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ABSTRACT

Wi-Fi clients can obtain much better performance at some
commercial hotspots than at others. Unfortunately, there is
currently no way for users to determine which hotspot access
points (APs) will be sufficient to run their applications be-
fore purchasing access. To address this problem, this paper
presents Wifi-Reports, a collaborative service that provides
Wi-Fi clients with historical information about AP perfor-
mance and application support. The key research chal-
lenge in Wifi-Reports is to obtain accurate user-submitted
reports. This is challenging because two conflicting goals
must be addressed in a practical system: preserving the pri-
vacy of users’ reports and limiting fraudulent reports. We
introduce a practical cryptographic protocol that achieves
both goals, and we address the important engineering chal-
lenges in building Wifi-Reports. Using a measurement study
of commercial APs in Seattle, we show that Wifi-Reports
would improve performance over previous AP selection ap-
proaches in 30%-60% of locations.

Categories and Subject Descriptors:

C.2.1 Computer-Communication Networks: Network Archi-
tecture and Design

General Terms: Measurement, Design, Security

Keywords: privacy, anonymity, wireless, reputation, 802.11

1. INTRODUCTION
Users expect Internet connectivity wherever they travel

and many of their devices, such as iPods and wireless cam-
eras, rely on local area Wi-Fi access points (APs) to obtain
connectivity. Even smart phone users may employ Wi-Fi
instead of 3G and WiMAX to improve the performance of
bandwidth intensive applications or to avoid data charges.
Fortunately, there is often a large selection of commercial
APs to choose from. For example, JiWire [6], a hotspot di-
rectory, reports 395 to 1,071 commercial APs in each of the
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top ten U.S. metropolitan areas. Nonetheless, users report
that some APs block applications [10] and have poorer than
advertised performance [24], so selecting the best commer-
cial AP is not always straightforward.

Commercial Wi-Fi. To verify these reports, we present
the first measurement study of commercial APs in hotspot
settings. Previous war-driving studies [28, 32] performed
Wi-Fi measurements from streets or sidewalks, whereas we
measure APs from the perspective of a typical Wi-Fi user
who is inside an establishment. Our study examines the
performance and application support of all visible APs at 13
hotspot locations in Seattle over the course of 1 week. We
find that there is indeed a wide range of AP performance
even among APs very close to each other. Yet, there is
currently no way for a user to determine which AP would
be best to run his applications before paying for access.

Wifi-Reports. To address this problem, we present Wifi-
Reports, a collaborative service that provides clients with
historical information to improve AP selection. Wifi-Reports
has two main uses: First, it provides users with a hotspot
database similar to JiWire but where APs are annotated
with performance information. Second, it enables users to
more effectively select among APs visible at a particular
location. Wireless clients that participate in Wifi-Reports
automatically submit reports on the APs that they use. Re-
ports include metrics such as estimated back-haul capacity,
ports blocked, and connectivity failures. Using submitted
reports, the service generates summary statistics for each
AP to predict its performance. Obtaining accurate user-
submitted reports poses two challenges:

(1) Location privacy: A user should not have to reveal that
he used an AP to report on it. Otherwise he would implicitly
reveal a location that he visits. Users may be reluctant to
participate in Wifi-Reports if their identities can be linked to
their reports. At the same time, however, a few users should
not be able to significantly skew an AP’s summary statistics
because some may have an incentive to submit fraudulent re-
ports, e.g., to promote APs that they own. One way to meet
these conflicting goals is to assume the existence of a trusted
authority that is permitted to link users to their reports in
order to detect fraud (e.g., in the way that eBay manages
user reputations). For good reason, users, privacy groups,
and governments are becoming increasingly wary about ma-
licious or accidental disclosures of databases that can track
large numbers of people [12], even if they are tightly reg-
ulated like cell phone records [4]. Therefore, we present a



report submission protocol that tolerates a few misbehaving
users and does not require the disclosure of location related
information to anyone, including the Wifi-Reports service.
Our protocol leverages blind signatures to ensure that the
service can regulate the number of reports that each user
submits, but cannot distinguish one user’s reports from an-
other’s.

(2) Location context: Physical obstructions and the dis-
tance between a client and an AP affect the quality of the
wireless channel. Therefore, we must take location context
into account when estimating AP performance or our esti-
mates will not be accurate. We describe how measurements
can be categorized by the different wireless channel condi-
tions under which they were performed. We also describe
how to index and retrieve reports based on location without
requiring additional equipment such as GPS.

We have implemented the key components of Wifi-Reports
and used our measurement study to simulate how well it
would work. Our results suggest that even if a user is only
selecting among APs at a single location, Wifi-Reports per-
forms close to optimal in more cases than existing techniques
such as best-signal-strength and best-open-AP [32] because
it provides information on commercial APs that cannot be
tested beforehand. Also, it outperforms the strategy of pick-
ing the “official”AP for a hotspot, because, for example, the
AP next door may have a better back-haul connection.

Contributions.

1. To our knowledge, we are the first to study the at-
tributes of commercial encrypted and “pay-for-access”
APs in the wild. Although previous studies have ex-
amined open APs [28, 32] observed while war driving,
we find that the best performing AP for a typical user
in one commercial district is most often a closed AP.

2. We show that Wifi-Reports’ summary statistics pre-
dict performance accurately enough to make correct
relative comparisons between different APs, despite
performance variability due to competing traffic. For
example, it predicts AP throughput and response time
to within a factor of 2 at least 75% of the time. Since
different APs’ median throughputs and response times
differ by up to 50× and 10×, respectively, this pre-
diction accuracy enables Wifi-Reports to select the
best AP more often in more locations than any previ-
ous AP selection approach. Moreover, unlike previous
AP selection approaches, Wifi-Reports enables users
to examine the characteristics of APs that not in radio
range, which is useful when users are mobile.

3. We present the design, implementation, and evaluation
of a practical protocol that enables users to contribute
reports on APs anonymously, and that generates ac-
curate summary statistics for each AP even if 10% of
that AP’s users collude to promote it. Although we
use this protocol in the context of Wifi-Reports, it is
applicable to other collaborative reporting services.

The rest of this paper is organized as follows. §2 presents
the results of our measurement study. §3 presents an over-
view of Wifi-Reports’ design. §4 describes how it preserves
privacy and mitigate fraud. §5 describes how it distinguish
client locations. §6 presents an evaluation of Wifi-Reports.
§7 presents related work and §8 concludes.

Figure 1—Measured hotspot locations near University Av-
enue, Seattle, WA

2. MEASUREMENT STUDY
We conducted a measurement study to determine whether

existing AP selection algorithms are sufficient to choose an
AP that meets a user’s needs. We sought answers to three
questions that illustrate whether this choice is obvious and
whether it can be improved with Wifi-Reports.

Diversity. Is there diversity in terms of performance and
application support of different hotspots’ APs? The more
diversity, the more likely a user will choose a hotspot with
substantially suboptimal performance when selecting ran-
domly from a hotspot directory.

Rankability. Is the best choice of AP at a particular lo-
cation always obvious? If the best APs do not have any
observable traits in common, then AP selection algorithms
that use the same metric to rank APs at all locations will
sometimes pick suboptimal APs.

Predictability. Is performance predictable enough so that
historical information would be useful?

Our study examined hotspots around University Avenue,
Seattle, WA, near the University of Washington. We be-
lieve this area is representative of commercial districts with
multiple Wi-Fi service providers. It is less likely to be rep-
resentative of areas that only have a single Wi-Fi service
provider, such as in many airports. However, since users
don’t have a choice of AP providers in those environments,
selecting a provider to use is straightforward. Wifi-Reports
could, however, still help a user decide if purchasing access
is worthwhile. Figure 1 shows the hotspot locations where
we performed measurements, which included those listed in
JiWire’s database and some additional sites known to us.

All locations are single-room coffee or tea shops. Most
APs we measured are not open. In addition to each hotspot’s
official AP, the APs of hotspots nearby are also usually visi-
ble. APs of the free public seattlewifi network are sometimes
visible at all locations. APs belonging to the University of

Washington network are sometimes visible due to proxim-
ity to campus buildings, though these were never the best
performing at any location. Our study offers a lower bound
on the number and diversity of APs, as more may become
available.

2.1 Setup

Infrastructure. To emulate a typical user of Wifi-Reports,
we collected measurements with a commodity laptop with
an Atheros 802.11b/g miniPCI card attached to the laptop’s
internal antennas. We implemented a custom wireless net-
work manager for associating to APs and performing mea-
surements after association. Our implementation is based
on the Mark-and-Sweep war driving tool [28].



Methodology. During each measurement trial at a loca-
tion, we emulate a typical connection attempt by scanning
for visible APs. We then attempt to associate and authenti-
cate with each AP found (identified by its unique BSSID). If
successful, we run our battery of measurement tests before
moving on to the next AP. We manually obtain authenti-
cation credentials, if necessary (e.g., through a purchase).
Since many Wi-Fi drivers do not list APs with low signal-
to-noise (SNR) ratios, we only attempt to connect to APs
when they appear with an SNR > 10 dB.1

We performed measurements at typical seating locations
in each hotspot. Although the exact same location was not
used for all measurements in a hotspot, §5 shows how well
we can distinguish performance at different locations.

Time frame. Previous studies measured each AP at a sin-
gle point in time [28, 32]. Since we want to know whether
AP characteristics are predictable, we performed 8 to 13
measurements at each location (with the exception of yun-

nie bubble tea, where we only performed 6 trials). These
measurements were taken during 7 week days in October
2008. On each day, at each location, we performed 1-2 mea-
surements at different times of the day, so we have at least
one measurement during each 2 hour time-of-day between
9AM and 6PM (or a narrower time window if the hotspot
opened later or closed earlier).

2.2 Results

Basic connectivity. Figure 2(a) shows the fraction of
times we were able to obtain connectivity from each AP at
each location (i.e., association and authentication succeeds,
we are able to obtain a DHCP address, and able to fetch
www.google.com; we retry each step up to 3 times and for
up to 30 seconds on failure). We only count times when the
AP was visible in a network scan. The symbol above each
point indicates whether the AP can be accessed for free (O)
or not ($). The box for the official AP at each hotspot is
shown in a solid color and its symbol is in a larger font.2

As expected, most (10 of 13) official hotspot APs were
successful 100% of the time. However, some, such as the ones
at tullys 1 and cafesolstice, failed several times. These were
all DHCP failures and frequent users of cafesolstice say that
the AP has always had DHCP problems. However, it would
be difficult to detect these problems automatically because
even to attempt to access the network, a user has to obtain
a WPA password from the cashier. Although unofficial APs
visible at hotspots tend to fail with higher regularity due
to wireless loss, a few in most (8 of 13) locations succeed
whenever they were visible in our network scan. Thus, even
this very basic connectivity metric suggests that there is
diversity.

TCP throughput. Adequate throughput is important for
many applications, such as streaming video or VoIP. Fig-
ure 2(b) shows a box-plot of the TCP download throughput
achieved through each AP (i.e., the bar in the middle of each

1One physical AP at each starbucks advertised two virtual
APs. Since we did not find any service differentiation be-
tween these virtual APs after login, we only include one of
them in our study. They exist because Starbucks hotspots
are migrating from T-Mobile to AT&T Wi-Fi.
2cafesolstice has 2 official APs because it changed APs in
the middle of our measurement period. However, both APs
suffered from basic connectivity problems.

box indicates the median; the ends of each box indicate the
first and third quantiles; and whiskers indicate the minimum
and maximum). Note the logarithmic scale. We measured
throughput over the final five seconds of a ten-second trans-
fer from a high bandwidth server under our control to esti-
mate each AP’s sustained throughput after TCP slow start.
We do not count the times when we failed to associate with
the AP or when TCP timed out during establishment (the
failure rate above suggests how often this occurs), so we have
fewer measurements for some APs than for others.

First, we note that there is a significant range in available
capacities across different hotspot locations. Median capac-
ities range from less than 100 Kbps (yunnie) to over 5 Mbps
(starbucks 1 and oasis). There is variability in each AP’s
throughput measurements, which is attributable mostly to
wireless loss or contention (similar UDP throughput mea-
surements had less variability), but the variation at most
APs is much smaller than this wide performance range.
Therefore, there is diversity in AP capacity, and through-
put is predictable enough to distinguish them.

Second, we observe that there is also a significant range in
capacities among APs visible from a single location. As ex-
pected, most (9 of 13) official hotspot APs have the highest
median throughputs at their respective locations. However,
this is not true at tullys 1, yunnie, starbucks 1, and tullys 2,
where better APs were available from an apartment build-
ing next door, the public seattlewifi network, a store next
door, and a nearby hotel, respectively. Indeed, at starbucks

1 and yunnie, an unofficial AP always gave significantly more
throughput than the official one when visible. Recall that
these comparisons only include measurements when we were
able to successfully pay for and obtain Internet connectivity,
so a user without historical information would have to pay
before discovering this.

Response time. Low network latency is another impor-
tant attribute for interactive applications such as web brows-
ing. To estimate the latency a typical web browser would
experience, we measured the response time to one of the
most popular web sites. Figure 2(c) shows a box-plot of the
time to fetch http://www.google.com. Fetch time includes
the time to perform a DNS lookup, which is dependent on
the DNS server each AP’s DHCP server assigns us.3 Since
Google’s homepage is only 6KB, fetch time is dominated
by latency rather than transfer time. We do not count the
times when association failed.

Just as we saw with TCP throughput, there is diversity in
response time, which ranges from less than 100 ms to several
seconds. Response times of more than 1 second are typically
noticeable by an end-user. As expected, most (10 of 13) offi-
cial APs have the lowest median latency at their respective
hotspot locations, but this is not true at tullys 1, yunnie,
and cafeontheave. Only the disparity between the best and
official APs at tullys 1 is large enough to be noticeable, but
even smaller differences may impact more sensitive applica-
tions, such as VoIP. In addition, in some cases the AP with
the lowest and least variable response time is not the same
as the AP with the highest throughput (e.g., at starbucks

1), so ranking is dependent on application requirements. Fi-
nally, all official APs, except the one at sureshot, provide

3The CNAME and A DNS records for www.google.com have
a TTLs of 1 week and 1 day, respectively, so they are almost
always already cached at the DNS server.
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Figure 2—(a) The success rate of different APs (i.e., how often we could connect and access the Internet when each AP was
visible). Each point represents one AP visible at each location. (b) A box-plot of the measured TCP download throughput
through each APs. Note the logarithmic scale. (c) A box-plot of the time to fetch http://www.google.com using each AP.
The measurements for each AP are grouped by the hotspot location where they were taken, shown on the x-axis. The symbol
above each box indicates whether the AP can be accessed for free (O) or not ($). The box for the official AP at each hotspot
is a solid color and its symbol is in a larger font. The APs in all graphs are sorted by their median TCP download throughput.
Most of the non-free APs at tullys 2 are University of Washington APs in a building across the street.

predictable response times (first and third quantiles within
a factor of 2). At least one unofficial AP at each location is
just as predictable.

Port blocking. To determine if an AP blocked or redi-
rected certain application ports, we sent 3 probes to each
port on a measurement server under our control. For UDP
ports, each probe consisted of 44-byte request and response
datagrams, while for TCP ports, each probe tried to estab-
lish a connection and download ∼32 bytes of data (in order
to check for port redirection). We tested common appli-
cation ports including: FTP, NTP, SSH, NetBIOS, SMTP,
IMAP, SSL, VoIP (SIP), STUN, common VPN ports, World
of Warcraft, Counterstrike, Gnutella, and Bittorrent. To ac-
count for packet loss, we conclude that a port is blocked only
if it was never reachable in any of our measurements.

All APs blocked NetBIOS, most likely because they are
configured to do so by default. Three APs blocked non-
DNS packets on port 53 and only one (bookstore’s official
AP) blocked more ports: all non-privileged TCP ports and
all UDP ports except DNS and NTP. Nonetheless, this is
useful information, as common applications such as VPNs,
VoIP, and games would not function.

Summary. With respect to diversity, we find that there
is significant diversity in AP throughput and latency. With
respect to rankability, the official AP is not the best choice
at 30% of hotspot locations, so ranking APs is not always
obvious. Finally, with respect to predictability, there is vari-
ability in performance over time, but this variability is much

smaller than the range of different APs’ performance, so his-
torical information should be predictable enough to compare
APs. Therefore, our results suggest that a collaborative re-
porting service may improve AP selection.

2.3 Discussion

Why not just use official APs? One might ask whether
historical information is really necessary if the official AP is
usually the best at 70% of locations. First, in §6.1, we show
that historical information can get us the best AP in the
remaining 30%. Second, as hotspot density increases, sce-
narios like these will likely become more common. Third,
many users will be willing to move to find better APs and,
without historical information, it is not obvious how to de-
termine where to move to. Finally, if a user is not in range of
any APs, he needs historical information to determine where
to find a good one.

Other selection factors. In practice, users will likely take
other factors into account besides AP performance and ap-
plication support, such as cost and venue. Although these
factors are important and reports in Wifi-Reports can in-
clude such information, they are also subjective, so we focus
our evaluation in this paper on AP performance. In par-
ticular, we focus on download capacity and latency since
these metrics are important for most applications. Our fo-
cus demonstrates Wifi-Reports’ ability to help users make
more informed decisions about which APs to use, whether
they take cost and venue into account or not.



Figure 3—Wifi-Reports components and typical tasks.

3. WIFI-REPORTS OVERVIEW
Wifi-Reports is a recommendation system [14]. Users rate

the services they use and submit these ratings to a report
database where they are summarized. Other users down-
load summarized ratings to evaluate services that they are
considering. In Wifi-Reports, the users are wireless clients,
services are APs, and ratings are key-value pairs of measured
performance metrics.

3.1 Challenges
In contrast to previous recommendation systems, Wifi-

Reports faces two unique challenges:

Location privacy. By reporting the use of an AP, a user
implicitly reveals a location where he has been with an accu-
racy that is sufficient to identify sensitive places [33]. Thus,
users may not be willing to participate in Wifi-Reports if
their identities can be linked to their reports. A single user’s
reports must not even be linkable to each other, otherwise
they are vulnerable to inference attacks [17, 27]. Neverthe-
less, we still want to limit the influence of malicious users
that submit fraudulent reports, which is a common problem
in recommendation systems [39, 41].

Location context. Clients will typically search for sum-
maries by location (e.g., “all APs in Seattle”), and the loca-
tion of a client with respect to an AP will affect its measured
performance due to different wireless channel conditions.
Since we would like clients to generate reports automati-
cally, location context must be determined automatically.

3.2 System Tasks
The operation of Wifi-Reports consists of three main tasks

(Figure 3). We present an overview of these tasks here.
The next two sections describe how they can be done while
addressing the challenges discussed above.

Measure and report. Clients measure and submit re-
ports on APs that they use. For example, suppose a client
attempts to connect to the Internet using AP X. If the con-
nection fails (i.e., association, DHCP, or all TCP connections
fail), the client generates the report {ap=X, SNR=20dB,
date=11/14/2008, connectivity=false}.4 If the connection
succeeds, then the client software estimates performance
metrics based on the user’s network traffic or using active
measurements when the connection is idle.5 When measure-

4X refers to the AP’s BSSID and a hash of its signing key
described in §4.
5A number of techniques and tools exist to estimate band-
width [34] and response time [3]. These techniques are out-

ment completes, it generates the report {ap=X,
SNR=20dB, date=11/14/2008, connectivity=true,
tcp bw down=100kbps, google resp time=500ms, . . .}.

When the client has Internet connectivity again, it con-
tacts an account authority to obtain the right to report on X,
e.g., by receiving a credential. It sends this report along with
the credential to a report database. An account authority is
necessary to prevent a single malicious client from submit-
ting an unbounded number of fraudulent reports. However,
to preserve the location privacy of honest clients, neither the
account authority nor the report database should learn that
the client used AP X. We describe the novel protocol we
use to address this problem in §4.

Download and index. The database generates summary
statistics for each AP by summarizing the values for each
key. To be robust against some fraudulent values, we use
summary functions that are not significantly skewed by a
small fraction of outliers. For example, median is used for
real-value attributes (e.g., throughput), plurality voting for
multinomial attributes (e.g., port blocking), and average for
probability attributes with {0, 1} inputs (e.g., basic connec-
tivity). In addition, a summary indicates the number of
reports that it summarizes as an estimate of its robustness
(i.e., a user will pay more heed to a summary of 10 differ-
ent reports than a summary of just 1 report). A client may
choose to ignore summaries with too few reports to mitigate
the impact of erroneous reports by early adopters.

Before traveling, a user downloads and caches the sum-
mary statistics of all APs in the cities that he expects to
visit. In practice, client software would update this cache
whenever it has connectivity, similar to the iPass [5] client.
To find a suitable hotspot, reports are shown to a user on
a map. In order to facilitate this operation, reports must
be search-able by geographic location. Unfortunately, we
cannot rely on GPS because many wireless clients are not
equipped with it and it is often does not work indoors.
We describe existing techniques that we leverage to obtain
coarse geographic coordinates in §5.1.

Predict locally. Finally, when a user sits down at a cafe,
he typically wants to find the best AP that is visible. Al-
though the client will have downloaded summaries for these
APs earlier, the expected performance of each AP depends
on the wireless channel conditions between the client and the
AP. For example, conditions will vary based on the observed
signal-to-noise ratio (SNR). Therefore, the client must apply
a filter to the summaries to obtain an accurate prediction
for the current conditions. We describe how a client can
perform this filtering in §5.2.

4. LOCATION PRIVACY
This section describes a novel report submission protocol

that ensures location privacy and limited influence, proper-
ties that we define below. Define U to be the set of all users
that participate in Wifi-Reports, S to be the current set of
all APs, u = submitter(R) to be the user that submitted
report R, and s = target(R) be the AP that R reports on.
Suppose C ⊂ U is the largest set of colluding malicious users
that try to violate any user’s location privacy or to influence
an AP’s summary.

side the scope of this paper, but the measurements we used
can be implemented as an anonymous speed test.



Location privacy. To preserve location privacy, we must
satisfy three conditions. (1) No one, not even the account
authority or report database, should be able to link any
report to its submitter; i.e., no one should be able to guess
submitter(Ri) with probability greater than 1

|U\C|
, for all

reports Ri. (2) No one should be able link any two reports
together unless they were submitted by the same user for
the same AP; i.e., no one should be able to guess whether
submitter(Ri) = submitter(Rj) with probability greater than

1

|U\C|
, for all Ri, Rj where submitter(Ri) 6= submitter(Rj) or

target(Ri) 6= target(Rj). (3) A user should not have to reveal
the target of a report in order to obtain the right to submit
the report; i.e., after obtaining the right to submit Rk+1, the
account authority should not be able to guess target(Rk+1)
with probability greater than 1

|S|
. In practice, achieving this

third condition may be too expensive, so we later relax it by
restricting S to all APs in a city rather than all APs.

Limited influence. To limit the influence of dishonest
users, exactly one report from each user who has submitted
a report on AP s should be used to compute the summary
statistics for s. To ensure that this condition is satisfied,
any two reports submitted by the same user for the same
AP must be linked; i.e., for all Ri, Rj where submitter(Ri) =
submitter(Rj) and target(Ri) = target(Rj), anyone should be
able to verify that submitter(Ri) = submitter(Rj). When
computing each summary, the database first summarizes
each individual user’s reports and then computes a sum-
mary over these summaries. This ensures that malicious
users have at most |C| votes on the final summary.

We may also want to limit the rate at which these users
can submit reports on any AP. For example, we may want to
prevent a malicious user from reporting on a large number
of APs that he has never actually visited. We discuss how
to achieve this additional property at the end of §4.3.

4.1 Threat Model
Users’ location privacy should be protected from malicious

users, the account authority, and report databases. To meet
this goal, we don’t assume any restrictions on the behavior
of malicious users, but we make a few practical assumptions
about the account authority and report databases.

Account authority. A challenge for recommendation sys-
tems is how to prevent malicious users from out-voting hon-
est users, e.g., by using botnets or Sybil attacks to obtain
many fake identities. Wifi-Reports, as with most existing
recommendation systems, assumes that a central account
authority can limit these large-scale attacks. For example,
the authority can require a credential that is hard to forge,
such as a token credit card payment or the reception of an
SMS message on a real cell phone. These defenses are not
perfect, but are enough of a deterrent that existing recom-
mender systems work well in practice. These heuristics may
also be supplemented by Sybil detection schemes (e.g., [40]).
Thus, we assume that these mechanisms are sufficient to
bound the number of malicious users to a small fraction of
the total number of users. §6.3 shows that our system can
limit the influence of this small number of malicious users.
We assume that the account authority is honest but curi-
ous; that is, it may try to reveal information about users,
but it does not violate our protocol. We discuss how selfish
violations can be detected in the next two sections. Since
the account authority is a high profile entity, we believe that

the legal implications of violations are sufficient deterrents
to prevent them.

Report databases. Users have to trust the report da-
tabase to summarize reports correctly. To distribute this
trust, we assume that there are multiple databases and that
most are honest (e.g., do not delete reports prematurely).
Honest users submit reports to all the databases and down-
load summary statistics from all databases, using the report
on each AP that the majority of databases agree upon. We
note that the existence of a single honest database can be
used to audit all databases, because any valid report that
exists should exist on all the databases, and reports are inde-
pendently verifiable (see the protocol below). Independent
verifiability also means that each database can periodically
check the others to discover and obtain reports that it is
missing. We assume that users learn about the list of re-
port databases in an out-of-band manner; e.g., it may be
distributed with the software.

A report database can link reports if they are submitted
from the same IP address. Therefore, we assume that users
submit reports through a mix network such as Tor [23] and
that the mix achieves its goal, i.e., no one can infer the
source IP address of the sender’s messages.

4.2 Straw Man Protocols

Anonymize reports. One approach might be to have
users simply submit reports to the databases via a mix net-
work. This means that all reports are unlinkable, thus pro-
viding location privacy. However, this protocol does not
provide limited influence because a database can not distin-
guish when one user submits many reports on an AP versus
when many users submit one report each on the AP.

Authenticate reports. For this reason, nearly all exist-
ing recommender systems today rely on a trusted central
authority that limits each real user to a single account. We
can limit influence with an authority A as follows: When a
user ui wants to submit a report R on AP sj , it authenti-
cates itself to A (e.g., with a username/password) and then
sends R to A. A checks if ui has previously submitted any
reports on sj and, if so, deletes them from the report da-
tabases before adding the new one. A explicitly remembers
the user that submitted each report. If A is the only one al-
lowed to add and remove reports from the report databases,
this protocol provides limited influence because each user is
limited to one report. However, it fails to provide location
privacy with respect to A. Indeed, A must remember which
reports each user submitted to prevent multiples.

4.3 Blind Signature Report Protocol
To achieve both location privacy and limited influence,

Wifi-Reports uses a two phase protocol. We sketch this
protocol here: First, when user ui joins Wifi-Reports, the
account authority A provides him with a distinct signed
“token” Kij for each AP sj ∈ S. By using a blind signa-
ture [16], no one, including A, can link Kij to the user or
to any other Kij′ . This ensures location privacy. However,
anyone can verify that A signed Kij and that it can only be
used for sj . GenToken describes this step in detail below.
Second, to submit a report R on AP sj , ui uses the token
Kij to sign R, which proves that it is a valid report for sj .
ui publishes R to each report database anonymously via the
mix network. Since ui only has one token for sj , all valid



reports that ui submits on sj will be linked by Kij . This en-
sures limited influence. SubmitReport describes this step
in detail below.

Preliminaries. The RSA blind signature scheme [16] is a
well known cryptographic primitive that we use in our pro-
tocol. Let blind(K, m, r) and unblind(K, m, r) be the RSA
blinding and unblinding functions using RSA public key K,
message m, and random blinding factor r (we use 1024-bit
keys and values). Let sign(K−1, m) be the RSA signature
function using RSA private key K−1, and let verify(K, m, x)
be the RSA verification function, which accepts the signa-
ture x if and only if x = sign(K−1, m). Let H(m) be a
public pseudorandom hash function (we use SHA-512). We
leverage the following equivalence:

sign(K−1, m) = unblind(K, sign(K−1, blind(K, m, r)), r)

That is, blinding a message, signing it, and then unblinding
it results in the signature of the original message.

Blind signatures have two important properties. (1) Blind-
ness: without knowledge of r, m̄ = blind(K, m, r) does not
reveal any information about m. (2) Unforgeability : sup-
pose we are given valid signatures (x1, x2, . . . , xk) for each of
(m1, m2, . . . , mk), respectively, where mi = H(m̂i). With-
out the secret key K−1, it is infeasible to forge a new signa-
ture xk+1 = sign(K−1, H(m̂k+1)) for any m̂k+1 6= m̂i for all
i, under the assumption that the known-target or chosen-
target RSA-inversion problems are hard [16]. However, any-
one can check whether verify(K, H(m̂i), xi) accepts.

Protocol description. Our protocol has two phases:
GenToken and SubmitReport, described below. For now,
assume that the set of APs S is fixed and public knowledge.
We describe later how APs enter and leave this set.

GenToken(ui, sj). The GenToken phase is used by user
ui to obtain a token to report on AP sj and ui only performs
it once per sj in ui’s lifetime. sj identifies an AP by BSSID
as well as a hash of A’s signing key for that AP (see below),
i.e., sj = {bssidj , H(bssidj |Mj)}. We assume that ui and
A mutually authenticate before engaging in the following
protocol (e.g., with SSL and a secret passphrase).

A : {M, M−1}, {Mj , M
−1

j } ∀sj ∈ S,

msigj ← sign(M−1, H(bssidj |Mj)) ∀sj ∈ S

ui : M, Mj , msigj , {Kij , K
−1

ij }, r
R

←{0, 1}1024

ui : b← blind(Mj , H(Kij), r) (1)

ui → A : "sig-request", sj , b (2)

A : sig′
ij ← sign(M−1

j , b) (3)

A→ ui : "sig-reply", sig′
ij (4)

ui : sigij ← unblind(Mj , sig
′
ij , r) (5)

The lines before step 1 show items that are obtained be-
fore the protocol begins. A has a single master RSA key
pair M, M−1 and has generated a different signing RSA key
pair Mj , M

−1

j for each sj . H(bssidj |Mj) is signed by the
authority’s master key so that others can identify Mj as
a signing key for bssidj . M , Mj , and msigj are publicly
known (e.g., given to users and databases by A when they
join). ui generates a new reporting key pair Kij , K

−1

ij and a
1024-bit random value r. After step 2, A checks whether it
has already sent a sig-reply message to ui for sj . If so, it
aborts, otherwise it continues. After step 5, ui checks that

verify(Mj , H(Kij), sigij) accepts. At completion, ui saves
Kij , K−1

ij , and sigij for future use.
This exchange can be described as follows: A authorizes

the reporting key Kij for use on reports for sj by blindly
signing it with sj ’s signing key M−1

j . By blindness, A does
not learn Kij , only that the client now has a key for sj .
Thus, no one can link Kij to user ui or to any Kil, l 6= j.
{Kij , sigij} is the token that ui attaches to reports on sj .
When a report is signed with K−1

ij , this token proves that
the report is signed with an authorized signing key. Since A
only allows each user to perform GenToken once per AP,
each user can only obtain one authorized reporting key for
sj . By unforgeability, even if multiple users collude, they
cannot forge a new authorized reporting key.

SubmitReport(ui, sj , R). This phase is used by user ui to
submit a report R on AP sj after a token for sj is obtained.
Let {D1, . . . , Dm} be the m independent databases. R is
submitted to each Dk as follows.

Dk : M, Mj ∀sj ∈ S

ui : rsig ← sign(K−1

ij , H(R)) (6)

ui → Dk : "report", sj , Kij , sigij , R, rsig (7)

The message in step 7 is sent through a mix network so it
does not explicitly reveal its sender. After step 7, Dk checks
that verify(Mj , H(Kij), sigij) and verify(Kij , H(R), rsig) both
accept. If any of these checks fail, the report is invalid and
is discarded. In other words, ui anonymously publishes a re-
port R signed using K−1

ij . By including {Kij , sigij}, anyone
can verify that the signature is generated using a key signed
by M−1

j , i.e., a key that A authorized to report on sj during
the GenToken phase.

Anonymizing GenToken. This protocol achieves limited
influence and prevents each report from being linked to any
user or any other report. However, if a user engages in
GenToken(ui, sj) only when it reports on sj , then it reveals
to A that it is reporting on sj . In order to satisfy the third
condition of our location privacy requirement, that A cannot
guess the AP with probability greater than 1

|S|
, ui would

have to perform GenToken on all s ∈ S before submitting
any reports so that A cannot infer which tokens were used.

When performing GenToken on all APs is too expen-
sive, we relax this condition as follows. We allow A to infer
that the AP is in a smaller set Ŝ ⊂ S. Determining an ap-
propriate set Ŝ is a trade-off between more location privacy
and less time spent performing GenToken operations. We
have users explicitly choose a region granularity they are
willing to expose (e.g., a city). When reporting on an AP,
they perform GenToken on all APs in this region. We be-
lieve this small compromise in location privacy is acceptable
since users already volunteer coarse-grained location infor-
mation to online services (e.g., to get localized news) and IP
addresses themselves reveal as much. In §6, we show that
using the granularity of a city is practical.6

Handling AP churn. To support changes in the set
of APs S, A maintains S as a dynamic list of APs. Any
user can request that A add an AP identified by BSSID

6An alternative solution is to perform GenToken on a ran-
dom subset of n APs in addition to the target AP. However,
since a user will likely submit reports on multiple correlated
APs (e.g., APs in the same city), A can exploit correlations
to infer the APs actually reported on.



and located via beacon fingerprint (see §5.1). A generates a
new signing key pair and its signature {Mj , M

−1

j }, msigj ←

sign(M−1, H(bssidj |Mj)), and the new AP is identified by
sj = {bssidj , H(bssidj |Mj)}. Mj and msigj are given to
the user and he submits them along with the first report
on sj to each report database. AP addition is not anony-
mous, as the user must reveal the AP to A, so Wifi-Reports
will initially depend on existing hotspot and war driving da-
tabases and altruistic users to populate S. However, over
time we believe that owners of well-performing APs will be
incentivized to add themselves because otherwise they will
not receive any reports. An AP is removed from S if it is
not reported on in 3 months (the report TTL, see below)
and A sends a revocation of their signing keys to each da-
tabase. Users can thus obtain new signing public keys and
revocations from each database.

We take three steps to limit the impact of nonexistent
or mislocated APs that malicious users may add. (1) When
searching for APs on a map, the client report cache filters out
APs that only have a small number of recent reports; these
APs require more “locals” to report on them before distant
users can find them. (2) After a sufficient number of reports
are submitted, reported locations are only considered if a
sufficient number are near each other, and the centroid of
those locations is used. (3) A rate limits the number of
additions each user can make.

Handling long-term changes. AP performance can
change over time due to back-haul and AP upgrades. How-
ever, these changes typically occur at timescales of months or
more. Thus, reports have a time-to-live (TTL) of 3 months.
Databases discard them afterward. Determining the most
appropriate TTL is a trade-off between report density and
staleness and is a subject of future work.

Handling multiple reports. Our protocol allows ui to
submit multiple reports on sj , which can be useful if they are
from different vantage points or reflect changes over time;
however, each report on sj will be linked by the key Kij .
To ensure limited influence, a database needs to summarize
each user’s reports on sj before computing a summary over
these individual summaries. For simplicity, it computes an
individual user’s summary as just the most recent report
from that user that was taken in the same channel condi-
tions (see §5.2).7 As a consequence, there is no need for an
honest user to submit a new report on sj unless the last
one it submitted expired or if sj ’s performance substantially
changed. This approach also allows a client to mitigate tim-
ing side-channels (discussed below) by randomly dating his
reports between now and the date in his last report on sj

without changing sj ’s summary statistics.8

7A more sophisticated summarization algorithm might use
the mean or median values of all a user’s reports, weighted by
report age. We leave the comparison of summary functions
to future work as we do not yet know how many reports real
users would submit on each AP.
8If the owner of Kij is ever exposed, then an adver-
sary learns some approximate times when ui used sj .
If ui knows this, he can prevent any further disclosures
by proving to A that he revoked Kij and obtaining a
new token for sj using GenToken; i.e., ui can send
{"revoke", ui, Kij , ksig} to A and the databases, where
ksig ← sign(K−1

ij , H("revoke"|ui|Kij)), which proves that
ui has Kij ’s secret key and that Kij (and all reports signed
with it) is revoked.

Rate limiting reports. As mentioned earlier, it may
also be desirable to limit the rate at which an individual
user can submit reports, say, to at most t reports per week.
This can be accomplished with a straight forward exten-
sion of the SubmitReport stage of the protocol: A keeps
count of the number of reports that each user submits this
week. Before submission of report = {sj , Kij , sigij , R, rsig}
(step 7), user ui sends h = blind(M, H(report), r) to A. If
ui has not already exceeded t reports this week, A sends
lsig′ = sign(M−1, h) back to ui, and ui unblinds lsig′ to
obtain lsig = sign(M−1, H(report)). lsig is included in the
report submitted to the report databases and is verified to
be correct by recipients. The user would submit the report
to the database at a random time after obtaining lsig, so A
would only be able to infer that it was requested by some
user in the recent past, but not which one.

10-20 would be reasonable values for t; analysis of Wi-Fi
probes shows most clients have not used more than 20 APs
recently [26]. This approach only adds 4 ms of computa-
tional overhead on A per report submitted (see §6.2).

4.4 Discussion

BSSID spoofing. One obvious concern is that some APs
can change their BSSID identities. For example, a poorly
performing AP might spoof the BSSID of a good AP to
hijack its reputation. Ideally, each AP would have a public
key pair to sign its beacons. APs could then be identified
by the public key instead of BSSID to prevent spoofing. In
802.11, APs can offer this signature and its public key as
part of a vendor-specific information element or as part of
802.1X authentication. Without public key identities, we
can still mitigate spoofing with two techniques: First, if an
AP masquerades as another AP that is geographically far
away, then reports on each will be summarized separately as
distinct APs and users will treat them as such. Second, if an
AP attempts to spoof one that is nearby, the distribution of
beacon SNRs that users receive will likely have two distinct
modes. This at least enables users (and the original AP)
to detect spoofing, though resolution requires action in the
“real world” since the 802.11 protocol cannot distinguish the
two APs. Finally, laws against device fraud (e.g., [11]) may
be a sufficient deterrent in practice.

Eclipse attacks. If A only reveals sj to a single user
ui, A will know that any report for sj is submitted by ui.
Therefore, ui’s view of the set of APs S is obtained from
the report databases rather than from A. Recall that the
identity of sj = {bssidj , H(bssidj |Mj)} is added to each da-
tabase when sj is added to S. Because a malicious database
colluding with A could tie bssid to a different signing key
Mj′ , clients only consider AP identities that the majority of
report databases agree upon.

Side-channel attacks. Side-channels exposed in reports
may potentially link reports if the adversary has additional
information. For example, if only one user visits an AP on a
given day, the AP can infer that any report with a timestamp
on that day is from that user. If a user submits many reports
on APs at a time when most users rarely submit reports, the
receiving database may infer from the submissions’ timing
that they are linked. Since we add a small amount of noise
to timestamps and submission times, we believe we can de-
feat most of these attacks in practice without significantly
degrading accuracy.



5. LOCATION CONTEXT
This section describes how Wifi-Reports obtains geographic

coordinates for reports and how summary statistics are fil-
tered by wireless channel condition.

5.1 Geographic Positioning
To obtain coarse geographic coordinates for APs, we lever-

age previous work on beacon“fingerprints.” The set of Wi-Fi
beacons and their signal strengths observed from a location
can be used to obtain geographic coordinates with a median
accuracy of 25 meters when paired with a sufficiently dense
war driving database [31]. Existing war driving databases
are sufficient to facilitate this task (e.g., Skyhook [7] is used
to geolocate iPods). Thus, Wifi-Reports clients include es-
timated coordinates in reports. To generate the location es-
timate in summary statistics for each AP, the database uses
the centroid of all reported positions that are close together
(e.g., within two city blocks). Although these positions may
be off by tens of meters, we believe that they are sufficiently
accurate for locating areas of connectivity on a map. Net-
work names can be correlated with business names to im-
prove accuracy (e.g., from Google Maps), but doing this is
outside the scope of this paper. We note that coordinates
are only needed to allow clients to search for AP summary
statistics by location.

5.2 Distinguishing Channel Conditions
Wireless performance differs based on channel conditions,

which vary based on fine-grained location and environmen-
tal conditions. The loss rate of a wireless channel is roughly
inversely proportional to the SNR, barring interference from
other stations or multi-path interference [29]. The most ob-
vious approach is to use summary statistics that only con-
sider the k reports with SNR values closest to the currently
observed SNR. However, this approach has two problems.
First, it requires users to download a different summary for
each possible SNR value for each AP. Second, it may not be
possible to choose an appropriate k: if k is too large, sum-
maries will consider many irrelevant reports; too small and
summaries become vulnerable to outliers and fraud.

Fortunately, the continuum of SNR values can be par-
titioned into three ranges with respect to wireless loss: a
range where clients experience near 100% loss, a range where
clients experience intermediate loss, and a range where clients
experience near 0% loss [29]. Therefore, Wifi-Reports cate-
gorizes reports based on these three channel conditions. In
other words, clients measure the median SNR of beacons
sent by their AP. Reports are annotated with this median
SNR. When a client makes a local prediction about an AP,
it considers only previous reports taken in the same SNR
range. In practice, the database creates one summary for
each of the three ranges for each AP, so the client does not
need to download all the reports for an AP.

Since measured SNR depends on the AP’s transmit power,
these three SNR ranges may be different for each AP. We
estimate these ranges as follows: Typical scenarios exhibit
an intermediate loss range of 10 dB [29], so we exhaus-
tively search for the “best” 10 dB range that satisfies the
expected loss rates. Specifically, let t> be the mean mea-
sured throughput of reports taken with SNR larger than the
10 dB range, t= be the average throughput of reports with
SNR in the 10 dB range, and t< be the average throughput
of reports with SNR smaller than the 10 dB range. We find

0

2.0

4.0

6.0

 5  10  15  20  25  30  35  40  45

T
C

P
 t
p
u
t 
(M

b
p
s
)

cafeontheave

0

0.2

0.4

 5  10  15  20  25  30  35  40  45

T
C

P
 t
p
u
t 
(M

b
p
s
)

seattlewifi

0

2.0

4.0

 5  10  15  20  25  30  35  40  45

T
C

P
 t
p
u
t 
(M

b
p
s
)

SNR (dB)

fizx

Figure 4—Estimated 100%, intermediate, and 0% loss re-
gions for three APs in our measurement study.

the 10 dB range that maximizes (t> − t=) + (t= − t<), or
the differences between the mean throughput in the three
ranges.9 We assume that reports of connectivity failures ex-
perienced 100% loss (i.e., have throughput of 0). Finally, if
t< < 0.75 · t=, we likely only have measurements in one of
the 100% or 0% loss ranges, so we put all measurements in
a single range.

Figure 4 shows the estimated ranges for several APs in
our measurement study that were visible from multiple lo-
cations. We note that we do not need the distinguishing
algorithm to work perfectly to obtain accurate predictions.
There is already measurement noise within a single loss re-
gion due to TCP’s sensitivity to loss. Thus, very inaccurate
summaries typically only arise due to mixing reports in the
0% loss region with the 100% loss region so it usually suf-
fices to estimate these regions within 10 dB. Clients could
also directly measure wireless loss, either by observing other
users’ traffic [38] or by actively probing each AP.

5.3 Discussion

Client calibration. We use SNR to differentiate wireless
channel conditions, but the reported SNR may have a bias
due to manufacturing defects in Wi-Fi NICs. Therefore, dif-
ferent clients need to calibrate their reported SNR values.
Previous work suggests that most of this error may be elim-
inated using a locally computed offset [29]. Reported SNR
values for most cards after self-calibration may vary by 4
dB, a bias unlikely to affect our algorithm’s accuracy signif-
icantly because the transitions between each SNR range are
not sharply defined. To further improve accuracy, we can
leverage existing self-calibration techniques that determine
the biases of sensors (e.g., [15]). Implementing a distributed
calibration algorithm is the subject of future work.

Other environmental factors. To improve prediction
accuracy further, existing techniques can be used to mea-
sure and take into account other environmental factors that
cause variation, such as multi-path interference and wire-
less contention [36, 38]. However, we found that contention
is rare in our measurement study, so prediction accuracy is
good even discounting these factors (see §6).

9When we have more than a few samples (i.e., ≥ 5), we use
the median rather than the mean because it is more robust
to outliers. Since the distribution of noise is likely Gaussian,
the median is likely to be close to the mean.



User and AP mobility. To localize reports, we cur-
rently assume that users and APs are stationary. If users are
mobile, performance may change over time; we can detect
user mobility by changing SNR values. Our current set of
active measurements are short-lived and can thus be associ-
ated with the SNR values observed when they are measured.
Geolocating these mobile APs (e.g., those on a train) in a
manner that makes sense is an area of future work.

6. EVALUATION
We evaluate the utility and practicality of Wifi-Reports

using our measurement study (see §2) and our implementa-
tion of the reporting protocol (see §4). This section presents
our evaluation of three primary questions:

• Some APs’ performance changes over time and at dif-
ferent locations. Are reports accurate enough to im-
prove AP selection?

• Our reporting protocol provides location privacy at the
cost of token generation overhead. Can Wifi-Reports
provide users with a reasonable amount of location pri-
vacy with practical token generation overheads?

• A determined attacker may be able to trick the account
authority into giving it a few accounts or collude with
his friends to submit multiple fraudulent reports on an
AP. How tolerant are summaries to such attacks?

6.1 AP Selection Performance

Setup. We use our measurement study to simulate two sce-
narios: First, we evaluate the scenario where a user chooses
which hotspot to go to physically based upon the predicted
performance of all hotspots nearby. In this scenario, a user
is primarily interested in prediction accuracy ; i.e., we want
predict(s)/actual(s) to be close to 1 for each AP s, where
predict(s) is the predicted performance (e.g., throughput)
of s and actual(s) is the actual performance of s when it
is used. Second, we evaluate the scenario where the phys-
ical location is fixed (e.g., the user is already sitting down
at a cafe) but the user wants to choose the AP that max-
imizes performance. This situation is comparable to the
traditional AP selection problem [32, 36, 38]; i.e., given
the set of visible APs V = {s1, s2, . . . , sn}, we want a se-
lection algorithm select(·) that maximizes actual(select(V )),
where s = select(V ) is the AP we choose. In this sce-
nario, a user is primarily interested in relative ranking ac-
curacy ; e.g., for throughput, we would like to maximize
actual(select(V ))/ maxs∈V (actual(s)). In Wifi-Reports
select(V ) = argmaxs∈V (predict(s)).

We simulate these scenarios using our measurement study
as ground truth. That is, we assume that after the user
selects an AP s to use, actual(s) is equal to one of our
measurements of s. We evaluate performance over all our
measurement trials. To simulate the predict(s) that would
be generated by Wifi-Reports, we assume that all measure-
ment trials except those for APs currently under consider-
ation, are previously submitted reports. The reports for s
are summarized to generate predict(s). This assumption im-
plies that reports are generated by users that visit locations
and select APs in a uniformly random manner. This is more
likely to be the case when there are not yet enough reports
in the system to generate any predictions. By counting de-
vices associated with each AP in our measurement study, we
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Figure 5—CDF prediction accuracy for (a) TCP download
throughput and (b) Google fetch time over all trials on all of-
ficial APs at their respective hotspots. Note the logarithmic
scale on the x-axis.

observed that some users do currently use suboptimal APs.
Thus, we believe that such reports would be obtained when
bootstrapping new APs in Wifi-Reports.

Prediction accuracy. Figure 5 shows CDFs of predic-
tion accuracy over all trials of official hotspot APs for TCP
download throughput and Google response time. The x-axis
in each graph shows the ratio of the predicted value over the
actual achieved value. Values at 1 are predicted perfectly,
values less than 1 are underestimates, and values more than
1 are overestimates. We compare three approaches for gener-
ating summary statistics. history-oracle shows the accuracy
we would achieve if each summary summarizes only reports
taken at the same hotspot location as the location under
consideration; this requires an “oracle” because we would
not automatically know the logical location where measure-
ments are taken in practice. wifi-reports shows the accuracy
when using Wifi-Reports’ SNR filter before summarizing re-
ports (see §5). history-all shows the accuracy when we sum-
marize all reports to generate a prediction, regardless of the
location where they were taken (e.g., even if the user is at
Starbucks, the prediction includes reports of the same AP
taken across the street).

In this graph, we focus on official APs, where we are sure
to have some measurements in the 0% loss region, to better
illustrate the impact of different channel conditions. Users
in this scenario are more likely to desire a comparison of
the 0% loss predictions rather than predictions in all three
wireless channel conditions since they are choosing where to
go. If an association or connection fails, we mark that trial
as having 0 throughput and infinite response time. Recall
that the summary function is median.

The graphs show that history-all underestimates TCP band-
width and overestimates Google fetch time more often than
history-oracle. This is because by including reports taken in
the intermediate and near-100% loss regions, the median will
generally be lower. In contrast, wifi-reports performs about
as accurately as history-oracle, demonstrating that our SNR
filter works well when we have some measurements in the
0% loss region. Furthermore, we note that at least 75%
of predictions for both metrics are within a factor of 2 of
the achieved value, while Figure 2 shows that the difference
in the median throughputs and response times of official
APs can be up to 50× and 10×, respectively. Therefore,
most predictions are accurate enough to make correct rela-
tive comparisons.

Ranking accuracy. We now examine the scenario when
a user is choosing between APs at a single location. Fig-
ure 6(a) and (b) show box-plots of achieved throughput and
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Figure 6—(a) Box-plot of achieved TCP download throughput when using each of five AP selection algorithms at each
location. Note the logarithmic scale. Missing boxes for the best-open algorithm are at 0. (b) Box-plot of the achieved response
time of http://www.google.com using each of five AP selection algorithms at each location. The whiskers that extend to
the top of the graph actually extend to infinity (i.e., the fetch failed). missing boxes for the best-open algorithm are also at
infinity. Each group of boxes are ordered in the same order as the key at the top.

response time, respectively, when using one of several AP
selection strategies to try to achieve the best performance
at each location. best-open simulates Virgil [32], an algo-
rithm that associates with and probes all open APs before
selecting the best one. best-snr simulates the most common
algorithm of picking the AP with the highest SNR value.
This algorithm works well when wireless channel quality is
the limiting factor. official simulates using the “official” AP
of each location. We expect this algorithm to work well
since we showed in §2 that the official AP is the best at
most locations. Obviously this approach would not work at
locations without an official AP. history-all simulates Wifi-
Reports without the SNR filter. wifi-reports simulates Wifi-
Reports. history-all and wifi-reports only generate a predic-
tion for an AP if we have at least 2 reports to summarize;
if no predictions for any AP are generated, they fall back
to selecting the official AP. Finally, optimal shows the best
performance achievable.

best-open performs the worst overall, failing to achieve any
connections at tullys 1, starbucks 1, and cafeontheave since
no open APs were visible. best-open performs better than all
other algorithms only at yunnie, where most of the APs were
open. We note that best-open is qualitatively different than
the other selection algorithms because it cannot select any
closed AP; we include it only to demonstrate that restricting
the choice of APs to open ones often results in substantially
suboptimal performance. Furthermore, best-open also has
more overhead (linear in the number of open APs visible)
than the others because it must actively test each AP.

history-all again demonstrates the need for the SNR filter.
Without the SNR filter, Wifi-Reports would achieve poorer
performance than official or best-snr at least 25% of the time
at tullys 1, trabant, and cafeontheave.

In contrast, wifi-reports achieves performance closest to

optimal for both metrics in all cases except for two. It
achieves worse TCP throughput than best-open once at yun-

nie and worse response time than best-snr or official once at
cafeontheave. In each of these cases, the AP chosen by wifi-

reports experienced an association or DHCP failure. How-
ever, a real client would quickly fall back to the second best
AP chosen by wifi-reports, which was the optimal one. Fur-
thermore, wifi-reports is able to achieve higher bandwidth
more of the time than all other algorithms at yunnie and
starbucks 1 and better response time more of the time than
all other algorithms at tullys 1 and cafeontheave. Thus, it
performs strictly better in more locations when compared
with each of the other approaches individually.

Finally, we note that unlike all other approaches, Wifi-
Reports enables users to rank APs that are nearby but not
visible. This is useful when users are willing to move to
obtain better connectivity.

6.2 Report Protocol Performance
We implemented our reporting protocol (§4) in software

to evaluate its practicality. We present measurements of its
processing time, total token fetch time, and message volume
using workloads derived from actual AP lists. We focus
on the token generation phase (GenToken) since, given a
desired level of location privacy, its performance depends
on actual densities of APs. The report submission phase
(SubmitReport) runs in constant time per report and uses
standard fast RSA primitives.

Setup. We emulate a client that obtains the right to report
on APs while at home (e.g., before or after traveling). Our
client has a 2.0 GHz Pentium M and our account author-
ity server used one 3.4GHz Xeon processor (the software is
single threaded). Both run Linux and all cryptography op-
erations used openssl 0.9.8. The bottleneck link between



mean min max std dev description
Server 58.918 33.18 421.26 59.056 generate key
Server 3.979 3.87 6.29 0.222 sign
Client 95.517 18.00 560.45 47.364 generate key
Client 0.150 0.14 22.21 0.222 verify
Client 0.058 0.03 1.43 0.134 unblind
Client 0.006 0.00 1.88 0.027 hash
Client 0.003 0.00 1.88 0.019 blind

Table 1—Microbenchmarks of cryptographic processing
times. All keys are 1024 bit RSA keys and SHA-512 is used
as the hash function. All values in milliseconds with a reso-
lution of 10 microseconds. 1000 trials were executed.

the client and server is the client’s cable Internet connection
(6 Mbps down, 768 kbps up). The round trip time from
client to server is 144 ms.

Processing time. Table 1 presents microbenchmarks of
each step of the protocol. All times are in milliseconds. The
most heavyweight steps are the generation of 1024 bit RSA
keys by both the client (Kij) and server (Mj).

10 However,
both keys can be generated anytime beforehand so these
operations need not be executed inline in the GenToken

protocol. The remaining steps must happen inline, but have
very low processing times. A server can sign a blinded mes-
sage in under 4 ms, so it can process about 250 tokens per
second, while a client can perform the verification and un-
blinding steps in roughly 0.2 ms, or 5000 times per second.

Token fetch time. A user who wants to obscure his loca-
tions within a region must perform GenToken on all APs
in that region. Figure 7(a) shows the end-to-end time to
fetch tokens for all APs in each of the ten cities that Ji-
Wire [6] reports to have the most APs (as of November 15,
2008). JiWire lists commercial APs that service providers or
users have manually added, which parallels how most APs
are added to Wifi-Reports. Nonetheless, some commercial
hotspots may not be listed by JiWire, so this graph serves
to establish a lower bound for cities with many APs. Since
a user can fetch these tokens at any time before submitting
a report, even the longest delay, 5.5 seconds for all of New
York, is completely practical. Even obtaining tokens for sev-
eral cities at once is practical since each client only does this
once in its lifetime.

WiGLE [9] is a database of all APs that war drivers have
overheard, including both commercial and private APs. Fig-
ure 7(b), presents fetch times for all WiGLE APs in a 32 km
square centered at each city. Since most APs listed are not
intended to be used by the public (e.g., home APs) and
WiGLE does not filter out erroneous or stale measurements,
this graph serves as a loose upper bound on fetch times.
Even so, the worst fetch time (Seattle) is 20 minutes. Since
a client can batch sig-request messages for multiple APs, a
reasonable approach would be to request all tokens and then
retrieve them at a later time. In addition, by choosing a re-
gion granularity of less than a city, a client can achieve much
better delay and still mask his locations to a reasonable ex-
tent. Figure 7(c) shows the CDF of number of WiGLE APs
in 1km2 areas in each of the cities. Most cells in all cities
have fewer than 188 APs, which only takes about 1 second
to fetch, and no cell has more than 7400, which only takes
about 30 seconds to fetch. Since commercial areas in most
cities are not spread out, most will be covered by a small

10The standard deviation for key generation is high because
the algorithm has a random number of iterations.
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Figure 8—CDF of prediction accuracy for TCP download
throughput of all official APs at their respective hotspots.
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throughput is 54Mbps. Note the logarithmic scale on the
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number of cells. Finally, we note that the server can paral-
lelize the generation of each token to improve performance.

Message volume. A request for tokens transmits 173
bytes per token, while the response transmits 529 bytes per
token. Therefore, our protocol is CPU-bound on the server
even for a client on a cable modem. For example, it takes
our client 8.7 minutes to send all requests for Seattle APs on
WiGLE and 3.4 minutes to receive the replies (these laten-
cies are included in the token fetch times reported above).

Admission rate and server cost. We next estimate the
rate at which users can join given limited server resources.
To simulate “average” American users joining the system,
we assume that each user requests all tokens from one of the
cities shown in Figure 7, chosen at random weighted by each
city’s population (according to 2007 U.S. census data [37]).
While a user may request more, the authority rate limits
each user to prevent denial-of-service attacks.

Suppose the authority has x CPUs. For JiWire APs, it
can admit 27,455x new users per day. For example, if the
authority has 100 CPUs, it can admit the entire population
of these cities in 5.6 days. How much would this overhead
cost over a system that stores reports without privacy? If
deployed on Amazon’s EC2 [1], this would only cost about
0.02 cents per user for CPU and bandwidth resources. For
all WiGLE APs, the authority can admit 165x new users
per day and the overhead cost would be about 2.6 cents per
user. This one-time cost is a very small fraction of the $5+
each user would have to spend to use most commercial APs
just for one day. There are also recurring costs incurred
for computing tokens for new APs that are added and, if
enabled, signing reports for rate limiting (see the end of
§4.3). However, these costs are also trivial. For example,
even if 10 new hotspots appear in each city every week and
every user submits 10 new reports per week, the recurring
cost would only be about 0.02 cents per user per year.

6.3 Resistance to Fraud
Summary values are robust to fraudulent reports that try

to boost or degrade an AP’s value because we use sum-
mary functions that are resilient to outliers. However, since
there is variability in honest reports as well, a small number
fraudulent reports may still be able to degrade prediction
accuracy, e.g., by shifting the median higher or lower.

Setup. We consider the same scenario as in §6.1. To eval-
uate the extent that fraudulent reporting can degrade accu-
racy, we simulate an adversary that tries to boost the pre-
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Figure 7— (a) Time to acquire the right to report on all APs listed by JiWire in the top ten cities. (b) Time to acquire the
right to report on all APs listed by WiGLE in each of the same ten cities. (c) CDF of the number of APs listed by WiGLE
in each 1 km2 region of a 32 km x 32 km grid centered on each of ten cities.

dicted TCP download throughput of an AP by submitting
reports that claim the AP achieves 54 Mbps, the maximum
theoretically possible in 802.11g. In this evaluation users
only consider each AP’s 0%-loss summary, so we assume
that each adversarial user submits one report with SNR in
the middle of this range. Although he could submit more,
they would not change the summary since only one report
per user is used. We vary the power of the adversary by
varying the number of users that collude to submit these
fraudulent reports. A typical AP would also have many
honest reports. Therefore, we simulate each AP with 100
reports total: x are the fraudulent reports described above
and 100 − x are honest reports that are randomly sampled
(with replacement) from our ∼10 actual measurements per
AP. Note that even if the total number of reports is different,
our results still hold on expectation if the ratio of fraudu-
lent to total reports remains the same. The remainder of
our simulation setup is identical to §6.1. For comparison to
Figure 5(a), we again focus on official APs.

Accuracy. Figure 8 shows Wifi-Reports’ prediction accu-
racy on official APs as we vary the percentage of fraudu-
lent reports. Negligible degradation of accuracy is observed
when up to 10% of reports are fraudulent. Even with 30% of
fraudulent reports, most predictions are still correct within
a factor of 2. However, when 50% of reports are fraudulent,
most predictions are gross overestimates. This result is ex-
pected since the median function is not robust to 50% or
more outliers larger than the actual median.

Discussion. We note that even if an adversary is success-
ful in luring honest clients to a poor AP, those clients will
submit reports that correct the summary statistics. Suc-
cessful fraud attacks that degrade a good AP’s reputation
(or contract its 0%-loss SNR range) are harder to correct
because honest users may be dissuaded from using that AP.
However, since cost, venue, and other external factors will
influence selections in practice, we believe some honest users
will eventually report on these APs and correct their sum-
mary statistics.

7. RELATEDWORK
Wifi-Reports is related to five areas of previous work: AP

selection, electronic cash and secure voting, recommender
systems, collaborative filtering, and collaborative sensing.

AP selection. Salem et al. [35] also propose a reputation-
based protocol for AP selection. In contrast to Wifi-Reports,
their protocol requires changes to the standard 802.11 pro-
tocol, it does not protect clients’ location privacy, it assumes
APs can predict their performance, and it does not address

varying wireless channel conditions. In addition, unlike this
paper, their work did not evaluate its feasibility on empirical
data.

[32, 36, 38] argue for metrics other than signal strength for
ranking access points, but only consider metrics that can be
instantaneously measured by a single client. We showed in
§6 that leveraging historical information out-performs direct
measurement [32] because it isn’t always possible to test an
AP before use. In addition, Wifi-Reports is the only system
that enables users to evaluate APs that are not in range,
such as when searching for an AP in a hotspot database.
Nonetheless, our work is complementary to [36] and [38],
which can better estimate the quality of the wireless channel
when it is the performance bottleneck.

Electronic cash and secure voting. Wifi-Reports uses
blind signatures in a manner similar to well-known electronic
cash [20, 21] (e-cash) and secure voting [25] (e-voting) pro-
tocols. However, unlike traditional e-cash protocols where
a user has multiple tokens that can be spent on any ser-
vice, a user of our reporting protocol has a single token
per service that can only be used for that service. Tra-
ditional e-voting protocols typically assume that all users
vote (e.g., report) on all candidates (e.g., APs) before tal-
lying the votes, whereas reports are continuously tallied in
Wifi-Reports but a precise count is not necessary. As a con-
sequence, our reporting protocol is simpler than traditional
e-cash and e-voting protocols, but, like these protocols, it
relies on an account authority and distributed talliers (e.g.,
report databases) to prevent attacks.

Recommendation systems. Having users report on items
or services to ascertain their value is a well known idea [14].
Wifi-Reports shares the most similarities with Broadband
reports [2], which rates ISPs using user-reported speed tests
(e.g., [8]) that measure their back-haul capacities. Unlike
Wifi-Reports, Broadband reports takes few measures to pre-
vent fraud. This may be because, unlike the identity of an
AP, it is difficult to forge the IP address that identifies the
ISP in a speed test. Furthermore, it is easier to limit sybil
attacks because a user is identified by an IP address, which
is hard to spoof while maintaining a TCP connection. Fi-
nally, in contrast to wireless APs, broadband measurements
generally do not depend on the location of the user.

Collaborative filtering. Some recommendation systems
use collaborative filtering (CF) (e.g., [39, 41]) to identify
users that submit many bad reports. However, these tech-
niques require that all reports from the same user are linked
and thus do not protect privacy, which is important when
location information is at stake. Some proposed CF tech-



niques can limit the exposure of this information by using se-
cure multi-party voting [18, 19]. However, these techniques
require all users to be simultaneously online to update sum-
mary statistics, and thus are impractical for services that
have many users and continuous submission of reports.

Collaborative sensing. A number of recent proposals
use mobile devices as collaborative sensor networks (e.g. [30,
13]), but they do not address the unique challenges of AP
measurement and reporting. Anonysense [22] is one such
platform that ensures that reports are anonymous by using a
mix network like Wifi-Reports. However, Anonysense relies
on a trusted computing base (TCB) to prevent fraudulent
reports and cannot prevent non-software based tampering
(e.g., disconnecting a radio antenna). Wifi-Reports does not
rely on trusted software or a TCB, but it is more reliant on
an account authority to ensure that most reports are honest
(though Anonysense is not immune to sybil attacks either).
The Wifi-Reports measurement client could also leverage a
TCB to mitigate fraud even more.

8. CONCLUSION
In this paper we presented the first measurement study

of commercial APs and showed there is substantial diversity
in performance. Hence, selecting the best AP is not obvi-
ous from observable metrics. We presented Wifi-Reports, a
service that improves AP selection by leveraging historical
information about APs contributed by users. Wifi-Reports
can handle reports submitted at different locations, protects
users’ location privacy, and is resilient to a small fraction of
fraudulent reports.

We have implemented the reporting protocol and a Linux
measurement client. We are currently working on clients for
smart phone platforms. Although some engineering chal-
lenges remain, such as deploying independent report data-
bases, we believe Wifi-Reports can greatly improve users’
ability to select good APs.

9. ACKNOWLEDGMENTS
We thank our shepherd Jason Flinn, Vyas Sekar, David

Wetherall, and the anonymous reviewers for their comments
and suggestions. This work is funded by the National Sci-
ence Foundation through grant numbers NSF-0721857 and
NSF-0722004, and by the Army Research Office through
grant number DAAD19-02-1-0389. Damon McCoy was sup-
ported in part by gifts from IBM.

10. REFERENCES
[1] Amazon elastic compute cloud. http://aws.amazon.com/ec2/.

Accessed on 03/26/2009.
[2] Broadband reports. http://www.dslreports.com/.
[3] Http analyzer. http://www.ieinspector.com/httpanalyzer/.
[4] Illegal sale of phone records. http://epic.org/privacy/iei/.
[5] iPass. http://www.ipass.com.
[6] Jiwire. http://www.jiwire.com.
[7] Skyhook wireless. http://www.skyhookwireless.com/.
[8] Speedtest.net. http://www.speedtest.net/.
[9] Wireless geographic logging engine. http://www.wigle.net/.

[10] You can’t send secure email from starbuck’s (at least not
easily). http://staff.washington.edu/oren/blog/2004/04/
you-cant-send-s.html.

[11] Fraud and related activity in connection with access devices.
Homeland Security Act (18 U.S.C. §1029), 2002.

[12] Wireless location tracking draws privacy questions. CNET
News.com, May 2006. http://news.com.com/
Wireless+location+tracking+draws+privacy+questions/
2100-1028 3-6072992.html.

[13] T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin,
L. Guibas, A. Kansal, S. Madden, and J. Reich. Mobiscopes for
human spaces. IEEE Pervasive Computing, 6(2):20–29, 2007.

[14] G. Adomavicius and A. Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE Trans. on Knowl. and Data Eng.,
17(6):734–749, 2005.

[15] L. Balzano and R. Nowak. Blind calibration of sensor networks.
In IPSN, 2007.

[16] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko.
The one-more-rsa-inversion problems and the security of
chaum’s blind signature scheme. Journal of Cryptology,
16(3):185–215, 2003.

[17] A. R. Beresford and F. Stajano. Location privacy in pervasive
computing. IEEE Pervasive Computing, 2(1):46–55, 2003.

[18] J. Canny. Collaborative filtering with privacy. In IEEE
Security and Privacy, 2002.

[19] J. Canny. Collaborative filtering with privacy via factor
analysis. In SIGIR, New York, NY, USA, 2002.

[20] D. Chaum. Blind signatures for untraceable payments. In
Advances in Cryptology, pages 199–203. Springer-Verlag, 1982.

[21] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash.
In CRYPTO, pages 319–327, 1990.

[22] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and
N. Triandopoulos. Anonysense: privacy-aware people-centric
sensing. In MobiSys, pages 211–224, 2008.

[23] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In USENIX Security, 2004.

[24] C. Doctorow. Why hotel WiFi sucks. http://www.boingboing.
net/2005/10/12/why-hotel-wifi-sucks.html, Oct. 2005.

[25] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting
scheme for large scale elections. In ASIACRYPT, 1993.

[26] B. Greenstein, D. McCoy, J. Pang, T. Kohno, S. Seshan, and
D. Wetherall. Improving wireless privacy with an identifier-free
link layer protocol. In MobiSys, 2008.

[27] M. Gruteser and B. Hoh. On the anonymity of periodic location
samples. In Security in Pervasive Computing, 2005.

[28] D. Han, A. Agarwala, D. G. Andersen, M. Kaminsky,
K. Papagiannaki, and S. Seshan. Mark-and-sweep: getting the
“inside” scoop on neighborhood networks. In IMC, 2008.

[29] G. Judd and P. Steenkiste. Using emulation to understand and
improve wireless networks and applications. In NSDI, 2005.

[30] A. Krause, E. Horvitz, A. Kansal, and F. Zhao. Toward
community sensing. In IPSN, 2008.

[31] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith,
J. Scott, T. Sohn, J. Howard, J. Hughes, F. Potter, J. Tabert,
P. Powledge, G. Borriello, and B. Schilit. Place lab: Device
positioning using radio beacons in the wild. In Pervasive, 2005.

[32] A. J. Nicholson, Y. Chawathe, M. Y. Chen, B. D. Noble, and
D. Wetherall. Improved access point selection. In MobiSys,
2006.

[33] J. Pang, B. Greenstein, D. Mccoy, S. Seshan, and D. Wetherall.
Tryst: The case for confidential service discovery. In HotNets,
2007.

[34] R. S. Prasad, M. Murray, C. Dovrolis, and K. Claffy.
Bandwidth estimation: Metrics, measurement techniques, and
tools. IEEE Network, 17:27–35, 2003.

[35] N. B. Salem, J.-P. Hubaux, and M. Jakobsson.
Reputation-based Wi-Fi deployment protocols and security
analysis. In WMASH, 2004.

[36] K. Sundaresan and K. Papagiannaki. The need for cross-layer
information in access point selection algorithms. In IMC, 2006.

[37] United States Census Bureau. Table 1: Annual estimates of the
population for incorporated places over 100,000. 2007. http://
www.census.gov/popest/cities/tables/SUB-EST2007-01.csv.

[38] S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose, and
D. Towsley. Facilitating access point selection in IEEE 802.11
wireless networks. In IMC, 2005.

[39] K. Walsh and E. G. Sirer. Experience with an object reputation
system for peer-to-peer filesharing. In NSDI, 2006.

[40] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. SybilLimit:
A near-optimal social network defense against sybil attacks. In
IEEE Security and Privacy, 2008.

[41] H. Yu, C. Shi, M. Kaminsky, P. B. Gibbons, and F. Xiao.
DSybil: Optimal sybil-resistance for recommendation systems.
In IEEE Security and Privacy, 2009.

http://aws.amazon.com/ec2/
http://www.dslreports.com/
http://www.ieinspector.com/httpanalyzer/
http://epic.org/privacy/iei/
http://www.ipass.com
http://www.jiwire.com
http://www.skyhookwireless.com/
http://www.speedtest.net/
http://www.wigle.net/
http://staff.washington.edu/oren/blog/2004/04/you-cant-send-s.html
http://staff.washington.edu/oren/blog/2004/04/you-cant-send-s.html
http://news.com.com/Wireless+location+tracking+draws+privacy+ questions/2100-1028_3-6072992.html
http://news.com.com/Wireless+location+tracking+draws+privacy+ questions/2100-1028_3-6072992.html
http://news.com.com/Wireless+location+tracking+draws+privacy+ questions/2100-1028_3-6072992.html
http://www.boingboing.net/2005/10/12/why-hotel-wifi-sucks.html
http://www.boingboing.net/2005/10/12/why-hotel-wifi-sucks.html
http://www.census.gov/popest/cities/tables/SUB-EST2007-01.csv
http://www.census.gov/popest/cities/tables/SUB-EST2007-01.csv

	1 Introduction
	2 Measurement Study
	2.1 Setup
	2.2 Results
	2.3 Discussion

	3 Wifi-Reports Overview
	3.1 Challenges
	3.2 System Tasks

	4 Location Privacy
	4.1 Threat Model
	4.2 Straw Man Protocols
	4.3 Blind Signature Report Protocol
	4.4 Discussion

	5 Location Context
	5.1 Geographic Positioning
	5.2 Distinguishing Channel Conditions
	5.3 Discussion

	6 Evaluation
	6.1 AP Selection Performance
	6.2 Report Protocol Performance
	6.3 Resistance to Fraud

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	10 References

