
PUBLISHED IN: INTERNATIONAL CONFERENCE ON AUTONOMIC AND
AUTONOMOUS SYSTEMS ICAS06 (2006)

VOLUME: 00, ISSUE: C, PUBLISHER: IEEE, PAGES: 28-28
ISBN: 0769526535

DOI: 10.1109/ICAS.2006.13

Autonomic Virtualized Environments
Daniel A. Menascé and Mohamed N. Bennani

Dept. of Computer Science,
MS 4A5, George Mason University Fairfax, VA 22030, USA

{menasce,mbennani}@cs.gmu.edu

Synopsis by:
Stephen Roberts, GMU CS 895, Spring 2013

Bottom Line

  Challenge:
  With the increasing growth in usage of virtualization technologies for computing resources;

Global management of these resources can be taxing and/or inefficient especially as the
environments continue to grow in number and complexity.

  With a given workload, then some VMs may be less utilized while others may be over-
utilized thus not effectively or efficiently utilizing available resources. Result is a potential
negative impact on users and operational SLAs

  Solution:
  Implement autonomic computing mechanisms in order to dynamically allocate VM

hardware resources more equitably toward those VMs with higher workloads in order to
optimize resource loading using one of the following methods:
  Dynamic priority setting
  Dynamic allocation of CPU shares

  Results:
  Test using simulation software showed that the dynamic priority setting method had a less

granular method of differentiatiing between VMs while the Dynamic allocation of CPU
method allowed a finer grain control of resource allocation.

Metrics

  Input workload

  CPU allocation per VM

  Number of VMs per virtualized environment

  Workload classes

  Workload SLA for given workload class

Problem Details

  Resource allocation problem : how to dynamically
allocate CPU among VMs with goal of maximizing
the global utility function Ug.

  Global utility function, Ug, of the entire virtualized
environment is a function of the utility functions of each VM.
Ug = h(U1, ···,UM). (1)

  Utility function, Ui,s, for class “s” at VM i is defined as the
relative deviation of the response time Ri,s of that class with
respect to its service level agreement (SLA), βi,s. Ui,s = (βi,s
−Ri,s) / (max{βi,s,Ri,s}). (2)

Priority Based vice CPU Share Allocation

  Priority:
  All the same VM workloads have same priority
  Open QN Model solved incrementally in P steps, one per

priority class, from highest of 1 to lowest of p
  Each shadow CPU is dedicated to all workloads that have the

same priority – at step p has p shadow CPUs instead of one

  CPU Share:
  M shadow CPUs, one per VM
  CPU shares adjusted to account for the share allocation of each

VM

Feasibility

  Testing and hypothesis appeared sound
  However would question assumption of need for virtual environments in light of VMware

DRS capabilities being available at time of test (at least in enterprise implementations)

  Should look at other resource allocation (RAM, Disk, Network) models in
conjunction with CPU allocation to get a better sense of optimization
potentials

  Concern that operationally dynamic load may skew results of simulation

  Concern that autonomic resource allocation may cause thrashing
  if sample rate of input workload does not accurately reflect prioritized work to be performed
  premature starvation of a prioritized workload (CPU allocation away from a higher priority

workload)

What is Missing

  Competing workloads that can more than utilize full CPU shows the process can
work ie the 2 workloads used in experiment were basically 180 degrees out of phase
– However:

  Would results hold with fully random and dynamic workloads? Ie:
  A Virtual PC environment
  International E-Commerce site (ie E-Bay/Amazon)
  Typical server loads are in 10% range 90% of time with peak loading over the remaining 10% of the

time

  Would advantages be diminished if allocation scheme causes premature re-allocation? How to test
for pre-mature or inefficient re-allocation?

  VMWare specifically has several dynamic resource management components:
  vSphere (part of ESX Server) and previously vCenter had Dynamic Resource Scheduling (DRS)

capabilities; initial VMware ESX server implementations had DRS “like” capabilities which became
more robust over time

  How would autonomic approach compare with current VMware DRS offerings?

  While CPU allocation is important it is not the only resource to manage in a virtualized
environment: RAM, Network bandwidth and Disk to name a few often have more impact on
workload performance than CPU allocation especially in a virtualized environment

What I learned

  Autonomic Computing principles applied to a
concrete example (virtualization)

  Math and science behind resource re-allocation

  Still consuming math behind model…

Future Work/Research

  Modifying Autonomic Computing approach to handle RAM, Networking
and Disk utilization along with CPU

  Incorporating an incoming workload assessment process to increase
efficiency of allocations (i.e. measure what workload needs may be prior to
actually running)

  Rerun test with a much more dynamic workload input to re-evaulate
approaches

  Apply Autonomic Approach to security components: **
  Router ACL
  Firewall Rules
  Intrusion Detection/Prevention Rules

** looking to make a focus for my papers/research

