
RESISTING RELIABILITY
DEGRADATION THROUGH
PROACTIVE RECONFIGURATION

By Deshan Cooray, Sam Malek, Roshanak Roshandel,
and David Kilgore

Summarized by
Andeep Toor

Definitions

  RESIST
  REsilient SItuated SofTware system
  “A framework for mission-critical systems”

  Situated Systems (SS)
  Embedded
  Mobile
  Pervasive
  Ex. Mobile devices, robots

  Mission Critical
  Ex. Emergency response, disaster recovery

Core Problem

  Mission critical systems require high reliability
 Situated systems are inherently unreliable
 External factors play a huge role in this

  The best configuration for a system is known only at
runtime
 Need to update configuration to improve reliability

  How do we design such a system?

What does RESIST do?

  Self-healing / Self-optimizing

What assumptions does RESIST make?

  Errors are assumed to be between components
 Errors internal to the component are not handled by this

error model

  Configurations may have replicas of components

  Replicas of different components fail independently

How is RESIST different?

  Optimizes proactively
 Uses predictive models to optimize ahead
 Focuses on where system is expected to be

 Different from other systems that focus on current state
 Note: Can only focus on near-future

  Considers external factors (Context)
  Other related work not appropriate

 Expects apriori knowledge of reliability
 Do not consider context

How does RESIST work?

  Determine optimal configuration of components for SS
  Optimal = most reliable

 Calculate individual component reliabilities

 Calculate total system reliability
  This is based on individual component reliabilities

 Consider architectural factors
  Redundant components
  Assignment of components to processes

Scenario

  Emergency response
 Firefighters
 Central dispatcher

  Robots
 Components

 Sensors
 Actuators
 Controllers

Calculating Component Reliability

  Uses Hidden Markov Models (HMMs)
 Normal Markov Model

S1 S2 S3

a13

a12

a21

a23

Calculating Component Reliability

  Normal Markov Model
 Can predict next state based purely on current state

S1 S2 S3

a13

a12

a21

a23

Set of states
S = {S1, S2, ..., SN}

Transition matrix
A = {aij}
This gives the probability of transitioning
from one state to another

Calculating Component Reliability

  Hidden Markov Models (HMMs)
 HMMs extend this idea by adding hidden states

S1 S2 S3

a13

a12

a21

a23

O1 O2 O3 O4

e11
e21

e22

e32

e33

e34

Calculating Component Reliability

S1 S2 S3

a13

a12

a21

a23

O1 O2 O3 O4

e11
e21

e22

e32

e33

e34

Set of observations
O = {O1, O2, ..., ON}

Observation probability matrix
 E = {eik}
 This represents the probability of
 observing an event in a particular
 state

Real State Transitions

Real State Transitions

Note that the failed state can be
reached from most other states

This represents the fact that a system
can fail instead of transitioning to
another state with a certain probability

Training the HMM

  States are known
 Ex. Monitoring, moving

  Need to determine transition probability matrix
 Can learn this from monitoring data

 This gives us observations

 Train using sample data
 Baum-Welch algorithm

  Method for finding the hidden parameters in an HMM
  Uses expectation-maximization

Predictive Calculations

  Calculating reliability at runtime before failure
  Involves the use of “context”

 These are events or processes outside of the system that
affect it

 Must be included in calculations for situated systems

  Introduce a new set of parameters:

Set of contextual parameters
C = {C1, C2, ..., CN}

Using Context in Reliability Calculations

  a’kj = u(akj , ∆Cn)
 akj – transition probability

 u – a function that based on context
 Encapsulates the effect that Cn has on akj

Calculating Total System Reliability

  Based on individual component reliability

 k = Number of states
 Rk = Reliability of exit state
 M = Matrix of size k x k
 |I-M| = Determinant of M
 |E| = Determinant of everything but the first column

and row of |I-M|

Considering Architectural Factors

Considering Architectural Factors

More efficient architecture More reliable architecture

Finding Optimal Configuration

  Reliability is the goal
  In practice, other factors may influence calculation

 Uq = Utility function
 Can take on any format

Finding Optimal Configuration

  Configurations have constraints
 Must be assigned to at least one process
 Can have a bounded number of replicas
 Cannot share a process and have a replica

 Components and replicas should be on separate processes

Experimental Results

  Robot example from earlier
  Context - probability of hitting an obstacle

 Bump probability (BP)

  Controller failure is examined with respect to
different BP
 This is because the transition from one state to another

can fail with a certain probability

Experimental Results

  Observed and predicted reliability
 Shows accuracy of predictive model

  Reliability degrades with context
  Increased BP = lower reliability

Experimental Results

  Real robotic results
  RESIST sees a increase in BP

 This is predicated to result in a drop in reliability
 Before this degradation in reliability, RESIST

 “adapts the system to maintain its reliability above 97%. As
a result, the Navigator is replicated and the Controller is
redeployed to a separate process.”

Conclusion

  Overall, the paper covers a lot of ground
  Offers an interesting, predictive approach
  Questions

 What other machine learning techniques can be used to
aid prediction?

 Does the system’s accuracy improve with more data /
examples?

References

1.  Deshan Cooray , Sam Malek , Roshanak Roshandel , David Kilgore,
RESISTing reliability degradation through proactive reconfiguration,
Proceedings of the IEEE/ACM international conference on Automated
software engineering, September 20-24, 2010, Antwerp, Belgium

  http://en.wikipedia.org/wiki/Baum-
Welch_algorithm

