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Wifi-Reports: Improving Wireless
Network Selection with Collaboration

Jeffrey Pang, Ben Greenstein, Michael Kaminsky, Damon McCoy, and Srinivasan Seshan

Abstract—Wi-Fi clients can obtain much better performance at some commercial hot spots than others. Unfortunately, there is
currently no way for users to determine which hot spot access points (APs) will be sufficient to run their applications before purchasing
access. To address this problem, this paper presents Wifi-Reports, a collaborative service that provides Wi-Fi clients with historical
information about AP performance and application support. The key research challenge in Wifi-Reports is to obtain accurate user-
submitted reports. This is challenging because two conflicting goals must be addressed in a practical system: preserving the privacy of
users’ reports and limiting fraudulent reports. We introduce a practical cryptographic protocol that achieves both goals, and address
the important engineering challenges in building Wifi-Reports. Using a measurement study of APs in a busy commercial district, we
show that Wifi-Reports would improve the performance over previous AP selection approaches in 30-60 percent of locations.

Index Terms—Privacy, anonymity, wireless, reputation, 802.11.

1 INTRODUCTION

USERS expect the Internet connectivity wherever they
travel and many of their devices, such as iPods and
wireless cameras, rely on local area Wi-Fi access points
(APs) to obtain connectivity. Even smart phone users
routinely employ Wi-Fi instead of 3G and WiMAX to
improve the performance of bandwidth-intensive applica-
tions or to avoid data charges. Fortunately, there is often a
large selection of commercial APs to choose from. For
example, JiWire [6], a hot spot directory, reports 395-1,071
commercial APs in each of the top 10 US metropolitan
areas. Nonetheless, users report that some APs block
applications [9] and have poorer than advertised perfor-
mance [25], so selecting the best commercial AP is not
always straightforward.

1.1 Commercial Wi-Fi

To verify these reports, we present the first measurement
study of commercial APs in hot spot settings. Previous war-
driving studies [29], [33] performed Wi-Fi measurements
from streets or sidewalks, whereas we measure APs from the
perspective of a typical Wi-Fi user who is inside an
establishment. Our study examines the performance and
application support of all visible APs at 13 hot spot locations
in a busy commercial district over the course of one week.
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We find that there is indeed a wide range of AP performance
even among APs very close to each other. Yet, there is
currently no way for a user to determine which AP would be
best to run his applications before paying for access.

1.2 Wifi-Reports

To address this problem, we present Wifi-Reports, a
collaborative service that provides clients with historical
information to improve AP selection. Wifi-Reports has two
main uses: First, it provides users with a hot spot database
similar to existing hot spot directories but where APs are
annotated with the performance information. Second, it
enables users to select among APs visible at a location more
effectively. Clients that participate in Wifi-Reports auto-
matically submit reports on the APs that they use. Reports
include metrics such as estimated backhaul capacity, ports
blocked, and connectivity failures. Using submitted reports,
the service generates summary statistics for each AP to
predict its performance. Obtaining accurate user-submitted
reports poses two challenges:

1. Location privacy: A user should not have to reveal
that he used an AP to report on it. Otherwise, he
would implicitly reveal a location that he visits.
Users may be reluctant to participate in Wifi-Reports
if their identities can be linked to their reports. At the
same time, however, a few users should not be able
to significantly skew an AP’s summary statistics
because some may have an incentive to submit
fraudulent reports, e.g., to promote APs that they
own. One way to meet these conflicting goals is to
assume the existence of a trusted authority that is
permitted to link users to their reports in order to
detect fraud (e.g., in the way that eBay manages user
reputations). For good reason, users, privacy groups,
and governments are becoming increasingly wary
about malicious or accidental disclosures of data-
bases that can track large numbers of people [12],
even if they are tightly regulated like cell phone
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records [4]. Therefore, we present a report submis-
sion protocol that tolerates a few misbehaving users
and does not require the disclosure of location-
related information to anyone, including the Wifi-
Reports service. Our protocol leverages blind signa-
tures to ensure that the service can regulate the
number of reports that each user submits, but cannot
distinguish one user’s reports from another’s.

2. Location context: Physical obstructions and the dis-
tance between a client and an AP affect the quality of
the wireless channel. Therefore, we must take
location context into account when estimating AP
performance or our estimates will not be accurate. We
describe how measurements can be categorized by
the different wireless channel conditions under
which they were performed. We also describe how
to index and retrieve reports based on location
without requiring additional equipment such as GPS.

We have implemented the key components of Wifi-

Reports and used our measurement study to simulate how
well it would work. Our results suggest that even if a user is
only selecting among APs at a single location, Wifi-Reports
performs close to optimal in more cases than existing
techniques such as best-signal-strength and best-open-AP
[33] because it provides information on commercial APs that
cannot be tested beforehand. In a few locations (30 percent),
we found that Wifi-Reports even outperforms the strategy of
picking the “official” AP for a hot spot. This may be because,
for example, the AP next door has a better backhaul
connection.

1.3 Contributions

1. To our knowledge, we are the first to study the
attributes of commercial, encrypted, and “pay-for-
access” APs in the wild. Although previous studies
have examined open APs [29], [33] observed while
war driving, we find that the best performing AP for
a typical user in one commercial district is most
often a closed AP.

2. We show that Wifi-Reports” summary statistics
predict the performance accurately enough to make
correct relative comparisons between different APs,
despite performance variability due to competing
traffic. For example, it predicts AP throughput
and response time to within a factor of 2 at least
75 percent of the time. Since different APs” median
throughputs and response times differ by up to
50 times and 10 times, respectively, this prediction
accuracy enables Wifi-Reports to select the best AP
more often in more locations than any previous AP
selection approach. Unlike previous AP selection
approaches, Wifi-Reports enables users to examine
the characteristics of APs that are not in radio range,
which is useful when users are mobile.

3. We present the design, implementation, and evalua-
tion of a practical protocol that enables users to
contribute reports on APs anonymously, and gen-
erates accurate summary statistics for each AP even if
10 percent of that AP’s users collude to promote it.
Although we use this protocol in the context of Wifi-
Reports, it is applicable to other collaborative report-
ing services.
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Fig. 1. Proximity of measured hot spot locations.

The rest of this paper is organized as follows: Section 2
presents the results of our measurement study. Section 3
presents an overview of Wifi-Reports’ design. Section 4
describes how it preserves privacy and mitigates fraud.
Section 5 describes how it distinguishes client locations.
Section 6 presents an evaluation of Wifi-Reports. Section 7
presents related work, and Section 8 concludes.

2 MEASUREMENT STUDY

We conducted a measurement study to determine whether
existing AP selection algorithms are sufficient to choose an
AP that meets a user’s needs. We sought answers to three
questions that illustrate whether this choice is obvious and
whether it can be improved with Wifi-Reports.

Diversity. Is there diversity in terms of performance and
application support of different hot spots” APs? The more
diversity, the more likely a user will choose a hot spot with
substantially suboptimal performance when selecting ran-
domly from a hot spot directory.

Rankability. Is the best choice of AP at a particular
location always obvious? If the best APs do not have any
observable traits in common, then AP selection algorithms
that use the same metric to rank APs at all locations will
sometimes pick suboptimal APs.

Predictability. Is performance predictable enough so
that historical information would be useful?

Our study examined hot spots in a busy commercial
district near a university. We believe that this area is
representative of commercial districts with multiple Wi-Fi
service providers. It is less likely to be representative of
areas that only have a single Wi-Fi service provider, such as
in many airports. However, since users don’t have a choice
of AP providers in those environments, selecting a provider
to use is straightforward. Wifi-Reports could, however, still
help a user decide if purchasing access is worthwhile. Fig. 1
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shows the hot spot locations where we performed measure-
ments, which included those listed in JiWire’s database and
some additional sites known to us.

All locations are single-room coffee or tea shops. Most
APs we measured are not open. In addition to each hot
spot’s official AP, the APs of hot spots nearby are also
usually visible. APs of the free public network that we call
public-net are sometimes visible at all locations. APs
belonging to a university network that we call university-
net are sometimes visible due to proximity to campus,
though these were never the best performing at any
location. Our study offers a lower bound on the number
and diversity of APs, as more may become available.

2.1 Setup

2.1.1 |Infrastructure

To emulate a typical user of Wifi-Reports, we collected
measurements with a commodity laptop with an Atheros
802.11b/g miniPCI card attached to the laptop’s internal
antennas. We implemented a custom wireless network
manager for associating to APs and performing measure-
ments after association. Our implementation is based on the
Mark-and-Sweep war-driving tool [29].

2.1.2 Methodology

During each measurement trial at a location, we emulate a
typical connection attempt by scanning for visible APs. We
then attempt to associate and authenticate with each AP
found (identified by its unique BSSID). If successful, we run
our battery of measurement tests before moving on to the
next AP. We manually obtain authentication credentials, if
necessary (e.g., through a purchase). Since many Wi-Fi
drivers do not list APs with low signal-to-noise (SNR)
ratios, we only attempt to connect to APs when they appear
with an SNR > 10 dB. We only measure infrastructure
networks (i.e., we do not measure any ad hoc networks).1

We performed measurements at typical seating locations
in each hot spot. Although the exact same location was not
used for all measurements in a hot spot, Section 5 shows
how well we can distinguish the performance at different
locations.

2.1.3 Time Frame

Previous studies measured each AP at a single point in time
[29], [33]. Since we want to know whether AP characteristics
are predictable, we performed 8-13 measurements at each
location (with the exception of cafe 6, where we only
performed six trials). These measurements were taken during
seven week days in October 2008. On each day, at each
location, we performed 1-2 measurements at different times
of the day, so we have at least one measurement during each
2 hour time-of-day between 9AM and 6PM (or a narrower
time window if the hot spot opened later or closed earlier).

2.2 Results

2.2.1 Basic Connectivity

Fig. 2a shows the fraction of times we were able to obtain
connectivity from each AP ateach location (i.e., as association

1. One physical AP at cafe 3 and cafe 12 advertised two virtual APs.
Since we did not find any service differentiation between these virtual APs
after login, we only include one of them in our study. They exist because
these hot spots are migrating from one ISP to another.

and authentication succeeds, we are able to obtain a DHCP
address and able to fetch www.google.com. We retry each
step up to three times and for up to 30 seconds on failure,
which ever comes first). We only count times when the AP
was visible in a network scan. The symbol above each point
indicates whether the AP can be accessed for free (O) or not
($). The box for the official AP at each hot spot is shown in a
solid color and its symbol is in a larger font.>

As expected, most (10 of 13) official hot spot APs were
successful 100 percent of the time. Some, however, such as
the APs at cafe 2 and cafe 13, failed several times. These
were all DHCP failures and frequent users of cafe 13 say
that the AP has always had DHCP problems. However, it
would be difficult to detect these problems automatically
because even attempting to access the network requires a
WPA password from the cashier. Although unofficial APs
visible at hot spots tended to fail with higher regularity due
to wireless loss, a few APs in most locations (8 of 13)
succeeded whenever they were visible in our network scan.
Thus, even this very basic connectivity metric suggests that
there is diversity.

2.2.2 TCP Throughput

Adequate throughput is important for many applications,
such as streaming video or VoIP. Figs. 2b and 2c show box-
plots of the TCP download and upload throughputs
achieved through each AP, respectively (i.e., the bar in the
middle of each box indicates the median, the ends of each
box indicate the first and third quantiles, and whiskers
indicate the minimum and maximum). We measured
throughput over the final 5 seconds of a 10-second transfer
from a high bandwidth server under our control to estimate
each AP’s sustained throughput after TCP slow start. We do
not count the times when we failed to associate with the AP
or when TCP timed out during establishment (the failure
rate above suggests how often this occurs), so we have
fewer measurements for some APs than for others.

First, we note that there is a significant range in available
capacities across different hot spot locations. Median down-
load capacities range from less than 100 Kbps (e.g., an AP at
cafe 6) to over 5 Mbps (e.g., APs at cafe 3 and cafe 5), and
median upload capacities range from 50 kbps to over 3 Mbps
(e.g., APs at cafe 8). There is variability in each AP’s
throughput, which is attributable mostly to wireless loss or
contention (similar UDP throughput measurements had less
variability), but the variation at most APs is much smaller
than this wide performance range. Therefore, there is
diversity in AP capacity, and throughput is predictable
enough to distinguish them.

Second, we observe that there is also a significant range in
capacities among APs visible from a single location. As
expected, most (9 of 13) official hot spot APs have the highest
median throughputs at their respective locations. However,
this is not true at cafe 2, cafe 3, cafe 6, and cafe 8, where
better APs were available from an apartment building next
door, the public-net network, a store next door, and a nearby
hotel, respectively. Indeed, at cafe 3 and cafe 6, an unofficial

2. cafe 13 has two official APs because it changed APs in the middle of
our measurement period. However, both APs suffered from basic
connectivity problems.
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Fig. 2. (a) The success rate of different APs (i.e., how often we could connect and access the Internet when each AP was visible). Each point
represents one AP visible at each location. (b) A box-plot of the measured TCP download throughput through each AP. Note the logarithmic scale.
(c) A box-plot of measured TCP upload throughput. (d) A box-plot of the time to fetch http://www.google.com using each AP. (e) A box-plot of RTT
variance (in standard deviations from the mean) to the measurement server. The measurements for each AP are grouped by the hot spot location
where they were taken, as shown on the x-axis. The symbol above each box indicates whether the AP can be accessed for free (O) or not ($). The
box for the official AP at each hot spot is a solid color and its symbol is in a larger font. The APs in all graphs are sorted by their median TCP
download throughput. Most of the nonfree APs at cafe 8 are university-net APs in a building across the street.

AP always had significantly higher throughput than the
official one when visible. Recall that these comparisons only
include measurements when we were able to successfully
pay for and obtain the Internet connectivity, so a user
without historical information would have to pay before
discovering this.

2.2.3 Response Time

Low network latency is another important attribute for
interactive applications such as web browsing. To estimate
the latency a typical web browser would experience, we
measured the response time to one of the most popular
websites. Fig. 2d shows a box-plot of the time to fetch
http:/ /www.google.com. Fetch time includes the time to
perform a DNS lookup, which is dependent on the DNS

server each AP’s DHCP server assigns us.® Since Google’s
homepage is only 6 KB, fetch time is dominated by latency
rather than transfer time. We do not count the times when
association failed.

Just as with TCP throughput, there is diversity in
response time, which ranges from less than 100 ms to
several seconds. Response times of more than 1 second are
typically noticeable by an end user. As expected, most (10 of
13) official APs have the lowest median latency at their
respective hot spot locations, but this is not true at cafe 2,
cafe 6, and cafe 11. Only the disparity between the best and
official APs at cafe 2 is large enough to be noticeable, but

3. The CNAME and A DNS records for www.google.com have TTLs of
one week and one day, respectively, so they are almost always already
cached.
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even smaller differences may impact more sensitive
applications, such as VoIP. In addition, in some cases, the
AP with the lowest and least variable response time is not
the same as the AP with the highest throughput (e.g., at
cafe 3), so ranking is dependent on application require-
ments. Finally, all official APs, except the one at cafe 7,
provide predictable response times (first and third quantiles
within a factor of 2). At least one unofficial AP at each
location is just as predictable.

2.2.4 Delay Jitter

High variation in response time can disrupt applications
that rely on a steady stream of packets, such as streaming
video. Fig. 2e shows a box-plot of network jitter in terms of
the standard deviation of round-trip times to a well-
connected measurement server under our control. RTTs
were measured using ICMP pings. Very few APs exhibit
high jitter, though some exhibit higher variance than others.
For example, the official APs at cafe 2 and cafe 7 have RTT
standard deviations over 100 ms at least 25 percent of the
time. Most other official APs never have noticeable
variation, and thus, would be more suitable for applications
that are sensitive to jitter. In addition, an unofficial AP at
cafe 2 is present with consistently lower jitter.

2.2.5 Port Blocking
To determine if an AP blocked or redirected certain
application ports, we sent three probes to each port on a
measurement server under our control. For UDP ports, each
probe consisted of 44-byte request and response datagrams,
while for TCP ports, each probe tried to establish a
connection and download ~32 bytes of data (in order to
check for port redirection). We tested common application
ports including: FTP, NTP, SSH, NetBIOS, SMTP, IMAP,
SSL, VoIP (SIP), STUN, common VPN ports, World of
Warcraft, Counterstrike, Gnutella, and Bittorrent. To ac-
count for packet loss, we conclude that a port is blocked
only if it was never reachable in any of our measurements.
All APs blocked NetBIOS, most likely because they are
configured to do so by default. Three APs blocked non-DNS
packets on port 53 and only one (cafe 10’s official AP)
blocked more ports: all nonprivileged TCP ports and all
UDP ports except DNS and NTP. Nonetheless, this is useful
information, as common applications such as VPNs, VoIP,
and games would not function.

2.2.6 Summary

With respect to diversity, we find that there is significant
diversity in AP throughput and latency. With respect to
rankability, the official AP is not the best choice at 30 percent
of hot spot locations, so ranking APs is not always obvious.
Finally, with respect to predictability, there is variability in
the performance over time, but this variability is much
smaller than the range of different APs’ performance, so
historical information should be predictable enough to
compare APs. Therefore, our results suggest that a
collaborative reporting service may improve AP selection.

2.3 Discussion

2.3.1 Why Not Just Use Official APs?

One might ask whether historical information is really
necessary if the official AP is usually the best at 70 percent

of locations. First, in Section 6.1, we show that historical
information can get us the best AP in the remaining
30 percent. Second, as hot spot density increases, scenarios
like these will likely become more common. Third, many
users will be willing to move to find better APs and without
historical information, it is not obvious how to determine
where to move to. Finally, if a user is not in range of any
APs, he needs historical information to determine where to
find a good one.

2.3.2 Other Selection Factors

In practice, users will likely take other factors into account
besides AP performance and application support, such as
cost and venue. Although these factors are important and
reports in Wifi-Reports can include such information, they
are also subjective, so we focus our evaluation in this paper
on AP performance. In particular, we focus on download
capacity and latency since these metrics are important for
most applications. Our focus demonstrates Wifi-Reports’
ability to help users make more informed decisions about
which APs to use, whether they take cost and venue into
account or not.

3 WIFI-REPORTS OVERVIEW

Wifi-Reports is a recommendation system [15]. Users rate
the services they use and submit these ratings to a report
database where they are summarized. Other users down-
load summarized ratings to evaluate services that they are
considering. In Wifi-Reports, the users are wireless clients,
services are APs, and ratings are key value pairs of
measured performance metrics.

3.1 Challenges

In contrast to previous recommendation systems, Wifi-
Reports faces two unique challenges:

Location privacy. By reporting the use of an AP, a user
implicitly reveals a location where he has been with an
accuracy that is sufficient to identify sensitive places [36].
Thus, users may not be willing to participate in Wifi-
Reports if their identities can be linked to their reports. A
single user’s reports must not even be linkable to each
other; otherwise, they are vulnerable to inference attacks
[18], [28]. Nevertheless, we still want to limit the influence
of malicious users who submit fraudulent reports, which is
a common problem in recommendation systems [42], [44].

Location context. Clients will typically search for
summaries by location (e.g., “all APs in San Francisco”),
and the location of a client with respect to an AP will affect
its measured performance due to different wireless channel
conditions. Since we would like clients to generate reports
automatically, location context must be determined auto-
matically.

3.2 System Tasks

The operation of Wifi-Reports consists of three main tasks
(Fig. 3). We present an overview of these tasks here. The
next two sections describe how they can be done while
addressing the challenges discussed above.

3.2.1 Measure and Report

Clients measure and submit reports on APs that they use. For
example, suppose a client attempts to connect to the Internet
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Fig. 3. Wifi-Reports components and typical tasks.

using AP X. If the connection fails (i.e., association, DHCP, or
all TCP connections fail), the client generates the report {ap =
X,SNR = 20 dB, date = 11/14/2008, connectivity = false}. *
If the connection succeeds, then the client software estimates
performance metrics based on the user’s network traffic
or using active measurements when the connection is idle.”
When measurement completes, it generates the report

{ap = X, SNR = 20 dB, date = 11/14/2008, connectivity
= true,tcp_bw_down = 100 kbps, google_resp_time
=500 ms,...}.

When the client has Internet connectivity again, it
contacts an account authority to obtain the right to report on
X, e.g., by receiving a credential. It sends this report along
with the credential to a report database. An account authority
is necessary to prevent a single malicious client from
submitting an unbounded number of fraudulent reports.
However, to preserve the location privacy of honest clients,
neither the account authority nor the report database should
learn that the client used AP X. We describe the novel
protocol we use to address this problem in Section 4.

3.2.2 Download and Index

The database generates summary statistics for each AP by
summarizing the values for each key. To be robust against
some fraudulent values, we use summary functions that are
not significantly skewed by a small fraction of outliers. For
example, median is used for real-value attributes (e.g.,
throughput), plurality voting for multinomial attributes
(e.g., port blocking), and average for probability attributes
with {0,1} inputs (e.g., basic connectivity). In addition, a
summary indicates the number of reports that it sum-
marizes as an estimate of its robustness (i.e., a user will pay
more heed to a summary of 10 different reports than a
summary of just 1 report). A client may choose to ignore
summaries with too few reports to mitigate the impact of
erroneous reports.

Before traveling, a user downloads and caches the
summary statistics of all APs in the cities that he expects
to visit. In practice, client software would update this cache
whenever it has connectivity, similar to the iPass [5] client.

4. X refers to the AP’s BSSID and a hash of its signing key described in
Section 4.

5. A number of techniques and tools exist to estimate bandwidth [37] and
response time [3]. These techniques are outside the scope of this paper, but
the measurements we used can be implemented as an anonymous speed
test.

To find a suitable hot spot, reports are shown to a user on a
map. In order to facilitate this operation, reports must be
searchable by geographic location. Unfortunately, we
cannot rely on GPS because many clients are not equipped
with it and it often does not work indoors. We describe
existing techniques that we leverage to obtain coarse
geographic coordinates in Section 5.1.

3.2.3 Predict Locally

Finally, when a user sits down at a cafe, he typically wants
to find the best visible AP. Although the client will have
downloaded summaries for these APs earlier, the expected
performance of each AP depends on the wireless channel
conditions between the client and the AP. For example,
conditions will vary based on the observed SNR. Therefore,
the client must apply a filter to the summaries to obtain an
accurate prediction for the current conditions. We describe
how a client can perform this filtering in Section 5.2.

4 LoOCATION PRIVACY

This section describes a novel report submission protocol
that ensures location privacy and limited influence, and
properties that we define below. Define U to be the set of
all users that participate in Wifi-Reports, S to be the current
set of all APs, u = submitter(R) to be the user that submitted
report R, and s = target(R) be the AP that R reports on.
Suppose C C U is the largest set of colluding malicious users
that try to violate any user’s location privacy or to influence
an AP’s summary.

Location privacy. To preserve location privacy, we must
satisfy three conditions. 1) No one, not even the account
authority or report database, should be able to link any
report to its submitter, i.e., no one should be able to guess
submitter(R;) with probability greater than m, for all
reports R;. 2) No one should be able to link any two reports
together unless they were submitted by the same user for
the same AP, i.e., no one should be able to guess whether
submitter(R;) = submitter(R;) with probability greater than
gy for all R;, R, where submitter([;) # submitter(R;) or
target(R;) # target(R;). 3) A user should not have to reveal
the target of a report in order to obtain the right to submit
the report, i.e., after obtaining the right to submit Ry, the
account authority should not be able to guess target(Ry41)
with probability greater than ﬁ In practice, achieving this
third condition may be too expensive, so we later relax it by
restricting S to all APs in a city rather than all APs.

Limited influence. To limit the influence of dishonest
users, exactly one report from each user who has submitted
a report on AP s should be used to compute the summary
statistics for s. To ensure that this condition is satisfied, any
two reports submitted by the same user for the same AP
must be linked, ie., for all R;, R;, where submitter(R;) =
submitter(R;) and target(R;) = target(R;), anyone should be
able to verify that submitter(R;) = submitter(R;). When
computing each summary, the database first summarizes
each individual user’s reports, and then, computes a
summary over these summaries. This ensures that mal-
icious users have at most |C| votes on the final summary.

We may also want to limit the rate at which these users
can submit reports on any AP. For example, we may want
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to prevent a malicious user from reporting on a large
number of APs that he has never actually visited. We
discuss how to achieve this additional property at the end
of Section 4.3.

4.1 Threat Model

Users’ location privacy should be protected from malicious
users, the account authority, and report databases. To meet
this goal, we don’t assume any restrictions on the behavior
of malicious users, but we make a few practical assump-
tions about the account authority and report databases.

Account authority. A challenge for recommendation
systems is how to prevent malicious users from out-voting
honest users, e.g., by using botnets or Sybil attacks to obtain
many fake identities. Wifi-Reports, as with most existing
recommendation systems, assumes that a central account
authority can limit these large-scale attacks. For example,
the authority can require a credential that is hard to forge,
such as a token credit card payment or the reception of an
SMS message on a real cell phone. These defenses are not
perfect, but are enough of a deterrent that existing
recommender systems work well in practice. These heur-
istics may also be supplemented by Sybil detection schemes
(e.g., [43]). Thus, we assume that these mechanisms are
sufficient to bound the number of malicious users to a small
fraction of the total number of users. Section 6.3 shows that
our system can limit the influence of this small number of
malicious users. We assume that the account authority is
honest but curious, that is, it may try to reveal information
about users, but it does not violate our protocol. We discuss
how selfish violations can be detected in the next two
sections. Since the account authority is a high profile entity,
we believe that the legal implications of violations are
sufficient deterrents to prevent them.

Report databases. Users have to trust the report database
to summarize reports correctly. To distribute this trust, we
assume that there are multiple databases and most are
honest (e.g., do not delete reports prematurely). Honest
users submit reports to all the databases and download
summary statistics from all databases, using the report on
each AP that the majority of databases agree upon. We note
that the existence of a single honest database can be used to
audit all databases, because any valid report that exists
should exist on all the databases, and reports are indepen-
dently verifiable (see the protocol below). Independent
verifiability also means that each database can periodically
check the others to discover and obtain reports that it is
missing. We assume that users learn about the list of report
databases in an out-of-band manner, e.g., it may be
distributed with the software.

A report database can link reports if they are submitted
from the same IP address. Therefore, we assume that users
submit reports through a mix network such as Tor [24] and
that the mix achieves its goal, i.e., no one can infer the
source IP address of the sender’s messages.

4.2 Straw Man Protocols

4.2.1 Anonymize Reports

One approach might be to have users simply submit reports
to the databases via a mix network. This means that all
reports are unlinkable, thus providing location privacy.

However, this protocol does not provide limited influence
because a database cannot distinguish when one user
submits many reports on an AP versus when many users
submit one report each on the AP.

4.2.2 Authenticate Reports

To provide limited influence, nearly all existing recommen-
der systems today rely on a trusted central authority that
limits each real user to a single account. We can limit
influence with an authority A as follows: When a user u;
wants to submit a report R on AP s;, it authenticates itself to
A (e.g., with a username/password), and then, sends R to
A. A checks if u; has previously submitted any reports on s;
and, if so, deletes them from the report databases before
adding the new one. A explicitly remembers the user that
submitted each report. If A is the only one allowed to add
and remove reports from the report databases, this protocol
provides limited influence because each user is limited to
one report. However, it fails to provide location privacy
with respect to A. Indeed, A must remember which reports
each user submitted to prevent multiples.

4.3 Blind Signature Report Protocol

To achieve both location privacy and limited influence, Wifi-
Reports uses a two-phase protocol. We sketch this protocol
here: First, when user u; joins Wifi-Reports, the account
authority A provides him with a distinct signed “token” K;
for each AP s; € S. By using a blind signature [17], no one,
including A, can link Kj; to the user or to any other K;;. This
ensures location privacy. However, anyone can verify that A
signed Kj; and it can only be used for s;. GENTOKEN
describes this step in detail below. Second, to submit a report
Ron AP s;, u; uses the token Kj; to sign R, which proves that
it is a valid report for s;. u; publishes R to each report
database anonymously via the mix network. Since u; only
has one token for s;, all valid reports that u; submits on s;
will be linked by K;;. This ensures limited influence.
SUBMITREPORT describes this step in detail below.

4.3.1 Preliminaries

The RSA blind signature scheme [17] is a well-known
cryptographic primitive that we use in our protocol. Let
blind(XK, m,r) and unblind(K, m,r) be the RSA blinding and
unblinding functions using RSA public key K, message m,
and random blinding factor r (we use 1,024-bit keys and
values). Letsign(K !, m) be the RSA signature function using
RSA private key K7!, and let verify(K,m,z) be the RSA
verification function, which accepts the signature z if and
only if 2 = sign(K~!,m). Let H(m) be a public pseudoran-
dom hash function (we use SHA-512). We leverage the
following equivalence:

sign(K ', m) = unblind (K, sign(K ', blind(K, m, 7)), r).

That is, blinding a message, signing it, and then, unblinding
it results in the signature of the original message.

Blind signatures have two important properties: 1) Blind-
ness: without knowledge of r, m = blind(K,m,r) does not
reveal any information about m. 2) Unforgeability: suppose
we are given valid signatures (zi,zs,...,z;) for each of
(mq,mo, ..., my), respectively, where m; = H(im;). Without
the secret key K ~1 it is infeasible to forge a new signature
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Fig. 4. GENTOKEN(u;, ;).

Tp1 = sign(K 1, H(rg41)) for any 1y # 1y for all i,
under the assumption that the known-target or chosen-
target RSA-inversion problems are hard [17]. However,
anyone can check whether verify (K, H(r;), z;) accepts.

4.3.2 Protocol Description

Our protocol has two phases: GENTOKEN and SUBMITRE-
PORT, described below. For now, assume that the set of APs
S is fixed and public knowledge. We describe later how APs
enter and leave this set.

4.3.3 GENTOKEN (u;, s;)

The GENTOKEN phase is used by user u; to obtain a token to
report on AP s; and u; only performs it once per s; in u;’s
lifetime. s; identifies an AP by BSSID as well as a hash of A’s
signing key for that AP (see below), i.e., s; = {bssid;,
H(bssid;|M;)}. We assume that u; and A mutually authenti-
cate before engaging in the following protocol (e.g., with SSL
and a secret passphrase). Fig. 4 shows the formal protocol but
we detail each step below.

Before the protocol begins, a number of elements have
already been generated and exchanged when a client initially
signs up for the service. These items are listed in the lines
before step 1 in Fig. 4. More specifically, A has a single master
RSA key pair M, M~" and has generated a different signing
RSA key pair M;, M; " for each s;. H(bssid;|M;) is signed by
the authority’s master key so that others can identify /; as a
signing key for bssid;. M, M;, and msig; are publicly known
(e.g., given to users and databases by A when they join).

As illustrated in Fig. 4, the GENTOKEN(u;, s;) protocol
exchange has six steps:

1. First, u; generates a new reporting key pair {Kj;,
K;;'} and a 1,024-bit random value  known only to
u;. The key pair will be used by w; to sign reports on
s;. v is used as a secret random input to the blinding
function.

2. The authority A must authorize the public key Kj; so
that other parties will know that it is valid. However,
u; does not want to reveal K;; to A. Therefore, u;
computes the hash H(Kj;), which securely and
uniquely identifies K;;, and blinds it using the
blinding function of the blind signature protocol.
By blinding using Mj, the authority A can sign using
its corresponding private key M j’l, the signing key
for AP s;.
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Dy : ]Vf,]\/[j VSJ‘ es
U rSig «— sign(KgH H(R)) @)
u; — Dy, : "report",s;, K;j;, sigi;, R, rsig (8)

Fig. 5. SUBMITREPORT (u;, s;, R).

3. User u; sends the blinded hash b to the authority,
along with s;, which identifies the AP it is for. A then
checks whether it has already sent a sig-reply
message to u; for s;. If so, it aborts because we must
ensure that w; only receives one key per AP;
otherwise, it continues.

4. Asigns the blinded hash b using M ; 1 the signing key
for AP s;. The resulting sig;; is the blinded signature
of the original hash. By blindness, A does not learn
K;; only that it is generating a key for s;. Thus, no one
can link K;; to user u; or to any Kj;, 1 # j. This is the
central step to protect location privacy.

5. A sends the blinded signature sig]; to user ;.

6. Finally, the user u; unblinds the blinded signature
sig;; to produce sig;;. The user then checks that
verify(M;, H(K;;), sig;;) accepts. If it does (i.e., the
authority followed the protocol), then sig;; is a valid
signature of the hash H(Kj;). u; saves Kjj, Kigl, and
sig;; for future use.

{Kj, sigi;} is the token that u; attaches to reports on s;.
When a report is signed with K;', this token proves that the
report is signed with an authorized signing key. Since A
only allows each user to perform GENTOKEN once per AP,
each user can only obtain one authorized reporting key for
s;. By unforgeability, even if multiple users collude, they
cannot forge a new authorized reporting key.

4.3.4 SUBMITREPORT (u;,s;j, R)

This phase is used by user u; to submit a report R on AP s;
after a token for s; is obtained. Let {D;,..., Dy} be the m
independent databases. R is submitted to each D; as
follows (see Fig. 5):

7. First, user u; signs a hash of the report R using his
reporting key K;;' for the target AP s;. The
signature rsig along with the hash H(R), which
uniquely identifies R, prove to third parties that R
is a report that could only have been generated by
user u; for AP s;.

8. The user sends these items to the report databases. In
addition, the message includes K;; and sig;;, the
public signing key for s; and the authority’s signature
onit, respectively. These items enable anyone to verify
that the signature is generated using a key signed by
M;',i.e.,akey that A authorized toreporton s; during
the GENTOKEN phase. The report message is sent
through a mix network, so it does not explicitly reveal
its sender. After step 8, each database Dj, checks that
verify(M;, H(Kj), sigij) and verify(K;;, H(R),rsig)
both accept. If any of these checks fails, the report is
invalid and is discarded.

4.3.5 Anonymizing GENTOKEN

This protocol achieves limited influence and prevents each
report from being linked to any user or any other report.
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However, if a user engages in GENTOKEN (u;, s;) only when
itreports on s;, then it reveals to A that it is reporting on s;. In
order to satisfy the third condition of our location privacy
requirement, that A cannot guess the AP with probability
greater than ‘% ,and u; would have to perform GENTOKEN on
all s € S before submitting any reports so that A cannot infer
which tokens were used.

When performing GENTOKEN on all APs is too
expensive, we relax this condition as_ follows: We allow A
to infer that the AP is in a smaller set S C S. Determining an
appropriate set S is a trade-off between more location
privacy and less time spent performing GENTOKEN
operations. We have users explicitly choose a region
granularity they are willing to expose (e.g., a city). When
reporting on an AP, they perform GENTOKEN on all APs in
this region. We believe that this small compromise in
location privacy is acceptable since users already volunteer
coarse-grained location information to online services (e.g.,
to get localized news) and IP addresses themselves reveal as
much. In Section 6, we show that using the granularity of a
city is practical.®

4.3.6 Handling AP Churn

To support changes in the set of APs S, A maintains S as a
dynamic list of APs. Any user can request that A adds an
AP identified by BSSID and located via beacon fingerprint
(see Section 5.1). A generates a new signing key pair and its
signature {M;, M; '}, msig; — sign(M ™", H(bssid;j| Mj)), and
the new AP is identified by s; = {bssid;, H(bssid;|M;)}. M;
and msig; are given to the user and he submits them along
with the first report on s; to each report database. AP
addition is not anonymous, as the user must reveal the AP
to A, so Wifi-Reports will initially depend on existing hot
spot and war-driving databases and altruistic users to
populate S. However, over time we believe that owners of
well-performing APs will be incentivized to add themselves
because, otherwise, they will not receive reports. An AP is
removed from S if it is not reported on in three months (the
report TTL, see below) and A sends a revocation of their
signing keys to each database. Users can thus obtain new
signing public keys and revocations from each database.

We take three steps to limit the impact of nonexistent or
mislocated APs that malicious users may add. 1) When
searching for APs on a map, the client report cache filters
out APs that only have a small number of recent reports;
these APs require more “locals” to report on them before
distant users can find them. 2) After a sufficient number of
reports are submitted, reported locations are only consid-
ered if a sufficient number are near each other, and the
centroid of those locations is used. 3) A rate limits the
number of additions each user can make.

4.3.7 Handling Long-Term Changes

AP performance can change over time due to backhaul and
AP upgrades. However, these changes typically occur at
timescales of months or more. Thus, reports have a time-to-
live (TTL) of three months. Databases discard them

6. An alternative solution is to perform GENTOKEN on a random subset of
n APs in addition to the target AP. However, since a user will likely submit
reports on multiple correlated APs (e.g., APs in the same city), A can exploit
correlations to infer the APs actually reported on.

afterward. Determining the most appropriate TTL is
a trade-off between report density and staleness and is a
subject of future work. The TTL is set by the client at the
time of report submission, so it can independently
determine when its own reports expire.

4.3.8 Handling Multiple Reports

Our protocol allows u; to submit multiple reports on sj,
which can be useful if they are from different vantage
points or reflect changes over time; however, each report on
s; will be linked by the key Kj;. To ensure limited influence,
a database needs to summarize each user’s reports on s;
before computing a summary over these individual
summaries. For simplicity, it computes an individual user’s
summary as just the most recent report from that user that
was taken in the same channel conditions (see Section 5.2).”
As a consequence, there is no need for an honest user to
submit a new report on s; unless the last one it submitted
expired or if s;’s performance substantially changed. Recall
that a client sets the TTL on its reports, so it can
independently determine the expiry time. This approach
also allows a client to mitigate timing side-channels
(discussed below) by randomly dating his reports between
now and the date in his last report on s; without changing
s;/s summary statistics.”

4.3.9 Rate Limiting Reports

As mentioned earlier, it may also be desirable to limit the rate
at which an individual user can submit reports, say, to at
most t reports per week. This can be accomplished with a
straightforward extension of the SUBMITREPORT stage of the
protocol: A keeps count of the number of reports that each
user submits this week. Before submission of report =
{sj, Kij, sigij, R, rsig} (step 8), user u; sends h = blind(}M,
H(report),r) to A.If u; has not already exceeded ¢ reports this
week, A sends Isig = sign(M~',h) back to u;, and wu;
unblinds Isig’ to obtain lsig = sign(M ™!, H(report)). lsig is
included in the report submitted to the report databases and
is verified to be correct by recipients. The user would submit
the report to the database at a random time after obtaining
lsig, so A would only be able to infer that it was requested by
some user in the recent past, but not which one.

The values 10-20 would be reasonable for ¢; analysis of
Wi-Fi probes show that most clients have not used more
than 20 APs recently [27]. This approach only adds 4 ms of
computational overhead on A per report submitted (see
Section 6.2).

4.4 Security Analysis

We now describe how Wifi-Report’s reporting protocol
maintains location privacy, limited influence, and service
availability in the face of attacks. We first describe how the

7. A more sophisticated summarization algorithm might use the mean or
median values of all a user reports, weighted by report age. We leave the
comparison of summary functions to future work as we do not yet know
how many reports real users would submit on each AP.

8. If the owner of Kj; is ever exposed, then an adversary learns some
approximate times when wu; used s;. If u; knows this, he can prevent any
further disclosures by proving to A that he revoked K;; and obtaining a new
token for s; using GENTOKEN, i.e., u; can send {‘‘revoke”, u;, K;j, ksig} to A
and the databases, where ksig — sign(K;', H(“revoke”|u;|K;;)), which
proves that u; has K;;’s secret key and Kj;; (and all reports signed with it)
is revoked.
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protocol prevents report linking and forging attacks in
general, and then, discuss the specific impact of a dishonest
account authority, dishonest databases, dishonest APs, and
dishonest users.

4.4.1 Report Linking Attacks

To preserve location privacy, it must not be possible to link
a user to his reports or his reports to one another. To
achieve this, we must ensure two properties: First, there
must be no explicit information in a submitted report that
can be used to link it to a user or another report. Second, a
report must not be linked to the submitting user during the
report submission process. We consider each of these
properties in turn. First, recall that a submitted report
contains ‘‘report’, s;, Kjj, sigij, R, rsig (see step 8 in the
protocol). Neither the contents R nor the target AP s;
reveals any explicit information that can be used to link it to
a user or another report. rsig = sign(Ki;HH (R)) does not
reveal any linking information because K igl is only known
to the submitter and is a different random value for each
AP. Therefore, it suffices to show that {Kj;, sig;;} cannot be
linked to user i or any other {Kj, sigi}, for all j # k. No
party other than A and the report databases receive any
information about K;; (which is random) or sig;; (which is
derived from K;j). A only receives information derived
from K;; during the GENTOKEN phase. Thus, we simply
require that A cannot link Kj; or sig;;, back to a particular
user during the GENTOKEN phase and no database can link
K, or sig;; back to a particular user during the SUBMITRE-
PORT phase. The first requirement is ensured because the
user blinds Kj;; before submitting it to A, and by the
blindness property of the RSA blind signature protocol,
neither it nor its unblinded signature reveals any informa-
tion about their contents to A. The second requirement is
ensured because users submit reports through a mix
network to the report databases during the SUBMITREPORT
phase, which prevents the DBs from explicitly linking any
received reports to the submitting user.

Side-channels exposed in R and the time it is submitted
may potentially link reports if the adversary has additional
information. For example, if only one user visits an AP on a
given day, the AP can infer that any report with a time
stamp on that day is from that user. If a user submits many
reports on APs at a time when most users rarely submit
reports, the receiving database may infer from the submis-
sions’ timing that they are linked. Since we add a small
amount of noise to time stamps and submission times, we
believe that we can defeat most of these attacks in practice
without significantly degrading accuracy.

4.4.2 Report Forging Attacks

To ensure limited influence, we assume that users can only
obtain one signed token for each AP in the system. This
property ensures that only one report from each user will
be included in an AP’s summary statistics because reports
without a valid signed token will be discarded. We must
ensure that there is only one token per user even if
multiple users collude. Therefore, to violate limited
influence, N users would have to obtain M > N tokens
for a single AP. Assuming that A obeys the protocol and
does not give out multiple tokens per user, these N users

must be able to forge a new validly signed token from their
N existing tokens to obtain more tokens. But if they could
do this, then the unforgeability property of the blind
signature protocol would be violated.”

4.4.3 Dishonest Account Authority

A dishonest account authority may try to link a user to his
reports by giving a token to him but no one else. For example,
if A only reveals s; to a single user u;, A will know that any
report for s; is submitted by u;. Therefore, u;’s view of the set
of APs S is obtained from the report databases rather than
from A. Recall that the identity of s; = {bssid;, H (bssid;|M;)}
is added to each database when s, is added to S. Because a
malicious database colluding with A could tie bssid to a
different signing key M}, clients only consider AP identities
that the majority of report databases agree upon. Thus,
clients can detect if A does not provide them with a token
that they should have received. They can then protect their
location privacy by refusing to use the service.

While Wifi-Reports ensures that A cannot violate a user’s
location privacy, it does not prevent the account authority
from manipulating an AP’s summary statistics. For exam-
ple, because A is responsible for signing tokens, it can
“mint” as many as it desires. As with existing high-profile
online reputation systems, we assume that the authority is
disincentivized to manipulate summary statistics because it
wants to be a useful service to its users (i.e., customers). One
technical measure we could take to mitigate result manip-
ulation would be to use multiple independent authorities
and require each report to be signed with one token from
each. Then, all authorities would have to collude to carry
out a minting attack.

4.4.4 Dishonest Report Databases

A dishonest database cannot forge valid reports, but it can
delete valid reports that it receives before their expiry and
deny particular clients access to reports. However, if the
majority of the databases are honest, then clients can detect
dishonest databases when their results differ from that of
the majority. Even if only one report database is honest,
users can audit the remainder by requesting all their
reports. Since databases can only alter results by dropping
reports, the database with the most complete set of reports
will be correct.

4.4.5 Dishonest APs

Dishonest APs may try to hijack the reputation of other
APs. In addition, their interaction with clients might serve
as a side-channel to link clients to reports.

BSSID spoofing. One obvious concern is that some APs
can change their BSSID identities. For example, a poorly
performing AP might spoof the BSSID of a good AP to
hijack its reputation. Ideally, each AP would have a public
key pair to sign its beacons. APs could then be identified by

9. We note that it is important that A signs H(K;;) rather than Kj;
directly. Otherwise, two colluding users a and b could forge a third valid
token from the two that they have. This is because sigs; = sig,; -
sigy; mod Nj is a valid signature on some value. If signatures were derived
directly from the token K;j, then this value could be used as a token as well.
By deriving the signature from H(Kj;) instead, in order for an adversary to
use the new value as a valid token, he would have to invert the hash
function H(-), which is computationally infeasible.
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the public key instead of BSSID to prevent spoofing. In
802.11, APs can offer this signature and its public key as
part of a vendor-specific information element or as part of
802.1X authentication. Without public key identities, we can
still mitigate spoofing with two techniques: First, if an AP
masquerades as another AP that is geographically far away,
then reports on each will be summarized separately as
distinct APs and users will treat them as such. Second, if an
AP attempts to spoof one that is nearby, the distribution of
beacon SNRs that users receive will likely have two distinct
modes. This at least enables users (and the original AP) to
detect spoofing, though resolution requires action in the
“real world” since the 802.11 protocol cannot distinguish
the two APs. Finally, laws against device fraud (e.g., [11])
may be a sufficient deterrent in practice.

AP reidentification attacks. An AP may be able to
identify which reports about it were submitted by each of
its users with the following attack: it provides each user a
different quality of service so that the quality of service
reported can be used to implicitly reidentify the user.
However, the AP already knows when the user visits
because they log in, so no further location privacy is violated.
We believe that the revelation of a user’s performance
statistics is not sensitive enough for concern, since the AP can
learn this information on its own.

4.4.6 Dishonest Users

Dishonest users may try to collude to change an AP’s
reputation, clog the system with imaginary APs, and attempt
to introduce inconsistency in databases by only submitting
reports to a subset.

Large-scale collusion attacks. If a large number of clients
collude, such as compromised hosts participating in a
botnet, they can potentially alter the reputation of a target
AP. If the number of malicious users M submitting reports
on an AP s; is greater than the number of honest users H
submitting reports on s;, then the summary statistics for s;
will be skewed. Although it is reasonable to assume that
most users are honest, honest users will only report on APs
in locations where they visit. In contrast, malicious users
can report on any AP, whether they are near it or not. In
order to make it more likely that M < H, we should prevent
malicious users from reporting on APs that are not near
them; this would ensure that all malicious users reporting
on an AP are drawn from the same population as honest
users reporting on that AP. One way to accomplish this is to
require users to attach a “proof” of their location to
submitted reports.

A client can anonymously obtain a “proof of location” as
follows: before submitting a report R, the client anon-
ymously connects to the account authority (i.e., without
authentication), which geolocates the client’s IP address to
the granularity of a city k. Assume that the authority has
one location key pair {Ly, L;'} for each city k. The client
sends a blinded hash if its report b « blind(Ly, H(R),r) to
the authority using a new random value 7. The authority
signs b with L;! and returns sig, < sign(L; ', b) to the client.
The client unblinds sig; to obtain sig, «— unblind(Ly, sigj, ),
which is a valid signature on H(R) using the location key
L;'. These three steps comprise the same blind signature
protocol described in Section 4.3. Blinding ensures that the

authority does not know what it signed or who it came
from, only that it came from an IP address in the city k. By
attaching {Ly, sigy} to the submitted report, each database
can then check whether the AP reported on by the report is
in the city k, ensuring that only a client in k can report on
APs in k.

Of course, a foreign client could tunnel such location
proof requests through a compromised client on a local IP.
Therefore, the authority rate limits the number of location
proofs that a single IP can receive (e.g., 1 per day). This
limiting means that an adversary can only obtain as many
location proofs per day as he has compromised clients in
the target city; compromising foreign hosts does not help.
Although some IPs may be shared between multiple honest
clients, most clients will likely have at least one that is not
shared, such as at their home. Moreover, they can save
reports until they obtain a valid location proof.

AP addition spamming. Wifi-Reports cannot directly
verify the validity of the APs that users add. A malicious
user could spam the system with the addition of many fake
APs, forcing users to download unnecessary tokens. This
does not affect Wifi-Report’s correctness, but degrades the
performance. The account authority mitigates this attack by
rate limiting the addition of APs. Since fake APs in the
system will expire after a fixed time if not reported on, and
malicious users’ reports are also rate limited, the total
number of fake APs that a fixed number of malicious users
can maintain in the system is constant.

Incomplete report submission. A malicious user might
try to flag a database as dishonest by submitting its reports
to all but that database. Databases avoid this attack by
periodically requesting new reports from each of the other
report databases. Users and databases should query
databases through a mix network (or a random third-party
proxy), lest a malicious database colluding with a malicious
user attempts to deny reports to a database but provide
them to real users.

5 LOCATION CONTEXT

This section describes how Wifi-Reports obtains geographic
coordinates for reports and how summary statistics are
filtered by wireless channel condition.

5.1 Geographic Positioning

To obtain coarse geographic coordinates for APs, we
leverage previous work on beacon “fingerprints.” The set
of Wi-Fi beacons and their signal strengths observed from a
location can be used to obtain geographic coordinates with
a median accuracy of 25 meters when paired with a
sufficiently dense war-driving database [32]. Existing war-
driving databases is sufficient to facilitate this task (e.g.,
Skyhook [7] is used to geolocate iPods). Thus, Wifi-Reports
clients include estimated coordinates in reports. To generate
the location estimate in summary statistics for each AP, the
database uses the centroid of all reported positions that are
close together (e.g., within two city blocks). Although these
positions may be off by tens of meters, we believe that they
are sufficiently accurate for locating areas of connectivity on
a map. Network names can be correlated with business
names to improve accuracy (e.g., from Google Maps), but
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doing this is outside the scope of this paper. We note that
coordinates are only needed to allow clients to search for
AP summary statistics by location.

5.2 Distinguishing Channel Conditions

Wireless performance differs based on channel conditions,
which vary based on fine-grained location and environ-
mental conditions. The loss rate of a wireless channel is
roughly inversely proportional to the SNR, barring inter-
ference from other stations, or multipath interference [30].
The most obvious approach is to use summary statistics
that only consider the & reports with SNR values closest to
the currently observed SNR. However, this approach has
two problems. First, it requires users to download a
different summary for each possible SNR value for each
AP. Second, it may not be possible to choose an
appropriate k: if k is too large, summaries will consider
many irrelevant reports; too small and summaries become
vulnerable to outliers and fraud.

Fortunately, the continuum of SNR values can be
partitioned into three ranges with respect to wireless loss:
a range where clients experience near 100 percent loss, a
range where clients experience intermediate loss, and a
range where clients experience near 0 percent loss [30].
Therefore, Wifi-Reports categorizes reports based on these
three channel conditions. In other words, clients measure
the median SNR of beacons sent by their AP. Reports are
annotated with this median SNR. When a client makes a
local prediction about an AP, it considers only previous
reports taken in the same SNR range. In practice, the
database creates one summary for each of the three ranges
for each AP, so the client does not need to download all the
reports for an AP.

Since measured SNR depends on the AP’s transmit
power, these three SNR ranges may be different for each
AP. We estimate these ranges as follows: Typical scenarios
exhibit an intermediate loss range of 10 dB [30], so we
exhaustively search for the “best” 10 dB range that satisfies
the expected loss rates. Specifically, let ¢ be the mean
measured throughput of reports taken with SNR larger
than the 10 dB range, {— be the average throughput of
reports with SNR in the 10 dB range, and . be the
average throughput of reports with SNR smaller than the
10 dB range. We find the 10 dB range that maximizes
(f> — =) + (= — 1<), or the differences between the mean
throughput in the three ranges.'” We assume that reports
of connectivity failures experienced 100 percent loss (i.e.,
have throughput of 0). Finally, if - < 0.75-{_, we likely
only have measurements in one of the 100 or 0 percent loss
ranges, so we put all measurements in a single range.

Fig. 6 shows the estimated ranges for several APs in our
measurement study that were visible from multiple
locations. We note that we do not need the distinguishing
algorithm to work perfectly to obtain accurate predictions.
There is already measurement noise within a single loss
region due to TCP’s sensitivity to loss. Thus, very
inaccurate summaries typically only arise due to mixing

10. When we have more than a few samples (i.e., >5), we use the median
rather than the mean because it is more robust to outliers. Since the
distribution of noise is likely Gaussian, the median is likely to be close to the
mean.
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Fig. 6. Estimated 100 percent, intermediate, and 0 percent loss regions
for three APs in our measurement study.

reports in the 0 percent loss region with the 100 percent
loss region, so it usually suffices to estimate these regions
within 10 dB. Clients could also directly measure wireless
loss, either by observing other users’ traffic [41] or by
actively probing each AP.

5.3 Discussion

5.3.1 Client Calibration

We use SNR to differentiate wireless channel conditions,
but the reported SNR may have a bias due to manufactur-
ing defects in Wi-Fi NICs. Therefore, different clients need
to calibrate their reported SNR values. Previous work
suggests that most of this error may be eliminated using a
locally computed offset [30]. Reported SNR values for most
cards after self-calibration may vary by 4 dB, a bias unlikely
to affect our algorithm’s accuracy significantly because the
transitions between each SNR range are not sharply
defined. To further improve the accuracy, we can leverage
existing self-calibration techniques that determine the
biases of sensors (e.g., [16]). Implementing a distributed
calibration algorithm is the subject of future work.

5.3.2 Other Environmental Factors

To improve prediction accuracy further, existing techniques
can be used to measure and take into account other
environmental factors that cause variation, such as multi-
path interference and wireless contention [39], [41]. How-
ever, we found that contention is rare in our measurement
study, so prediction accuracy is good even discounting
these factors (see Section 6).

5.3.3 User and AP Mobility

To localize reports, we currently assume that users and APs
are stationary. If users are mobile, performance may change
over time; we can detect user mobility by changing SNR
values. Our current set of active measurements is short-
lived and can thus be associated with the SNR values
observed when they are measured. Geolocating these
mobile APs (e.g., those on a train) in a manner that makes
sense is an area of future work.

6 EVALUATION

We evaluate the utility and practicality of Wifi-Reports
using our measurement study (see Section 2) and our
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implementation of the reporting protocol (see Section 4).
This section presents our evaluation of three primary
questions:

e Some APs’ performance changes over time and at
different locations. Are reports accurate enough to
improve AP selection?

e  Our reporting protocol provides location privacy at
the cost of token generation overhead. Can Wifi-
Reports provide users with a reasonable amount of
location privacy with practical token generation
overheads?

o A determined attacker may be able to trick the
account authority into giving it a few accounts or
collude with his friends to submit multiple fraudu-
lent reports on an AP. How tolerant are summaries
to such attacks?

6.1 AP Selection Performance

6.1.1 Setup

We use our measurement study to simulate two scenarios:
First, we evaluate the scenario where a user chooses which
hot spot to go to physically based upon the predicted
performance of all hot spots nearby. In this scenario, a user
is primarily interested in prediction accuracy, i.e., we want
predict(s)/actual(s) to be close to 1 for each AP s, where
predict(s) is the predicted performance (e.g., throughput) of s
and actual(s) is the actual performance of s when it is used.
Second, we evaluate the scenario where the physical location
is fixed (e.g., the user is already sitting down at a cafe), but the
user wants to choose the AP that maximizes performance.
This situation is comparable to the traditional AP selection
problem [33], [39], [41], i.e., given the set of visible APs
V = {s1,52,...,5,}, we want a selection algorithm select(-)
that maximizes actual(select(V)), where s = select(V) is the
AP we choose. In this scenario, a user is primarily interested
in relative ranking accuracy, e.g., for throughput, we would
like to maximize actual(select(V))/max ey (actual(s)). In
Wifi-Reports, select(V) = argmax, .y (predict(s)).

We simulate these scenarios using our measurement
study as ground truth. That is, we assume that after the user
selects an AP s to use, actual(s) is equal to one of our
measurements of s. We evaluate the performance over all
our measurement trials. To simulate the predict(s) that
would be generated by Wifi-Reports, we assume that all
measurement trials except those for APs currently under
consideration are previously submitted reports. The reports
for s are summarized to generate predict(s). This assump-
tion implies that reports are generated by users that visit
locations and select APs in a uniformly random manner.
This is more likely to be the case when there are not yet
enough reports in the system to generate any predictions.
By counting devices associated with each AP in our
measurement study, we observed that some users do
currently use suboptimal APs. Thus, we believe that such
reports would be obtained when bootstrapping new APs in
Wifi-Reports.

6.1.2 Prediction Accuracy

Fig. 7 shows CDFs of prediction accuracy over all trials of
official hot spot APs for TCP download throughput and
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Fig. 7. CDF prediction accuracy for (a) TCP download throughput and
(b) Google fetch time over all trials on all official APs at their respective
hot spots. Note the logarithmic scale on the x-axis.

Google response time. The x-axis in each graph shows the
ratio of the predicted value over the actual achieved value.
Values at 1 are predicted perfectly, values less than 1 are
underestimates, and values more than 1 are overestimates.
We compare three approaches for generating summary
statistics. history-oracle shows the accuracy we would
achieve if each summary summarizes only reports taken
at the same hot spot location as the location under
consideration; this requires an “oracle” because we would
not automatically know the logical location where measure-
ments are taken in practice. wifi-reports shows the accuracy
when using Wifi-Reports” SNR filter before summarizing
reports (see Section 5). history-all shows the accuracy when
we summarize all reports to generate a prediction, regard-
less of the location where they were taken (e.g., even if the
user is at cafe 12, the prediction includes reports of the
same AP taken across the street).

In this graph, we focus on official APs, where we are sure
to have some measurements in the 0 percent loss region, to
better illustrate the impact of different channel conditions.
Users in this scenario are more likely to desire a comparison
of the 0 percent loss predictions rather than predictions in
all three wireless channel conditions since they are choosing
where to go. If an association or connection fails, we mark
that trial as having 0 throughput and infinite response time.
Recall that the summary function is median.

The graphs show that history-all underestimates TCP
bandwidth and overestimates Google fetch time more often
than history-oracle. This is because by including reports
taken in the intermediate and near-100 percent loss regions,
the median will generally be lower. In contrast, wifi-reports
performs about as accurately as history-oracle, demonstrat-
ing that our SNR filter works well when we have some
measurements in the 0 percent loss region. Furthermore, we
note that at least 75 percent of predictions for both metrics
are within a factor of 2 of the achieved value, while Fig. 2
shows that the difference in the median throughputs and
response times of official APs can be up to 50 times and
10 times, respectively. Therefore, most predictions are
accurate enough to make correct relative comparisons.

6.1.3 Ranking Accuracy

We now examine the scenario when a user is choosing
between APs at a single location. Figs. 8a and 8b show box-
plots of achieved throughput and response time, respec-
tively, when using one of several AP selection strategies to try
to achieve the best performance at each location. best-open
simulates Virgil [33], an algorithm that associates with and
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Fig. 8. (a) Box-plot of achieved TCP download throughput when using each of five AP selection algorithms at each location. Note the logarithmic
scale. Missing boxes for the best-open algorithm are at 0. (b) Box-plot of the achieved response time of http://www.google.com using each of five AP
selection algorithms at each location. The whiskers that extend to the top of the graph actually extend to infinity (i.e., the fetch failed). Missing boxes
for the best-open algorithm are also at infinity. Each group of boxes is ordered in the same order as the key at the top.

probes all open APs before selecting the best one. best-snr
simulates the most common algorithm of picking the AP with
the highest SNR value. This algorithm works well when
wireless channel quality is the limiting factor. official
simulates using the “official” AP of each location. We expect
this algorithm to work well since we showed in Section 2 that
the official AP is the best at most locations. Obviously, this
approach would not work at locations without an official AP.
history-all simulates Wifi-Reports without the SNR filter. wifi-
reports simulates Wifi-Reports. history-all and wifi-reports
only generate a prediction for an AP if we have at least two
reports to summarize; if no predictions for any AP are
generated, they fall back to selecting the official AP. Finally,
optimal shows the best performance achievable.

best-open performs the worst overall, failing to achieve
any connections at cafe 2, cafe 3, and cafe 11 since no open
APs were visible. best-open performs better than all other
algorithms only at cafe 6, where most of the APs were open.
We note that best-open is qualitatively different from the
other selection algorithms because it cannot select any
closed AP; we include it only to demonstrate that restricting
the choice of APs to open ones often results in substantially
suboptimal performance. Furthermore, best-open also has
more overhead (linear in the number of open APs visible)
than the others because it must actively test each AP.

history-all again demonstrates the need for the SNR filter.
Without the SNR filter, Wifi-Reports would achieve poorer
performance than official or best-snr at least 25 percent of
the time at cafe 2, cafe 9, and cafe 11.

In contrast, wifi-reports achieves the performance closest
to optimal for both metrics in all cases except for two. It
achieves worse TCP throughput than best-open once at
cafe 6 and worse response time than best-snr or official once
at cafe 11. In each of these cases, the AP chosen by wifi-
reports experienced an association or DHCP failure.
However, a real client would quickly fall back to the
second best AP chosen by wifi-reports, which was the

optimal one. Furthermore, wifi-reports is able to achieve
higher bandwidth more often than all other algorithms at
cafe 3 and cafe 6 and better response time more often than
all other algorithms at cafe 2 and cafe 11. Thus, it performs
strictly better in more locations when compared with each
of the other approaches individually.

Finally, we note that unlike all other approaches, Wifi-
Reports enables users to rank APs that are nearby but not
visible. This is useful when users are willing to move to
obtain better connectivity.

6.2 Report Protocol Performance

We implemented our reporting protocol (Section 4) in
software to evaluate its practicality. We present measure-
ments of its processing time, total token fetch time, and
message volume using workloads derived from actual AP
lists. We focus on the token generation phase (GENTOKEN)
since, given a desired level of location privacy, its
performance depends on actual densities of APs. The report
submission phase (SUBMITREPORT) runs in constant time
per report and uses standard fast RSA primitives.

6.2.1 Setup

We emulate a client that obtains the right to report on APs
while at home (e.g., before or after traveling). Our client has
a 2.0 GHz Pentium M and our account authority server
used one 3.4 GHz Xeon processor (the software is single
threaded). Both run Linux and all cryptography operations
used openssl 0.9.8. The bottleneck link between the client
and server is the client’s cable Internet connection (6 Mbps
down, 768 kbps up). The round-trip time from client to
server is 144 ms.

6.2.2 Processing Time

Table 1 presents microbenchmarks of each step of the
protocol. All times are in milliseconds. The most heavy-
weight steps are the generation of 1,024 bit RSA keys by
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TABLE 1
Microbenchmarks of Cryptographic Processing Times

mean min max std dev description
Server 58.918 33.18 421.26 59.056 generate key
Server 3.979 3.87 6.29 0.222 sign
Client 95.517 18.00 560.45 47.364 generate key
Client 0.150 0.14 2221 0.222 | verify
Client 0.058 0.03 1.43 0.134 | unblind
Client 0.006 0.00 1.88 0.027 | hash
Client 0.003 0.00 1.88 0.019 | blind

All keys are 1,024-bit RSA keys and SHA-512 is used as the hash
function. All values are in milliseconds with a resolution of 10 micro-
seconds. One thousand trials were executed.

both the client (K;;) and server (]Wj).ll However, both keys
can be generated anytime beforehand, so these operations
need not be executed inline in the GENTOKEN protocol. The
remaining steps must happen inline, but have very low
processing times. A server can sign a blinded message in
under 4 ms, so it can process about 250 tokens per second,
while a client can perform the verification and unblinding
steps in roughly 0.2 ms, or 5,000 times per second.

6.2.3 Token Fetch Time

A user who wants to obscure his locations within a region
must perform GENTOKEN on all APs in that region. Fig. 9a
shows the end-to-end time to fetch tokens for all APs in
each of the 10 cities that JiWire [6] reports to have the most
APs (as of November 15, 2008). JiWire lists commercial APs
that service providers or users have manually added, which
parallels how most APs are added to Wifi-Reports. None-
theless, some commercial hot spots may not be listed by
JiWire, so this graph serves to establish a lower bound for
cities with many APs. Since a user can fetch these tokens at
any time before submitting a report, even the longest delay,
5.5 seconds for all of New York, is completely practical.
Even obtaining tokens for several cities at once is practical
since each client only does this once in its lifetime.

WIGLE [10] is a database of all APs that war drivers
have overheard, including both commercial and private
APs. Fig. 9b presents fetch times for all WiGLE APs in a
32 km square centered at each city. Since most APs listed
are not intended to be used by the public (e.g., home APs)
and WiGLE does not filter out erroneous or stale measure-
ments, this graph serves as a loose upper bound on fetch
times. Even so, the worst fetch time (Seattle) is 20 minutes.
Since a client can batch sig-request messages for
multiple APs, a reasonable approach would be to request
all tokens, and then, retrieve them at a later time. In
addition, by choosing a region granularity of less than a
city, a client can achieve much better delay and still mask
his locations to a reasonable extent. Fig. 9c shows the CDF
of the number of WiGLE APs in 1 km® areas in each of the
cities. Most cells have fewer than 188 APs, which only take
about 1 second to fetch, and no cell has more than 7,400,
which only takes about 30 seconds to fetch. Since
commercial areas in most cities are not spread out, most
will be covered by a small number of cells. Finally, we note
that the server can parallelize the generation of each token
to improve the performance.

11. The standard deviation for key generation is high because the
algorithm has a random number of iterations.

6.2.4 Message Volume

A request for tokens transmits 173 bytes per token, while
the response transmits 529 bytes per token. Therefore, our
protocol is CPU-bound on the server even for a client on a
cable modem. For example, it takes our client 8.7 minutes to
send all requests for Seattle APs on WiGLE and 3.4 minutes
to receive the replies. (These latencies are included in the
token fetch times reported above.)

6.2.5 Admission Rate and Server Cost

We next estimate the rate at which users can join given
limited server resources. To simulate “average” American
users joining the system, we assume that each user requests
all tokens from one of the cities shown in Fig. 9, chosen at
random weighted by each city’s population (according to
2007 US census data [40]). While a user may request more,
the authority rate limits each user to prevent denial-of-
service attacks.

Suppose the authority has  CPUs. For JiWire APs, it can
admit 27,455z new users per day. For example, if the
authority has 100 CPUs, it can admit the entire population
of these cities in 5.6 days. How much would this overhead
cost over a system that stores reports without privacy? If
deployed on Amazon’s EC2 [1], this would only cost about
0.02 cents per user for CPU and bandwidth resources. For
all WiGLE APs, the authority can admit 165z new users per
day and the overhead cost would be about 2.6 cents per
user. This one-time cost is a very small fraction of the $5 +
each user would have to spend to use most commercial APs
just for one day. There are also recurring costs incurred for
computing tokens for new APs that are added and, if
enabled, signing reports for rate limiting (see Section 4.3.9).
However, these costs are also trivial. For example, even if 10
new hot spots appear in each city every week and every
user submits 10 new reports per week, the recurring cost
would only be about 0.02 cents per user per year.

6.3 Resistance to Fraud

Summary values are robust to fraudulent reports that try to
boost or degrade an AP’s value because we use summary
functions that are resilient to outliers. However, since there
is variability in honest reports as well, a small number
fraudulent reports may still be able to degrade prediction
accuracy, e.g., by shifting the median higher or lower.

6.3.1 Setup

We consider the same scenario as in Section 6.1. To evaluate
the extent that fraudulentreporting can degrade accuracy, we
simulate an adversary that tries to boost the predicted TCP
download throughput of an AP by submitting reports that
claim the AP achieves 54 Mbps, the maximum theoretically
possible in 802.11g. In this evaluation, users only consider
each AP’s O-percent-loss summary, so we assume that each
adversarial user submits one report with SNR in the middle of
this range. Although he could submit more, they would not
change the summary since only one report per user is used.
We vary the power of the adversary by varying the number of
users that collude to submit these fraudulent reports. A
typical AP would also have many honest reports. Therefore,
we simulate each AP with 100 reports total: x are the
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Fig. 9. (a) Time to acquire the right to report on all APs listed by JiWire in the top 10 cities. (b) Time to acquire the right to report on all APs listed by
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of 10 cities.

fraudulent reports described above and 100 — = are honest
reports that are randomly sampled (with replacement) from
our ~10 actual measurements per AP. Note that even if the
total number of reports is different, our results still hold on
expectation if the ratio of fraudulent to total reports remains
the same. The remainder of our simulation setup is identical
to Section 6.1. For comparison to Fig. 7a, we again focus on
official APs.

6.3.2 Accuracy

Fig. 10 shows Wifi-Reports” prediction accuracy on official
APs as we vary the percentage of fraudulent reports.
Negligible degradation of accuracy is observed when up to
10 percent of reports are fraudulent. Even with 30 percent
of fraudulent reports, most predictions are still correct
within a factor of 2. However, when 50 percent of reports
are fraudulent, most predictions are gross overestimates.
This result is expected since the median function is not
robust to 50 percent or more outliers larger than the actual
median.

6.3.3 Discussion

We note that even if an adversary is successful in luring
honest clients to a poor AP, those clients will submit
reports that correct the summary statistics. Successful fraud
attacks that degrade a good AP’s reputation (or contract its
0-percent-loss SNR range) are harder to correct because
honest users may be dissuaded from using that AP.
However, since cost, venue, and other external factors will
influence selections in practice, we believe that some honest
users will eventually report on these APs and correct their
summary statistics.
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Fig. 10. CDF of prediction accuracy for TCP download throughput of all
official APs at their respective hot spots. We vary the percentage of
fraudulent reports that claim throughput is 54 Mbps. Note the logarithmic
scale on the x-axis.

6.4 Application to Other Crowd-Sourced Services

Although we presented our reporting protocol in the
context of a hot spot directory service, it is applicable to
crowd-sourced recommender systems more generally. The
protocol can be applied to other collaborative reporting
services by replacing the set of APs, S, with the set of items
being reported on. Nonetheless, we note that there are two
important limitations. First, the protocol’s practicality is
dependent on our ability to divide items into subsets that
are at most hundreds of thousands in size and do not reveal
sensitive information (e.g., one subset for all items in each
city). Second, the protocol cannot be applied directly when
personalized collaborative filtering is required.

6.4.1 Reasonably Sized Subsets

Users in Wifi-Reports can fetch tokens in a practical amount
of time because we presumed that they are willing to reveal
a coarse grain region that they have visited (e.g., a city) and
each of these regions does not contain more than a million
APs. If the set of items that a user has to fetch to obtain
sufficient privacy is much larger, then the cost of generating
tokens becomes prohibitive.

Fig. 11 shows the per-user cost and the total download
time as functions of the number of tokens each user
downloads. To estimate server costs, we use the same
analysis as in the previous section based on EC2 CPU and
bandwidth costs. We show the minimum possible download
times given sufficient server resources, that is, assuming that
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Fig. 11. The per-user cost and the total download time as functions of
the number of tokens each user downloads. Costs are estimated based
on EC2 CPU and bandwidth costs and download times assume that the
bottleneck is a client on a typical cable modem (6 Mbps down/768 kbps
up). The vertical lines indicate the number of tokens for three different
services when each user downloads tokens for all services in a city (city)
or downloads tokens for all cities (all). (The JiWire and WIiGLE results
only examine the top 10 cities with the most hot spots.)
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the bottleneck is a client on a typical cable modem (6 Mbps
down/768 kbps up). The vertical lines indicate the number of
tokens for three different services when each user downloads
tokens for all services in a city (city) or downloads tokens for
all cities (all). jiwire and wigle refer to the hot spot directories
described earlier in this section. yelp refers to all physical
establishments in Yelp.com’s review database, which in-
cludes restaurants, grocery stores, bars, clubs, etc.'? Asin the
previous section, we assume that the users of the service are
distributed proportionally to each city’s population. (The
JiWire and WiGLE results only examine the top 10 cities with
the most hot spots.)

This analysis shows that a service similar to Yelp.com
could practically use our reporting protocol to protect the
privacy of its users if these users were willing to reveal the
city where they submit reviews (but not the actual establish-
ments). The average user would download 10,449 tokens,
which implies a per-user server cost of 0.2 cents and a
download time of 7 seconds. If users were not willing to
reveal the city where they submit reviews, then they would
need to download tokens for all establishments, incurring a
cost of 18 cents per user and a download time of 9 minutes.
This cost may still be reasonable, but would be harder to
justify for free or ad-supported services. In addition, this
download time is qualitatively longer on human timescales
(i.e., is likely viewed as a “download” rather than a click-
through), which may deter users from joining.

Not all recommendation systems can subdivide their
items by location (e.g., reviews for virtual product catalogs).
Therefore, an important research challenge when applying
this protocol to other crowd-sourced recommender systems
is how to subdivide the set of items into subsets of reasonable
size and that have appropriate privacy semantics.

6.4.2 Personalized Collaborative Filtering

In contrast to plain-query-based LBSes and crowd-sourced
LBSes, personalized collaborative filtering (CF) services help
users by finding users with similar interests. For example, a
dating site might try to match users that have been to similar
places. CF services that match users based on location
history actually need to link a user’s location samples
together to function using existing CF techniques. For
example, techniques to prevent Sybil attacks and fraud in
such systems, such as DSybil [44], rely on tracking the history
of each user’s votes or reports. Although some proposed CF
techniques for peer-to-peer systems can limit the exposure of
user histories by using dimensionality reduction and secure
multiparty voting [19], [20], these techniques are difficult to
apply when clients are not always online. Thus, designing
appropriate privacy models and mechanisms for CF services
is an important area of future work.

7 RELATED WORK

Wifi-Reports is related to five areas of previous work: AP
selection, e-cash and secure voting, recommender sys-
tems, personalized collaborative filtering, and collabora-
tive sensing.

12. We calculate the number of establishments in each city by summing
the number of establishments reported in each category on http://
www.yelp.com.

AP selection. Salem et al. [38] also propose a reputation-
based protocol for AP selection. In contrast to Wifi-Reports,
their protocol requires changes to the standard 802.11
protocol, it does not protect clients’ location privacy, it
assumes APs can predict their performance, and it does not
address varying wireless channel conditions. In addition,
unlike this paper, their work did not evaluate its feasibility
on empirical data.

The authors in [33], [39], [41] argue for metrics other than
signal strength for ranking access points, but only consider
metrics that can be instantaneously measured by a single
client. We showed in Section 6 that leveraging historical
information outperforms direct measurement [33] because it
isn’t always possible to test an AP before use. In addition,
Wifi-Reports is the only system that enables users to evaluate
APs that are not in range, such as when searching for an AP in
ahot spot database. Nonetheless, our work is complementary
to [39] and [41], which can better estimate the quality of the
wireless channel when it is the performance bottleneck.

802.11k [13] is an industry standard now in development
that will enable APs to give Wi-Fi clients performance
information other than signal strength for improved AP
selection. However, 802.11k is only designed to support the
selection of APs within the same administrative domain (e.g.,
all the APs in a campus network). Wifi-Reports is designed to
help users choose APs across different domains.

Electronic cash and secure voting. Wifi-Reports uses
blind signatures in a manner similar to well-known
electronic cash [21], [22] (e-cash) and secure voting [26]
(e-voting) protocols. However, unlike traditional e-cash
protocols where a user has multiple tokens that can be
spent on any service, a user of our reporting protocol has a
single token per service that can only be used for that
service. Traditional e-voting protocols typically assume that
all users vote (e.g., report) on all candidates (e.g., APs)
before tallying the votes, whereas reports are continuously
tallied in Wifi-Reports but a precise count is not necessary.
As a consequence, our reporting protocol is simpler than
traditional e-cash and e-voting protocols, but like these
protocols, it relies on an account authority and distributed
talliers (e.g., report databases) to prevent attacks.

Recommendation systems. Having users report on items
or services to ascertain their value is a well-known idea [15].
Wifi-Reports shares the most similarities with Broadband
reports [2], which rates ISPs using user-reported speed tests
(e.g., [8]) that measure their backhaul capacities. Unlike
Wifi-Reports, Broadband reports takes few measures to
prevent fraud. This may be because, unlike the identity of
an AP, it is difficult to forge the IP address that identifies
the ISP. Furthermore, it is easier to limit Sybil attacks
because a user is identified by an IP address, which is hard
to spoof while maintaining a TCP connection. Finally, in
contrast to APs, broadband measurements generally do not
depend on the user’s location.

Personalized collaborative filtering. Some recommenda-
tion systems use personalized collaborative filtering (e.g.,
[42], [44]) to mitigate the impact of users that submit many
bad reports. However, these techniques require that all
reports from the same user are linked, and thus, donot protect
privacy, which is important when location information is at
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stake. Some personalized CF techniques can limit the
exposure of this information by using secure multiparty
voting [19], [20]. However, these techniques require all users
to be simultaneously online to update summary statistics,
and thus, are impractical for services that have many users
and continuous submission of reports.

Collaborative sensing. A number of recent proposals
use mobile devices as collaborative sensor networks (e.g.,
[31], [14]), but they do not address the unique challenges of
AP measurement and reporting. Anonysense [23] is one
such platform that uses group signatures to preserve
location privacy and a trusted computing base (TCB) to
mitigate fraud. Each of these mechanisms has limitations.
First, group signatures ensure anonymity only if the
authority is trusted not to reveal user locations. If it is not
trusted, then it can deanonymize any report signature using
its master key. By using blind signatures, Wifi-Reports does
not need to make this assumption. Second, while a TCB can
thwart software-based tampering, it cannot prevent hard-
ware-based tampering (e.g., disconnecting a radio antenna).
Nor can it prevent collusion between adversarial clients and
APs. Therefore, a TCB alone is insufficient to prevent Sybil
attacks; an account authority that limits the influence of any
one user is necessary. Nonetheless, the Wifi-Reports
measurement client could also leverage a TCB to mitigate
fraud even more. For example, a TCB could be used to
ensure that even malicious clients cannot make up reports
without performing any measurements, raising the amount
of effort required to generate a fraudulent report. A TCB
could also be used to identify distinct devices securely to
the account authority (e.g., using a hardware fingerprint),
obviating the need for a credit card or other “real-life”
credential to prevent large-scale Sybil attacks.

8 CONCLUSION

In this paper, we presented the first measurement study of
commercial APs and showed that there is substantial
diversity in the performance. Hence, selecting the best AP
is not obvious from observable metrics. We presented Wifi-
Reports, a service that improves AP selection by leveraging
historical information about APs contributed by users. Wifi-
Reports can handle reports submitted at different locations,
protects users’ location privacy, and is resilient to a small
fraction of fraudulent reports.

Additional data from our measurement study and the
components of Wifi-Reports that we built are available at
CRAWDAD [34], [35].
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