GMU CS583 Algorithms Assignment 2

Name: G\#:

September 27, 2016

1. Solve the following recurrence relations and give an O-bound for each of them.
(a) $T(n)=T(n-1)+n^{c}$, where $c \geq 1$ is a constant
(b) $T(n)=2 T(n / 3)+1$
(c) $T(n)=5 T(n / 4)+n$
2. A random graph is defined as a graph of n nodes where each pair of nodes is connected by probability $p \in[0,1]$. Let us denote $G(n, p)$ a random graph with n nodes and probability p to connect any pair of nodes. Calculate the expected number of edges in the random graph $G(n, p)$, using the approach of indicator variables.
3. Consider a very simple online auction system that works as follows. There are n bidding agents; agent i has a bid b_{i}, which is a positive natural number. We will assume that all bids b_{i} are distinct from one another.

The bidding agents appear in an order chosen uniformly at random, each proposes its bid b_{i} in turn, and at all times the system maintains a variable b^{*} equal to the highest bid seen so far. (Initially b^{*} is set to 0 .)

What is the expected number of times that b^{*} is updated when this process is executed, as a function of the parameters in the problem?
Example. Suppose $b_{1}=20, b_{2}=25$, and $b_{3}=10$, and the bidders arrive in the order $1,3,2$. Then b^{*} is updated for 1 and 2 , but not for 3 .

