
Tryst: The Case for Confidential Service Discovery

Jeffrey Pang
Carnegie Mellon University

Ben Greenstein
Intel Research Seattle

Damon McCoy
University of Colorado

Srinivasan Seshan
Carnegie Mellon University

David Wetherall
University of Washington, Intel Research Seattle

ABSTRACT

Local service discovery exposes sensitive information
about identity, location, and relationships. We present
empirical evidence that suggests the release of this infor-
mation in wireless environments poses a real danger to
our privacy. We then discuss the challenges in the design
of Tryst, an architecture that enhances the confidentiality
of existing service discovery mechanisms.

1 INTRODUCTION

Mobile wireless devices, such as Zunes, PSPs, and
iPhones, operate in environments where even devices
on the same local network may be adversarial and any-
one within communication range can overhear conver-
sations. Not surprisingly, privacy concerns are driving
the deployment of security mechanisms such as 802.11i,
which are designed to authenticate clients and conceal
the content of messages. However, such mechanisms do
not conceal identities, locations, and relationships when
a client attempts to discover a service in close proximity,
a process we calllocal service discovery.

Local service discovery, hereafter referred to simply
as service discovery, is an essential bootstrapping com-
ponent of many applications in ad hoc environments.
802.11, Bluetooth, and Zigbee devices have mechanisms
to discover other devices with which to communicate or
access points from which to obtain connectivity. Win-
dows, Mac OS X, and Linux operating systems use ser-
vice discovery protocols such as NetBIOS, UPnP SSDP,
SLP, and Multicast DNS (mDNS) to discover other de-
vices and services on the same local network. User-level
applications such as iTunes and iChat use service discov-
ery to find other instances of the same application on the
local network.

The discovery of a service, whether it be a network,
an application, or another device, involves the broadcast
of unencryptedannouncementsby services orprobesby
clients searching for services. Hence, application-level
services reveal these messages not only to services that
they trust but also to everyone on the local network;
link layer services additionally reveal them to everyone
nearby since they are sent before security associations
are established. To date, no serious effort has been made

to conceal these messages because service discovery has
primarily been used to find public infrastructure that has
little need for privacy (e.g., the “tmobile” 802.11 net-
work) or services on trusted wired networks that provide
physical security. In addition, there has been little ex-
amination of how damaging the information exposed by
service discovery can be.

We argue that the privacy threat is under-appreciated.
For example, clients that probe for the names of in-
frastructure networks may reveal damaging information
(e.g.,“Hooters - Plano” and “Juvenile Detention Class-
room”1) because network names can be correlated with
online databases to show where users have been and what
they have been doing. Previous work showed that probes
and announcements can also be used to fingerprint and
track users over time [20]. Similarly, service announce-
ments enable eavesdroppers to inventory physical sites
and profile devices for vulnerabilities.

Moreover, emerging wireless consumer electronics are
changing the way that service discovery is used. Many
client devices now offer services such as file and music
sharing (e.g.,the Microsoft Zune), and, thus, are vulner-
able to the same threats as infrastructure services. Sim-
ilarly, wireless devices are now used for social interac-
tion (e.g., gaming) where communicating devices may
be owned by different people. Thus concealing client
and service identities becomes necessary to hide social
relationships.

In this paper, we present empirical evidence that
demonstrates the severity of these privacy threats. We
then discuss the challenges in designingTryst, an archi-
tecture that eliminates information exposure by adding
confidentiality to existing service discovery protocols.
We focus on two essential areas: First, we discuss several
service discovery protocols that are confidentialandau-
thenticated, highlighting the trade-offs in message over-
head, denial-of-service resistance, and support for differ-
ent privacy requirements. Second, because confidential
discovery involves cryptographic keys, we discuss poten-
tial mechanisms to support key establishment in a range
of scenarios without degrading ease-of-use.

1Real networks locatable via WiGLE [25] and Google Maps.

1



Figure 1—The two service discovery mechanisms.

2 THE THREAT

In this section, we describe the two service discovery
mechanisms used by applications in ad hoc environ-
ments. We show that current implementations of these
mechanisms expose sensitive information because they
are neither confidential nor authenticated. Finally, we
present a set of requirements for confidential service dis-
covery motivated by these information leaks.

2.1 Service Discovery Mechanisms

Service discovery is used for one primary reason: user
convenience. Service discovery enables users to lo-
cate, browse, and connect to useful services automat-
ically. It is used both to discover if known services
are present (e.g.,your home network) and to discover if
previously unknown, but potentially useful services are
present (e.g., an airport network). Thus, it helps users
avoid cumbersome configuration, which has historically
been required to set up networks.

Although powerful infrastructure-based service dis-
covery mechanisms exist (e.g., those in SSDS [10] and
INS [4]), they are not used in ad hoc environments be-
cause these environments lack such infrastructure and
may not even have online connectivity. Instead, appli-
cations generally use two simple mechanisms that rely
only on the existence of a communication medium be-
tween clients and services (Figure 1). They are:

Announcement. A service may periodically broadcast
its identity (as well as other properties) to others nearby.
For example, in 802.11, an access point (AP) periodi-
cally announces the name of its network, called a Service
Set Identifier (SSID), so that nearby clients can identify
the AP and associate with it.

Probing. A client may search for a service by name
or description explicitly by broadcasting probes. For ex-
ample, in mDNS, a client that wishes to resolve a local
domain name of a device will broadcast a DNS query for
that name to all other devices on the local network (via
IP multicast). If that device is present, it hears the query
and responds with a DNS reply. Some protocols allow
clients to broadcast a probe asking foranyservice, which
will generate a response from all services that receive it.

Applications often use both these mechanisms. For
example, 802.11 clients can listen for announcements or
explicitly probe for SSIDs.

Protocol Name Ports Devices (%)
NetBIOS 137,138 530 (69.9)
mDNS 5353,5355 270 (35.6)
UPnP SSDP 1900 260 (34.3)
SLP 427 106 (14.0)
Microsoft Office v.X 2222 50 (6.6)
Internet Printing Protocol 631 8 (1.1)
TiVo Beacon Protocol 2190 8 (1.1)
Dantz Retrospect 497 8 (1.1)
LiveTribe SLP 8427 6 (0.8)
BakBone NetVault 20031 4 (0.5)
Other 31 (4.1)
Any Protocol 685 (90.4)

Table 1—Most common application-level service discovery protocols
observed at OSDI 2006 and the number of devices using each.

2.2 Privacy Leaks

These mechanisms result in the disclosure of a service’s
identity as this information is broadcast and anyone can
overhear it. Moreover, neither party is authenticated dur-
ing discovery, so anyone can detect the presence of a ser-
vice or masquerade as it.

We argue that the information exposed by these ser-
vice discovery mechanisms raises real privacy concerns.
Privacy risks result from the exposure of any of four
classes of information:

Inventory. Consumer devices that announce their ex-
istence or respond to probes can reveal what a user is
carrying or the contents of a building or vehicle. Thieves
can exploit this information to target thefts—e.g., [21]
reports that mobile phone pirates break into cars with
phones that announce their presence. Inventorying at-
tacks on these devices can be easier to carry out than the
ones involving RFID [13] because they can be performed
from a much greater distance. In addition, hackers can
discover application services though announcements and
probes in order to launch targeted attacks—e.g.,a device
that sends mDNS probes or announcements for Apple
services could be targeted to exploit a recent buffer over-
flow vulnerability [6]. Thus, maintaining the privacy of
services as well as clients is important.

In general, service names enable adversaries to profile
devices and users. Table 1 shows the application level
service discovery protocols observed in a trace of wire-
less traffic at OSDI 2006 [8] and the number of devices
using each.2 The vast majority of devices (90.4%) en-
gage in application-level service discovery and thus leak
some information.

Location. Immobile, infrastructure services sometimes

2We distinguish devices by MAC address and only count devices
that sent at least one DHCP request. Protocols were identified by port
numbers in broadcast and multicast packet headers. Note that Net-
BIOS, mDNS, UPnP SSDP, and SLP messages may specify particular
services (e.g.,iTunes), but we could not identify them because the trace
did not contain packet payloads.

2



desire privacy in order to hide their location. For ex-
ample, the practice of disabling 802.11 beacons is com-
mon [14] even though this practice does not completely
hide a network’s name. There are several legitimate rea-
sons to hide infrastructure services: First, non-public ser-
vices (e.g., home and enterprise networks) that are not
addressable by unauthorized users are more difficult to
attack. For example, an attacker can not cause mali-
cious packets to be processed if they are never received
by the target. Second, the names of multi-site services
can reveal where an organization is located. For exam-
ple, searching for the SSID “IRGuest” in WiGLE [25], a
database that maps SSIDs to the geographic coordinates
where they were observed by war drivers, reveals the lo-
cations of all the Intel Research labs. Although the loca-
tion of these labs is not private, this type of information
could be used to find physical sites that were not meant
to be public.

SSIDs leak some information simply because they are
descriptive, human readable names. However, even if
they were opaque, they would still be consistent and
could be correlated with other information. For example,
knowledge of the SSID at one site can be used to infer lo-
cations of other sites by observing that SSID elsewhere.

A service could reveal its existence only to authorized
clients by authenticating probes and encrypting replies.
However, this solution requires clients to reveal their
presence through probes without any indication that the
service is trustworthy. Unfortunately, probes additionally
expose the following two classes of information.

History. Probing can expose which services a user has
associated with in the past. These associations can often
be correlated with other sources of information to reveal
a user’s location and relationship history. For example,
consider the SSIDs that were observed in 802.11 probe
requests in a wireless trace collected at SIGCOMM
2004 [22]. We correlated these SSIDs with the coordi-
nates of networks in WiGLE and matched each to the
closest city or town (using the coordinates of 3,302,984
population centers from U.S. Census [24] and GNS [19]
data). We note that the resolution granularity can actually
be much finer than the city level. For example, four home
networks observed in the SIGCOMM trace for which we
knew the real locations resolve to within a few hundred
feet of the real coordinates.

These locations suggest where SIGCOMM users have
been. 390 of the 455 devices probed for at least one SSID
(excluding the SSIDs of the SIGCOMM networks). 107
devices probed for at least one SSID that resolved to
exactly one city. Although we do not have the ground
truth information to verify whether these are actually lo-
cations that users have visited, we note that this process

correctly finds locations visited by the authors.3 For ex-
ample, the most likely location of Jeffrey Pang’s SSIDs
is Pittsburgh, PA, which is where he lives. These probes
also reveal relationships (e.g.,that Jeffrey Pang is asso-
ciated with CMU).

We note that if devices never probed for specific ser-
vices, they would not be vulnerable to this particular
attack. However, without descriptive probes, services
would berequiredto either constantly beacon their exis-
tence or to respond to all wild-card probes and thus could
not have any privacy.

Clients could also limit information exposure by prob-
ing only for those services that they believe are present.
However, this process would require manual user inter-
vention because devices can not know this information a
priori. Users may not want to sacrifice the convenience
of automated discovery; studies have shown that humans
often are willing to trade off long-term privacy for such
short-term benefits, even when such a trade off is ir-
rational [3]. Therefore, privacy protection mechanisms
must not degrade ease-of-use if they are to be adopted.

Identity. In order to prevent user tracking, researchers
have recognized the need to eliminate unique identifiers
such as MAC addresses [16, 17]. However, in previous
work, we showed that names in probes and announce-
ments can be used to fingerprint users [15, 20]. This is
because, even if devices never emit unique identifiers, the
set of services that they attempt to discover and the set
that they announce may be unique. Hence, adversaries
can identify users by monitoring for these fingerprints.

2.3 Design Requirements

Irrespective of the aforementioned information leaks,
new service discovery mechanisms are unlikely to re-
place current ones unless they retain their two most es-
sential properties:

Plug-and-Play Networking. Users have grown to ex-
pect service discovery to find useful services in wire-
less environments with little or no human intervention.
Therefore, service discovery mechanisms should remain
as transparent as possible, keeping in mind that ease-of-
use is often in conflict with security.

Infrastructure Independence. Mechanisms should
continue to function in ad hoc environments with nothing
more than a broadcast communication medium between
clients and services. Note that man-in-the-middle attacks
are much easier to perform in such environments than in
the Internet so privacy is harder to maintain.

In order to protect privacy in wireless environments,
two additional properties are required:

3We identified our devices using techniques from [20].

3



Confidentiality. Both a client and a service may desire
privacy during service discovery. In particular, neither
should have to expose its presence to undesired parties.
In addition, third parties should not be able to determine
client/service relationships, nor should any two discov-
ery messages reveal information that links them to the
same senders or receivers.

Authenticity. Authenticating clients and services is es-
sential to prevent information exposure in the face of ac-
tive adversaries (e.g.,man-in-the-middle attacks). More-
over, a client should be authenticated not only before it
can access a service, but before it can evenlearn about
the presenceof a service. Similarly, a client must ver-
ify the authenticity of any service that it discovers before
offering its own identity. This constitutes a reversal of
existing practice where authentication occurs strictly af-
ter discovery.

3 DESIGN CHALLENGES IN TRYST

Existing service discovery implementations process
probes and announcements in many different ways, so
it would be foolhardy to introduce a new architecture
that attempts to replicate the union of their functional-
ity. Instead, Tryst supplements existing service discov-
ery mechanisms by providingaccess controlfor probes
and announcements, ensuring that only authorized de-
vices can determine a message’s sender, recipients, and
contents. Message processing itself (i.e., what happens
when a discovery message is received by an authorized
device) is delegated by Tryst to applications.

In this section, we discuss the challenges in the de-
sign of this access control primitive. These challenges
fall into two areas: First, Tryst’s discoveryprotocolmust
support a range of privacy requirements, not impose sub-
stantial overhead, and be resilient to denial of service at-
tacks. Second, since cryptographic keys are necessary
for authenticated and confidential discovery, Tryst must
performkey establishmentin ways that support common
device introduction scenarios without degrading ease-of-
use. We address each of these areas in turn, highlight-
ing the design contributions Tryst makes and the research
challenges that remain.

3.1 An Example

Before discussing Tryst’s access control primitive, we
describe how an existing application—802.11 network
discovery—could use it for confidential service discov-
ery. Suppose Bob trusts the 802.11 networks “Home,”
“Work,” and “School,” and they trust him. To discover
if one of these networks is available, Bob’s client takes
a standard 802.11ProbeReq and sends it via Tryst’s
access control primitive:Send({Home,Work,School},
ProbeReq). If Bob’s Home AP is present, it will receive

the ProbeReq and authenticate that Bob sent it. How-
ever, it will not learn the identity of any of the other in-
tended recipients (“Work” and “School”). The AP will
respond with aProbeResp via Send(Bob, ProbeResp).
No device other thanHome, Work, andSchool, which
represent unique identities known to Bob, will be able
to determine the source, destinations, or contents of the
probe and onlyBob will be able to determine the source,
destination, or contents of the response. Furthermore,
the discovery messages reveal no information that can
link them to future messages from Bob or his Home AP.
Finally, messages sent after discovery can be made confi-
dential by encrypting them with a secret key and address-
ing them using temporary pseudonyms [17]; both these
items can be exchanged in discovery messages.

3.2 Protocol Challenges

To satisfy theconfidentialityand authenticity require-
ments, the protocol that implements theSend access con-
trol primitive discussed above needs to authenticate the
sender in a confidential manner.

Public Key Protocol. Abadi and Fournet [1] present
such a private authenticationprotocol that is suffi-
cient to implementSend using public keys as identities.
Nonetheless, there are two concerns with this protocol.

First, the size of each probe or announcement scales
with the number of potential recipients. This overhead
might be impractical for announcing services that have
hundreds or thousands of authorized clients. However,
clients are unlikely to use more than a few services of a
single type and thus the overhead of probe-based discov-
ery might be acceptable. For example, wireless traces
show that 90% of users at OSDI 2006 probed for at most
12 unique 802.11 SSIDs. Similarly, due to the structure
of social networks, the average user is unlikely to estab-
lish many direct relationships.

Second, in order to protect the identity of the intended
recipients, discovery messages are not addressed. There-
fore, this protocol requires receivers to attempt to decrypt
everydiscovery message that they receive, whether it is
intended for them or not. To lessen this burden, we can
use an encryption technique [7] that protects the iden-
tity of recipients, yet enables receivers to check whether
each message is intended for them in constant time (in-
dependent of the number of recipients). However, each
decryption attempt still involves public key cryptography
and thus can take several milliseconds to complete. This
leaves receivers open to simple denial of service attacks
and slows services down when many devices in an area
perform discovery simultaneously.

Symmetric Key Protocol. To address this pitfall, we
note that the most common use of discovery is to dis-
cover known services (e.g.,a home 802.11 AP). There-

4



fore, a client and service will likely have met before, ei-
ther out-of-band (see Section 3.3) or using the public key
protocol described above. At that time, they can negoti-
ate a secret symmetric key for future meetings. We in-
dependently developed a symmetric key protocol similar
to the one proposed by Coxet al. [9] for detecting the
presence of friends. In contrast to the public key proto-
col, this protocol enables devices to discard messages not
intended for them efficiently by periodically computing
unlinkable addresses known only to a client and a ser-
vice. Nonetheless, a discovery message’s size still scales
with the number of intended recipients.

Since we expect this protocol to be sufficient for dis-
covery in the common case, devices can prioritize pro-
cessing of these messages while using spare cycles to
process public key protocol messages. Thus, clients can
discover both services that they have associated with be-
fore (using the symmetric key protocol) and services for
which they only know the identity (using the public key
protocol).

Discussion. Atypical clients that want to discover the
presence of hundreds or thousands of services confiden-
tially will incur substantial message overhead with ei-
ther protocol described above. To reduce this overhead
in a presence sharing application, Coxet al. [9] pro-
pose sharing a single key with cliques of mutually trust-
ing friends. However, this makes changing trust rela-
tionships difficult because it requires global agreement
among the members of a clique. This is particularly dif-
ficult for mobile devices that are often offline.

One attractive option is a class of encryption protocols
that enable a sender to broadcast a message that has size
sublinearin the number of authorized recipients, but can
still only be decrypted by those recipients [11, 18]. Both
public and symmetric key variants exist. These protocols
are made possible by the additional assumption that no
more thanm revoked receivers collude or no more thanr
receivers are ever revoked. However, these protocols re-
quire key state and message overhead that are both super-
linear in eithermor r, and therefore would only be more
efficient when the number of services a client wants to
discover is larger. Moreover, their current instantiations
reveal the sender’s identity and relationships (e.g., be-
cause they include the list of revoked devices). It is an
open problem whether they can be made private [7].

Alternatively, one could reduce the number of services
a client attempts to discover by ruling out services that
are unlikely to be present based on context and location
(e.g., using GPS). Nonetheless, it is important that us-
ing context does not inadvertently expose identity or re-
lationships (e.g., discovery in different contexts should
not noticeably change the number of discovery messages
sent, lest message volume be used as a fingerprint).

Finally, we note that mutual confidentiality is not al-

ways required. If services (or clients) give up their pri-
vacy, more efficient protocols are possible. For exam-
ple, a service willing to reveal its identity can simply an-
nounce its presence in an authenticated manner. Since
the announcement need not address recipients, message
size is constant. JFKi [5], a protocol originally designed
for IPSec key exchange, can be used to provide client
confidentiality and is resilient to denial of service attacks.

3.3 Key Establishment Challenges

Tryst’s access control primitive enables confidential and
authenticated service discovery, but requires keys that
identify trusted devices and services. In order to maintain
theplug-and-playandinfrastructure independenceprop-
erties of existing service discovery mechanisms, Tryst
must be able to obtain these keys automatically without
relying on the presence of trusted third parties during the
discovery process. In particular, clients should still be
able to discoverpreviously unknownservices that they
would nonetheless have reason to trust.

The two traditional classes of key establishment mech-
anisms,pairing and certificates, can be used in some
scenarios, but we argue that they are insufficient to es-
tablish keys in many important confidential service dis-
covery settings. Therefore, we describe two mechanisms
in Tryst that enable automated, confidential discovery in
several of these novel settings. The first mechanism en-
ables devices to establish keys with new devices belong-
ing to entities that they trust by using a common nam-
ing convention. The second enables devices to establish
keys with any device transitively via a trusted friend who
trusts it. We illustrate these mechanisms with two com-
mon discovery scenarios below.

Existing Mechanisms. The two traditional classes of
key establishment mechanisms are pairing and certifi-
cates. Pairing4 [23] refers to the techniques used to es-
tablish keys on two personal devices that a user wants to
connect together (e.g.,Bluetooth peripherals). Most of
these mechanisms assume that users of the devices can
identify them physically, which is often not the case (e.g.,
when trying to find an 802.11 AP). Moreover, all these
mechanisms assume that a clientalready knowsthe spe-
cific service it wants to discover. This may be true in
the examples that we have discussed so far, but service
discovery is often useful because it enables users to find
services they do not yet know about (two such scenarios
are described below). Ironically, this assumption means
that to use pairing,usershave to discover services be-
fore theirdevicescan discover them, which defeats the
purpose of “automatic” service discovery.

Secure websites offer certificates signed by trusted au-
thorities (e.g., VeriSign) to prove their authenticity to

4Note that our use of the termpairing in this paper is unrelated to
its use for describing particular bilinear maps.

5



clients. However, private services can not offer certifi-
cates to unknown clients without violating their own pri-
vacy. Similarly, clients can not privately offer proof
of identity before authenticating a service. Even pre-
distribution of certificates via out-of-band channels is
difficult because mobile devices are often disconnected.

New Devices in Trusted Domains.Devices in two mu-
tually trusted domains can often assume bilateral trust.
For example, if Alice and Bob are friends, they may al-
low all their current and future devices to discover each
other. They might näıvely try to achieve this either by
sharing a single private key among all devices in one do-
main, or by exchanging all their device keys. However,
the former approach compromises all the devices if even
one is stolen, and the later approach does not enable the
discovery of new devices that Alice and Bob obtain after
the key exchange.

To establish keys automatically in this scenario,
Tryst leveragesanonymous identity based encryption[2]
(AIBE), a public key encryption scheme primarily used
for confidential email. Using AIBE, Alice can assign
a different private key to each device and Bob can en-
crypt a discovery message to that device using a human-
readable string as the encryption key and a publicly
known encryption algorithm. This string is chosen based
on an agreed upon naming convention (e.g.,Alice.iPhone
can be the encryption key for Alice’s iPhone) but a mes-
sage encrypted with it hides both the key and the recip-
ient. A trusted authority provides Alice with the private
decryption key, ensuring that only she can decrypt mes-
sages encrypted with keys beginning withAlice (i.e., a
unique username she uses with this authority). The au-
thority also publicly publishes the encryption algorithm,
which is the same for all its users (i.e., the same al-
gorithm is used whether the key isAlice.iPhone, or Al-
ice.Zune, or Charlie.iPhone, etc.).

For example, suppose Bob and Alice each purchase
a new iPhone, each preloaded with AIBE private keys.
Bob configures his iPhone to trust (the string)Alice and
Alice configures hers to trustBob (e.g.,by adding each
string to their respective address books). If Bob and Al-
ice are nearby, their iPhones could discover each other
and use 802.11 to connect their calls, without first need-
ing to exchange keys (indeed, Bob need not even know
that Alice has an iPhone). To do this, Bob’s iPhone sim-
ply sends a discovery message encrypted using the string
Alice.iPhone and only Alice’s iPhone can receive it.

One downside of AIBE is that messages encrypted for
users of one trusted authority are distinguishable from
messages encrypted for users of another. Therefore, a
discovery message reveals the trusted authority the re-
cipient uses. If a sufficient number of people use this
trusted authority, then Alice and Bob may permit this
small degradation of privacy.

New Transitively Trusted Devices. Two mutually
trusted devices may also be willing to trust each other’s
social relations. For example, Bob’s iPhone may permit
all 802.11 APs that Alice’s iPhone uses to discover it.
Similarly, some of these APs may permit Alice’s friends
to discover them. Bob might naı̈vely attempt to bootstrap
keys for these APs by having Alice give him all their pub-
lic keys. However, this approach does not work for new
APs that Alice uses after this key exchange, and it forces
Alice to reveal all her AP relations to Bob.

Tryst leverages a private social proximity test [12] to
automatically establish keys in this scenario. This test,
which can be integrated with the symmetric key protocol
described in Section 3.2, enables Bob’s iPhone to send a
message that can only be read by devices that Alice has
allowed to trust her friends, without having to explicitly
tell Bob about any of them. Note that Bob will still learn
about Alice’s relationship with an AP when he discovers
it. However, Alice, who must agree to use this mecha-
nism, may be willing to permit this revelation.

Discussion. Although neither of these mechanisms pro-
vide absolute confidentiality as they require additional
trust assumptions, they are only used when devices at-
tempt to discover others with which they have not es-
tablished keys. The symmetric key protocol (see Sec-
tion 3.2) can be used for subsequent discovery attempts.
Thus, an important research challenge is to determine
how to limit the use of these mechanisms to those cir-
cumstances for which they are truly needed. For exam-
ple, in the case of 802.11, clients generally prefer known
APs to unknown ones. Thus, these mechanisms are not
needed when known APs are present.

Finally, the rapid evolution of service discovery sce-
narios means that we do not yet have a clear picture of all
use cases. Emerging scenarios may require access based
on more dynamic capabilities than these mechanisms en-
able. For example, a wireless network may want to be
visible only to clients in a specific physical area. Key
establishment mechanisms for these scenarios are an im-
portant area of future work.

4 STATUS AND FUTURE WORK

This paper presents the privacy threat posed by service
discovery protocols as well as the challenges to removing
it, and thus takes the first step towards the design of more
confidential protocols. We have implemented Tryst and
integrated it with a real 802.11 driver with the hope that
this prototype will evolve into a valuable tool for protect-
ing privacy. Through the use of this prototype, we expect
to provide a better understanding of how confidential ser-
vice discovery is used in the wild and to yield insight into
practical considerations for the design of such systems.
We believe these findings will be essential to establish-
ing best practices for future service discovery protocols.

6



ACKNOWLEDGMENTS

This work is supported by the Army Research Office
through grant number DAAD19-02-1-0389. This work
was partially done while Jeffrey Pang and Damon Mc-
Coy were employed by Intel. We thank Michael Buet-
tner, Tadayoshi Kohno, Sergiu Nedevschi, Anmol Sheth,
and the HotNets reviewers for their valuable comments
and suggestions.

REFERENCES

[1] M. Abadi and C. Fournet. Private authentication.
Theor. Comput. Sci., 322(3):427–476, 2004.

[2] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz,
T. Kohno, T. Lange, J. MaloneLee, G. Neven,
P. Paillier, and H. Shi. Searchable encryption revis-
ited: Consistency properties, relation to anonymous
IBE, and extensions. InCRYPTO, 2005.

[3] A. Acquisti and J. Grossklags. Privacy and ratio-
nality in individual decision making.IEEE Security
and Privacy, 3(1):26–33, 2005.

[4] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan,
and J. Lilley. The design and implementation of
an intentional naming system. InSOSP, Dec. 1999.

[5] W. Aiello, S. M. Bellovin, M. Blaze, J. Ioannidis,
O. Reingold, R. Canetti, and A. D. Keromytis. Ef-
ficient, DoS-resistant, secure key exchange for in-
ternet protocols. InCCS, 2002.

[6] Apple Mac OS X mDNSResponder buffer overflow
vulnerability. US-CERT, May 2007.https://
www.kb.cert.org/vuls/id/221876.

[7] A. Barth, D. Boneh, and B. Waters. Private en-
crypted content distribution using private broadcast
encryption. InFinancial Crypto, 2006.

[8] R. Chandra, R. Mahajan, V. Padmanabhan,
and M. Zhang. CRAWDAD data set mi-
crosoft/osdi2006 (v. 2007-05-23). http://
crawdad.cs.dartmouth.edu.

[9] L. P. Cox, A. Dalton, and V. Marupadi. Smoke-
screen: flexible privacy controls for presence-
sharing. InMobiSys, 2007.

[10] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D.
Joseph, and R. H. Katz. An architecture for a secure
service discovery service. InMobiCom, 1999.

[11] A. Fiat and M. Naor. Broadcast encryption. In
CRYPTO, 1993.

[12] M. J. Freedman and A. Nicolosi. Efficient pri-
vate techniques for verifying social proximity. In
IPTPS, 2007.

[13] S. Garfinkel, A. Juels, and R. Pappu. RFID privacy:
An overview of problems and proposed solutions.
IEEE Security and Privacy, 3(3):34–43, May/June
2005.

[14] M. S. Gast. 802.11 Wireless Networks, page 175.
O’Reilly, 2nd edition, 2005.

[15] B. Greenstein, R. Gummadi, J. Pang, M. Y. Chen,
T. Kohno, S. Seshan, and D. Wetherall. Can Ferris
Bueller Still Have His Day Off? Protecting Privacy
in an Era of Wireless Devices. InHotOS XI, 2007.

[16] M. Gruteser and D. Grunwald. Enhancing loca-
tion privacy in wireless LAN through disposable
interface identifiers: A quantitative analysis.ACM
MONET, 10, 2005.

[17] T. Jiang, H. Wang, and Y.-C. Hu. Preserving loca-
tion privacy in wireless LANs. InMobiSys, 2007.

[18] D. Naor, M. Naor, and J. Lotspiech. Revocation
and tracing schemes for stateless receivers. In
CRYPTO, 2001.

[19] NGA GEOnet names server, July 2007.
http://earth-info.nga.mil/gns/
html/index.html.

[20] J. Pang, B. Greenstein, R. Gummadi, S. Seshan,
and D. Wetherall. 802.11 user fingerprinting. In
MobiCom, Sept. 2007.

[21] Phone pirates in seek and steal mission. Cam-
bridge Evening News, Aug. 2005. http://
www.cambridge-news.co.uk/news/
region wide/2005/08/17/06967453-
8002-45f8-b520-66b9bed6f29f.lpf.

[22] M. Rodrig, C. Reis, R. Mahajan, D. Wetherall,
J. Zahorjan, and E. Lazowska. CRAWDAD data
set uw/sigcomm2004 (v. 2006-10-17).http://
crawdad.cs.dartmouth.edu.

[23] J. Suomalainen, J. Valkonen, and N. Asokan. Secu-
rity associations in personal networks: A compara-
tive analysis. Technical Report NRC-TR-2007-004,
Nokia Research Center, Jan. 2007.

[24] U.S. census bureau - TIGER/line, 2000.http:
//www.census.gov/geo/www/tiger/.

[25] WiGLE: Wireless geographic logging engine.
http://www.wigle.net/.

7


	1 Introduction
	2 The Threat
	2.1 Service Discovery Mechanisms
	2.2 Privacy Leaks
	2.3 Design Requirements

	3 Design Challenges in Tryst
	3.1 An Example
	3.2 Protocol Challenges
	3.3 Key Establishment Challenges

	4 Status and Future Work

