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Definitions 

  RESIST 
  REsilient SItuated SofTware system 
  “A framework for mission-critical systems” 

  Situated Systems (SS) 
  Embedded 
  Mobile 
  Pervasive 
  Ex. Mobile devices, robots 

  Mission Critical 
  Ex. Emergency response, disaster recovery 



Core Problem 

  Mission critical systems require high reliability 
 Situated systems are inherently unreliable 
 External factors play a huge role in this 

  The best configuration for a system is known only at 
runtime 
 Need to update configuration to improve reliability 

  How do we design such a system? 



What does RESIST do? 

  Self-healing / Self-optimizing 



What assumptions does RESIST make? 

  Errors are assumed to be between components 
 Errors internal to the component are not handled by this 

error model 

  Configurations may have replicas of components 

  Replicas of different components fail independently 



How is RESIST different? 

  Optimizes proactively 
 Uses predictive models to optimize ahead 
 Focuses on where system is expected to be 

 Different from other systems that focus on current state 
 Note: Can only focus on near-future 

  Considers external factors (Context) 
  Other related work not appropriate 

 Expects apriori knowledge of reliability 
 Do not consider context 



How does RESIST work? 

  Determine optimal configuration of components for SS 
  Optimal = most reliable 

 Calculate individual component reliabilities 

 Calculate total system reliability 
  This is based on individual component reliabilities 

 Consider architectural factors 
  Redundant components 
  Assignment of components to processes 



Scenario 

  Emergency response 
 Firefighters 
 Central dispatcher 

  Robots  
 Components 

 Sensors 
 Actuators 
 Controllers 



Calculating Component Reliability 

  Uses Hidden Markov Models (HMMs) 
 Normal Markov Model 
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Calculating Component Reliability 

  Normal Markov Model 
 Can predict next state based purely on current state 
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Set of states  
S = {S1, S2, ..., SN}  

Transition matrix  
A = {aij} 
This gives the probability of transitioning 
from one state to another 



Calculating Component Reliability 

  Hidden Markov Models (HMMs) 
 HMMs extend this idea by adding hidden states 
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Calculating Component Reliability 
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Set of observations 
O = {O1, O2, ..., ON}  

Observation probability matrix  
 E = {eik} 
 This represents the probability of 
 observing an event in a particular 
 state 



Real State Transitions 



Real State Transitions 

Note that the failed state can be 
reached from most other states 

This represents the fact that a system 
can fail instead of transitioning to 
another state with a certain probability 



Training the HMM 

  States are known 
 Ex. Monitoring, moving 

  Need to determine transition probability matrix 
 Can learn this from monitoring data 

 This gives us observations 

 Train using sample data 
 Baum-Welch algorithm 

  Method for finding the hidden parameters in an HMM 
  Uses expectation-maximization 



Predictive Calculations 

  Calculating reliability at runtime before failure 
  Involves the use of “context” 

 These are events or processes outside of the system that 
affect it 

 Must be included in calculations for situated systems 

  Introduce a new set of parameters: 

Set of contextual parameters  
C = {C1, C2, ..., CN}  



Using Context in Reliability Calculations 

  a’kj = u(akj , ∆Cn) 
 akj – transition probability 

 u – a function that based on context 
 Encapsulates the effect that Cn has on akj 



Calculating Total System Reliability 

  Based on individual component reliability 

 k = Number of states 
 Rk = Reliability of exit state 
 M = Matrix of size k x k 
 |I-M| = Determinant of M 
 |E| = Determinant of everything but the first column 

and row of |I-M| 



Considering Architectural Factors 



Considering Architectural Factors 

More efficient architecture More reliable architecture 



Finding Optimal Configuration 

  Reliability is the goal 
  In practice, other factors may influence calculation 

 Uq = Utility function 
 Can take on any format 



Finding Optimal Configuration 

  Configurations have constraints 
 Must be assigned to at least one process 
 Can have a bounded number of replicas 
 Cannot share a process and have a replica 

 Components and replicas should be on separate processes 



Experimental Results 

  Robot example from earlier 
  Context - probability of hitting an obstacle 

 Bump probability (BP) 

  Controller failure is examined with respect to 
different BP 
 This is because the transition from one state to another 

can fail with a certain probability 



Experimental Results 

  Observed and predicted reliability 
 Shows accuracy of predictive model 

  Reliability degrades with context 
  Increased BP = lower reliability 



Experimental Results 

  Real robotic results 
  RESIST sees a increase in BP 

 This is predicated to result in a drop in reliability 
 Before this degradation in reliability, RESIST  

 “adapts the system to maintain its reliability above 97%. As 
a result, the Navigator is replicated and the Controller is 
redeployed to a separate process.”  



Conclusion 

  Overall, the paper covers a lot of ground 
  Offers an interesting, predictive approach 
  Questions 

 What other machine learning techniques can be used to 
aid prediction? 

 Does the system’s accuracy improve with more data / 
examples?  
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