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Definitions 

  RESIST 
  REsilient SItuated SofTware system 
  “A framework for mission-critical systems” 

  Situated Systems (SS) 
  Embedded 
  Mobile 
  Pervasive 
  Ex. Mobile devices, robots 

  Mission Critical 
  Ex. Emergency response, disaster recovery 



Core Problem 

  Mission critical systems require high reliability 
 Situated systems are inherently unreliable 
 External factors play a huge role in this 

  The best configuration for a system is known only at 
runtime 
 Need to update configuration to improve reliability 

  How do we design such a system? 



What does RESIST do? 

  Self-healing / Self-optimizing 



What assumptions does RESIST make? 

  Errors are assumed to be between components 
 Errors internal to the component are not handled by this 

error model 

  Configurations may have replicas of components 

  Replicas of different components fail independently 



How is RESIST different? 

  Optimizes proactively 
 Uses predictive models to optimize ahead 
 Focuses on where system is expected to be 

 Different from other systems that focus on current state 
 Note: Can only focus on near-future 

  Considers external factors (Context) 
  Other related work not appropriate 

 Expects apriori knowledge of reliability 
 Do not consider context 



How does RESIST work? 

  Determine optimal configuration of components for SS 
  Optimal = most reliable 

 Calculate individual component reliabilities 

 Calculate total system reliability 
  This is based on individual component reliabilities 

 Consider architectural factors 
  Redundant components 
  Assignment of components to processes 



Scenario 

  Emergency response 
 Firefighters 
 Central dispatcher 

  Robots  
 Components 

 Sensors 
 Actuators 
 Controllers 



Calculating Component Reliability 

  Uses Hidden Markov Models (HMMs) 
 Normal Markov Model 
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Calculating Component Reliability 

  Normal Markov Model 
 Can predict next state based purely on current state 

S1 S2 S3 
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Set of states  
S = {S1, S2, ..., SN}  

Transition matrix  
A = {aij} 
This gives the probability of transitioning 
from one state to another 



Calculating Component Reliability 

  Hidden Markov Models (HMMs) 
 HMMs extend this idea by adding hidden states 
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Calculating Component Reliability 
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Set of observations 
O = {O1, O2, ..., ON}  

Observation probability matrix  
 E = {eik} 
 This represents the probability of 
 observing an event in a particular 
 state 



Real State Transitions 



Real State Transitions 

Note that the failed state can be 
reached from most other states 

This represents the fact that a system 
can fail instead of transitioning to 
another state with a certain probability 



Training the HMM 

  States are known 
 Ex. Monitoring, moving 

  Need to determine transition probability matrix 
 Can learn this from monitoring data 

 This gives us observations 

 Train using sample data 
 Baum-Welch algorithm 

  Method for finding the hidden parameters in an HMM 
  Uses expectation-maximization 



Predictive Calculations 

  Calculating reliability at runtime before failure 
  Involves the use of “context” 

 These are events or processes outside of the system that 
affect it 

 Must be included in calculations for situated systems 

  Introduce a new set of parameters: 

Set of contextual parameters  
C = {C1, C2, ..., CN}  



Using Context in Reliability Calculations 

  a’kj = u(akj , ∆Cn) 
 akj – transition probability 

 u – a function that based on context 
 Encapsulates the effect that Cn has on akj 



Calculating Total System Reliability 

  Based on individual component reliability 

 k = Number of states 
 Rk = Reliability of exit state 
 M = Matrix of size k x k 
 |I-M| = Determinant of M 
 |E| = Determinant of everything but the first column 

and row of |I-M| 



Considering Architectural Factors 



Considering Architectural Factors 

More efficient architecture More reliable architecture 



Finding Optimal Configuration 

  Reliability is the goal 
  In practice, other factors may influence calculation 

 Uq = Utility function 
 Can take on any format 



Finding Optimal Configuration 

  Configurations have constraints 
 Must be assigned to at least one process 
 Can have a bounded number of replicas 
 Cannot share a process and have a replica 

 Components and replicas should be on separate processes 



Experimental Results 

  Robot example from earlier 
  Context - probability of hitting an obstacle 

 Bump probability (BP) 

  Controller failure is examined with respect to 
different BP 
 This is because the transition from one state to another 

can fail with a certain probability 



Experimental Results 

  Observed and predicted reliability 
 Shows accuracy of predictive model 

  Reliability degrades with context 
  Increased BP = lower reliability 



Experimental Results 

  Real robotic results 
  RESIST sees a increase in BP 

 This is predicated to result in a drop in reliability 
 Before this degradation in reliability, RESIST  

 “adapts the system to maintain its reliability above 97%. As 
a result, the Navigator is replicated and the Controller is 
redeployed to a separate process.”  



Conclusion 

  Overall, the paper covers a lot of ground 
  Offers an interesting, predictive approach 
  Questions 

 What other machine learning techniques can be used to 
aid prediction? 

 Does the system’s accuracy improve with more data / 
examples?  
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