A survey of Autonomic Computing — degrees models and applications MARKUS C. HUEBSCHER, JULIE A. MCCANN

Summarized by David Gonzalez

Overview

- Autonomic Computing "definition" and properties.
- Chronology
- Autonomic element breakdown
- MAPE-K Loop Model
- Degrees of Autonomicity.
- Emerging fields
- Conclusions

2

What does Autonomic Computing (AC) means?

- Autonomic comes from Biology (e.g. Nervous system).
- AC seeks improving systems by decreasing human involvement.
- There is an active debate on this.
- Key: focus on the dynamism of the system.

Chronology

		-	
\mathbf{SAS}	1997	DARPA	Decentralised self-adaptive (ad-hoc) wireless
Situational Awareness			network of mobile nodes that adapt routing to
System			the changing topology of nodes and adapt com-
			munication frequency and bandwidth to envi-
			ronmental and node topology conditions.
DASADA	2000	DARPA	Introduction of gauges and probes in the archi-
Dynamic Assembly for			tecture of software systems for monitoring the
Systems Adaptability,			system. An adaptation engine then uses this
Dependability, and			monitored data to plan and trigger changes in
Assurance			the system, e.g. in order to optimise perfor-
			mance or counteract failure of a component.
AC	2001	IBM	Compares self-management to the human au-
Autonomic Computing			tonomic system, which autonomously performs
			unconscious biological tasks. Introduction of the
			four central self-management properties (self-
			configuring, self-optimising, self-healing and
			self-protecting).
SPS	2003	DARPA	Self-healing (military) computing systems, that
Self-Regenerative			react to unintentional errors or attacks.
Systems			
ANTS	2005	NASA	Architecture consisting of miniaturised, au-
Autonomous			tonomous, reconfigurable components that form
NanoTechnology			structures for deep-space and planetary explo-
Swarm			ration. Inspired by insect colonies.

Table 1 from Huebscher Paper.

CS Department, GMU. 2013

4

Self-Management properties

- Self-Configuration.
- Self-Optimization.
- Self-Healing.
- Self-Protection.

Inspired by Self-X properties: Autonomy, social ability, reactivity and Pro-activeness.

MAPE-K Autonomic Loop(I)

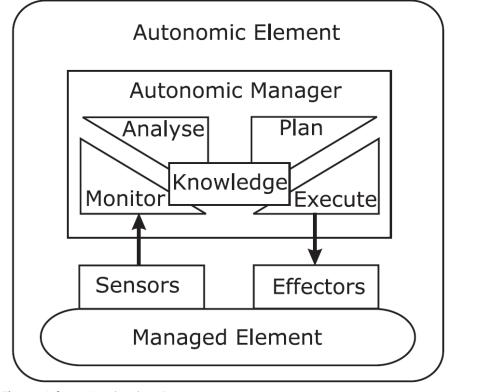


Figure 1 from Huebscher Paper.

MAPE-K Autonomic Loop(II)

• Model suggested by IBM.

- Monitor, Analyze data from sensors.
- Plan, Execute changes trough effectors.
- Manage knowledge (tricky).

Autonomic Manager (I)

- Monitors data from sensors and execute changes through effectors.
- Changes are based on goals fulfillment.
- There high-level goals achieved by completing low-level tasks.
- The goals are expressed trough Event-Condition-Action (ECA) policies, e.g.

"when 95% of web servers' response time exceeds 2s and there are available resources, then increase number of active web servers"

Autonomic Manager (II)

- An Utility function provide a quantitative measurement to the desirability of a system's state. But, is hard to define.
- Relates to Multi-Agents System, which cannot assure that an agent's state is desirable to the system's state.
- "As Autonomic Management solutions become more decentralised and less deterministic, we may begin to observe emergent features.".

Monitoring component

 Captures relevant data through sensors.
 Could be passive or Active.
 Active differs from passive by adding custom functionalities to the software.

Adding a more dynamic approach when monitoring facilitates autonomicity.

Planning component

- Makes changes trough effectors based on what is being monitored.
- An stateless approach is very limited.
- The use of Architecture model provides a verification mechanism to evaluate if the integrity of the system kept after changes are made. Although, it does not eliminate ECA rules.

11

Knowledge Component

• Hard to distinguish with planning.

• Provides an effect adaption to the system.

Definitions:

- Utility. Measures "usefulness".
- Reinforced learning. Policies from managed actions.
- Bayesian Techniques. Classify policies.

Multi-tier systems

- Aims to manage complex distributed systems.
- Must be aware of system responsiveness.
- Still there is a need for intervention in critical conditions.

Degrees of Autonomicity

- 1. Support(performance)
- 2. Core(prime objective)
- 3. Autonomous(fault tolerance)
- 4. Autonomic (Achieve SLAs or business goals)

Emerging Areas

Power management.
Data centers, Clusters
Ubiquitous Computing

Conclusion

• AC is maturing and there are clear differentiation from other fields.

• Is a challenge to achieve SLAs.

 In the future, AC is expected to be part of general computing

Conclusion*

Metasytems?Standardization?