Oct”;

switch (t) {
case 10: // monthString = "Oct”;

switch (t) {
case 10: monthString = ”Oct”;

break; break; // break;
case 11: monthString = "Nov”; case 11: monthString = "Nov”; case 11: monthString = "Nov”;
break; break; break;
// default: monthString = “Invalid”; default: monthString = “Invalid”; default: monthString = “Invalid”;
// break; break; break;
} } }
} } }
Mutant 3 Mutant 4 Mutant 5
Figure 6. SDL for switch statements

public void testTry()

public void testTry()

{ {
try { try {
inStr = in.readLine();
input = Integer.parselnt (inStr);

catch (IOException e) {

print ("Could not read input”);
I}
catch (NumberFormatException e)
{ print ("Must be numeric”);

/I inStr = in.readLine();
input = Integer.parselnt (inStr);

/I catch (IOException e) {
// print ("Could not read input”);

catch (NumberFormatException e)
{ print ("Must be numeric”);

public void testTry()
{
try {

inStr = in.readLine();
/I input = Integer.parselnt (inStr);
catch (IOException e) {
print ("Could not read input”);
/I catch (NumberFormatException e)
/I { print ("Must be numeric”);

I}

}

Original method
Figure 7.

generated by muJava as the top bar (diagonal lines) and then
the number of SDL mutants as the lower bar (dots).

C. Discussion

The data in table II clearly indicate that SDL-mutation
is a reasonably effective alternative to selective mutation.
Although the mean mutation score of 0.92 means we can-
not conclude that SDL-mutation is as strong as selective
mutation, it is certainly a viable alternative, considering the
savings. 90% mutation score is widely considered to be
difficult to obtain [32], [33].

The direct comparison of the number of mutants for each
class is shown in figure 8. The savings are impressive for
all classes. Counting all classes together, we generated only
1095 SDL-mutant compared with 5807 selective mutants.
This is a savings of over 81%!

Another advantage of SDL-mutation is that we have rela-
tively fewer equivalent mutants. 9.18% of the selective mu-
tants were equivalent, but only 3.74% of the SDL mutants.

Mutant 1

Mutant 2

SDL for try-catch blocks

On the surface, we might expect to have zero equivalent SDL
mutants, since an equivalent SDL mutant essentially means
the program contains a redundant statement. Our analysis
showed four reasons for redundant statements leading to
equivalent SDL mutants.

First, some classes contain unnecessary control blocks.
In the example in figure 9, if the NameList (theNames)
is empty, the for loop is skipped and the empty list
NO_NAMES is returned. However, when the if statement is
deleted, the remaining refurn statement still returns an empty
list. Thus, the if block is redundant. Of the 41 equivalent
SDL mutants in our experiment, 36.59% (15) fall into this
category.

Second, variables occasionally are given values that are
never used. These assignment statements will yield equiva-
lent SDL mutants. 24.39% of the equivalent SDL mutants
had this kind of assignment without use statements. Third,
variables are sometimes redefined with the same value
before the first use. Java assigns primitive type variables



Classes SDL muJava

Methods LOC | Mutants Equiv  Tests | Mutants Killed Equiv | Score
booleanQuery 23 433 31 0 10 94 74 12 0.90
BoundedQueue 6 82 33 4 9 184 151 18 0.91
BoyerMoore 5 107 47 6 3 328 283 13 0.90
cal 3 98 16 1 5 177 132 24 0.86
Calculation 9 116 32 1 9 271 182 45 0.81
CharArraySet 31 326 155 2 21 691 620 35 0.95
checklt 2 29 4 0 2 9 7 0 0.78
CheckPalindrome 1 36 7 0 2 35 34 0 0.97
Count2s 3 66 25 0 2 307 267 25 0.95
countPositive 2 36 6 0 2 26 23 2 0.96
CustomScoreProvider 5 80 31 4 9 147 106 27 0.88
Document 16 211 68 2 15 170 143 11 0.90
FieldInfos 22 288 83 0 17 380 291 18 0.80
findlast 2 57 9 0 2 39 39 0 1.00
findVal 3 58 9 0 3 41 34 4 0.92
Gaussian 7 67 21 1 4 258 211 41 0.97
GaussionElimination 2 58 28 0 2 291 282 4 0.98
Heap 8 75 33 0 11 198 171 23 0.98
IndexModifier 26 344 22 0 15 63 50 8 0.91
lastZero 2 35 6 0 3 26 21 2 0.88
LRS 3 46 16 0 5 105 98 5 0.98
MergeSort 2 50 17 0 2 116 112 2 0.98
MillisDurationField 21 146 28 0 21 102 52 39 0.83
NumberTools 2 72 28 0 7 130 109 13 0.93
numZero 1 36 6 0 1 26 22 2 0.92
0ddOrPos 2 36 6 0 2 46 32 4 0.76
power 2 43 9 0 3 56 51 3 0.96
printPrimes 3 54 20 1 3 73 63 6 0.94
Queue 6 78 29 4 8 150 125 12 0.91
QuickSort 3 60 21 0 3 290 247 23 0.93
RecursiveSelectionSort 2 38 12 0 1 91 75 6 0.88
SearchString 2 49 28 2 6 165 122 17 0.82
Stack 7 74 30 3 10 89 71 17 0.99
stats 2 61 15 2 1 145 131 14 1.00
sum 2 34 4 0 2 27 23 4 1.00
Term 13 123 44 3 16 57 49 8 1.00
TermRangeQuery 12 165 79 0 21 152 132 14 0.96
TestPat 2 36 15 3 3 98 88 4 0.94
trashAndTakeOut 2 37 15 1 4 117 88 24 0.95
twoPred 2 40 7 1 3 37 32 4 0.97

TOTAL 269 3880 1095 41 268 5807 4843 533
Average 92

Median = .93 |
Table II

EXPERIMENTAL RESULTS

private final static NameList[] NO_NAMES = new NameList[0];
public NameList[] getNameList (String goodName) {
List result = new ArrayList();
for (int i = 0; i <theNames.size(); i++) {
NameList name = (NameList) theNames.get(i);
if (name.getName().equals (goodName)) {
result.add (name);

}

/I if (result.size() == 0)
1/ return NO_NAMES;
return (NameList[]) result.toArray (new NameList [result.size()]);

}

Figure 9. Example of SDL equivalent mutant

a default value at their declarations. Programmers will
often follow that with an assignment of the same value,
resulting in a redundant statement and an equivalent SDL

mutant. 21.95% of the equivalent SDL mutants were rede-
fine statements. Fourth, break statements sometimes yield
equivalent mutants. Programmers often insert unnecessary
breaks into case statements as an engineering measure to add
redundancy, and to protect against future changes. 9.76% of
the equivalent SDL mutants were break statements.

Simple slicing techniques [34] could probably find all or
most of these equivalent mutants. In fact, optimizing com-
pilers often eliminate these kinds of redundant statements,
so the same technique could be used to eliminate equivalent
SDL mutants [35].

SDL did relatively poorly on some classes, including six
where the SDL-adequate tests had less than an 85% mutation
score and two with less than an 80% score. A hand analysis
of the remaining live mutants showed three general reasons
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Figure 8.

for SDL-mutation being weaker. First is the size; if the class
does not have many mutants, then one or two mutants that
cannot be killed will have a big impact on the ratio. The
class checklt falls into this category. The second reason is
a class having lots of arithmetic or logical operations. SDL
mutants do not result in tests that explore the input space,
particularly boundary values, that will kill as many of those
mutants. The third is related; if the class has statements with
complicated operations, such as bit shifting, SDL. mutants
are not likely to yield values that are subtle enough to
kill 90% of these mutants. The classes in table II with
particularly low mutation scores exhibited one or more of
these characteristics.

500 600 700 800

Comparison of SDL mutants with muJava’s method level mutants

D. Threats to validity

This experiment has several threats to validity, which we
tried to ameliorate as much as possible. First the results
are all on Java programs. The implementation of the SDL
operator would be different in different languages, which
could affect the results. This could only be managed by
implementing the SDL operator on other languages, a task
we leave for the future. As with any software engineering
experiment, there is no way to know whether the subjects
are representative. We tried to choose classes from a variety
of sources, sizes, and applications.

As mentioned before, equivalent mutants were determined
by hand by one person. This could have introduced errors
into the process, although the affect on the results would be
small. This experiment used only one test set per subject,



which could result in some unusually low or high scores.
We believe a low score is just as likely as a high score, so
with 40 subjects, this threat should be balanced. Moreover,
experimenters who have previously used multiple test sets
per subject have reported very little deviation in the results
among the test sets [36].

Finally, it is possible that the implementation of the SDL
operator in muJava could be faulty. To reduce this threat,
we checked results quite carefully by hand; examining SDL
mutants for all types of statements.

V. CONCLUSIONS AND RECOMMENDATIONS

This research started with the theory, first proposed by
Untch [12], that performing mutation testing with only one
very selective operator, statement deletion (SDL), will result
in very effective tests. This theory is attractive because
SDL-mutation has the potential to be significantly cheaper
than mutation with “all” operators (standard mutation),
or mutation with the selective set of operators (selective
mutation).

We evaluated this theory by first defining SDL for Java,
a task that is somewhat complicated because the many
advanced control structures forced us to think hard about
the meaning of both “delete” and “statement.” We then
implemented the resulting SDL operator in the muJava mu-
tation system to facilitate a direct comparison with muJava’s
selective mutation approach.

In the experiment, we killed all SDL mutants for 40
classes, resulting in a suite of SDL-adequate tests. Then
we ran the SDL-adequate tests on all of muJava’s mutants.
The results were that SDL-adequate tests scored an average
mutation score of 92, with 80% fewer mutants. We also
found 41% fewer equivalent SDL mutants. This is a huge
savings with only a modest loss in effectiveness.

We recommend that future mutation systems include
SDL-mutation as a choice, not a replacement. The new ver-
sion of muJava (version 4) includes SDL'. We recommend
a mutation system that has a “strength dial,” which can
be turned to “low” to choose SDL-mutation or “strong”
to choose selective mutation. This could be mixed with
weak mutation or other approaches that decrease the cost
of mutation.

Research into SDL-mutation is not finished. Even though
SDL is intended to be used during unit testing, more
experiments with larger subjects should be carried out. Also,
as mentioned in Section III, muJava and SDL as defined in
this paper are specific to Java. SDL should also be applied
to other languages so that we can compare results across dif-
ferent languages. This study should also be replicated with
other programs. Another replication would be to compare
the ability to kill SDL mutants with the same number of
randomly selected mutants. Furthermore, we would like to

Uhttp://www.cs.gmu.edu/~offutt/mujava/

see a comprehensive fault study to determine how many
actual faults SDL-mutation detects when compared with
selective mutation.

We also believe a further refinement may result in further
savings. It seems likely that we could use slicing techniques
to show that certain tests that kill the SDL mutant for one
statement are guaranteed to kill the SDL mutant for some
subsequent statements. Finally, we do not know how SDL-
mutation interacts with approaches such as weak mutation.
This would need to be determined empirically.
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