
RESISTING RELIABILITY
DEGRADATION THROUGH
PROACTIVE RECONFIGURATION

By Deshan Cooray, Sam Malek, Roshanak Roshandel,
and David Kilgore

Summarized by
Andeep Toor

Definitions

  RESIST
  REsilient SItuated SofTware system
  “A framework for mission-critical systems”

  Situated Systems (SS)
  Embedded
  Mobile
  Pervasive
  Ex. Mobile devices, robots

  Mission Critical
  Ex. Emergency response, disaster recovery

Core Problem

  Mission critical systems require high reliability
 Situated systems are inherently unreliable
 External factors play a huge role in this

  The best configuration for a system is known only at
runtime
 Need to update configuration to improve reliability

  How do we design such a system?

What does RESIST do?

  Self-healing / Self-optimizing

What assumptions does RESIST make?

  Errors are assumed to be between components
 Errors internal to the component are not handled by this

error model

  Configurations may have replicas of components

  Replicas of different components fail independently

How is RESIST different?

  Optimizes proactively
 Uses predictive models to optimize ahead
 Focuses on where system is expected to be

 Different from other systems that focus on current state
 Note: Can only focus on near-future

  Considers external factors (Context)
  Other related work not appropriate

 Expects apriori knowledge of reliability
 Do not consider context

How does RESIST work?

  Determine optimal configuration of components for SS
  Optimal = most reliable

 Calculate individual component reliabilities

 Calculate total system reliability
  This is based on individual component reliabilities

 Consider architectural factors
  Redundant components
  Assignment of components to processes

Scenario

  Emergency response
 Firefighters
 Central dispatcher

  Robots
 Components

 Sensors
 Actuators
 Controllers

Calculating Component Reliability

  Uses Hidden Markov Models (HMMs)
 Normal Markov Model

S1 S2 S3

a13

a12

a21

a23

Calculating Component Reliability

  Normal Markov Model
 Can predict next state based purely on current state

S1 S2 S3

a13

a12

a21

a23

Set of states
S = {S1, S2, ..., SN}

Transition matrix
A = {aij}
This gives the probability of transitioning
from one state to another

Calculating Component Reliability

  Hidden Markov Models (HMMs)
 HMMs extend this idea by adding hidden states

S1 S2 S3

a13

a12

a21

a23

O1 O2 O3 O4

e11
e21

e22

e32

e33

e34

Calculating Component Reliability

S1 S2 S3

a13

a12

a21

a23

O1 O2 O3 O4

e11
e21

e22

e32

e33

e34

Set of observations
O = {O1, O2, ..., ON}

Observation probability matrix
 E = {eik}
 This represents the probability of
 observing an event in a particular
 state

Real State Transitions

Real State Transitions

Note that the failed state can be
reached from most other states

This represents the fact that a system
can fail instead of transitioning to
another state with a certain probability

Training the HMM

  States are known
 Ex. Monitoring, moving

  Need to determine transition probability matrix
 Can learn this from monitoring data

 This gives us observations

 Train using sample data
 Baum-Welch algorithm

  Method for finding the hidden parameters in an HMM
  Uses expectation-maximization

Predictive Calculations

  Calculating reliability at runtime before failure
  Involves the use of “context”

 These are events or processes outside of the system that
affect it

 Must be included in calculations for situated systems

  Introduce a new set of parameters:

Set of contextual parameters
C = {C1, C2, ..., CN}

Using Context in Reliability Calculations

  a’kj = u(akj , ∆Cn)
 akj – transition probability

 u – a function that based on context
 Encapsulates the effect that Cn has on akj

Calculating Total System Reliability

  Based on individual component reliability

 k = Number of states
 Rk = Reliability of exit state
 M = Matrix of size k x k
 |I-M| = Determinant of M
 |E| = Determinant of everything but the first column

and row of |I-M|

Considering Architectural Factors

Considering Architectural Factors

More efficient architecture More reliable architecture

Finding Optimal Configuration

  Reliability is the goal
  In practice, other factors may influence calculation

 Uq = Utility function
 Can take on any format

Finding Optimal Configuration

  Configurations have constraints
 Must be assigned to at least one process
 Can have a bounded number of replicas
 Cannot share a process and have a replica

 Components and replicas should be on separate processes

Experimental Results

  Robot example from earlier
  Context - probability of hitting an obstacle

 Bump probability (BP)

  Controller failure is examined with respect to
different BP
 This is because the transition from one state to another

can fail with a certain probability

Experimental Results

  Observed and predicted reliability
 Shows accuracy of predictive model

  Reliability degrades with context
  Increased BP = lower reliability

Experimental Results

  Real robotic results
  RESIST sees a increase in BP

 This is predicated to result in a drop in reliability
 Before this degradation in reliability, RESIST

 “adapts the system to maintain its reliability above 97%. As
a result, the Navigator is replicated and the Controller is
redeployed to a separate process.”

Conclusion

  Overall, the paper covers a lot of ground
  Offers an interesting, predictive approach
  Questions

 What other machine learning techniques can be used to
aid prediction?

 Does the system’s accuracy improve with more data /
examples?

References

1.  Deshan Cooray , Sam Malek , Roshanak Roshandel , David Kilgore,
RESISTing reliability degradation through proactive reconfiguration,
Proceedings of the IEEE/ACM international conference on Automated
software engineering, September 20-24, 2010, Antwerp, Belgium

  http://en.wikipedia.org/wiki/Baum-
Welch_algorithm

