SASSY: Selt-Architecting
Software SYstems

= A Framework for Utility-Based Service Oriented Design in SASSY

By Daniel Menasce, John Ewing, Hassan Gomaa, Sam Malek and Joao Sousa

= QoS Architectural Patterns for Self-Architecting Software Systems

By Daniel Menasce, Joao Sousa, Sam Malek, Hassan Gomaa

Presented by: Kaveh Razavi

Motivation

®» |ef domain experts, as opposed to software engineers, express system
requirements in an easily understood high level visual language

» Allow for a uniform approach in SOA to
» Automated composition

» Adaptation

» Evolution of software systems

» |0 face of emergent runtime problems
» Automate the process of creating a new architecture

®» Flevate reaction on the scale of seconds, as opposed to hours or days it takes
humans

Overview of SASSY

SOA Review

» SOA: A software architecture that consists of multiple distributed
autonomous services

» The same service type can be offered by different service providers (SPs)
» Services and their providers can be discovered at runtime

» New SPs may be brought info existence and existing SPs may fail or stop
operating at any time

» Different functionally equivalent SPs may exhibit different QoS levels at different
costs

SASSY

» A model-driven framework for run-time self-architecting and re-architecting
of distributed software systems

» Automatically generates a base architecture corresponding to the
requirements

» Generates an architecture derived from the base architecture that
optimizes a utility function for the entire system by:

» Optimal selection of service providers for service types (done before)

» Automatically generates a number of candidate architectural patterns to
replace each service (novel ideq)

» Once the architecture is deployed, there may be a need to re-architect
due to changes in the environment (e.g., failures of service providers or
changes in their QoS characteristics)

SASSY

» Run-time Models

» Service Activity Schemas (SASs) O ..)
with their corresponding Service °°'"°'"°"a'°'°“ Domain Expert
Sequence Scenarios (SSSs) 7

et \ B e,

» i . .
System Service Architecture (SSA) o Sosmana” | Mttacura Pt | QoS st
Scenario Models

» QoS Architectural Patterns

SASSY Self-Architecting and Rearchitecting

» QoS Analytical Models

» SASSY Logic
= Monitoring Support

wdepy

|\ B

System Service
Architecture Models %

Monitoring data

» Adaptation Support

» Self-Architecting and Re- - $
o o s;wug; é \ Management
architecting , 2
» S / ;0 Service
EXTe ke | C Sl p elnEin T SASSY Monitoring \ P —— SASSY Adaptation
. Support Support
®» Running Software System @
“°::f° f::s.:;-::;",
SOA Technology Stack

SAS: Service Activity Schemao

» Describes the features and logic

of the application and

Is written by domain experts in a
graphical notatfion similar to
Business Process Modeling
Notation (BPMN)

Modeling constructs like activities,
service types and domain entities
are defined in a domain ontology

4l EvacPlan - /Samples/SASes/WOSP/ S|
T Mame: [EvacPlan s Aspect [Coordnation | Base: [N/A oom: [100:
Secure Comm Auu @ o
_________ Road Map
Secure Store 1

o s —
Weather Make Evac Plan
. 3]
Availability e "W

;_,_,_,_,_g ID Possible Threats L J
Execution Time Eval Evac Plan
Ll X X>—@
Throughput Request Plan

[A
/ /} ‘\“ \
\ \

DomaTn Onl!ology &L A
3 Domain Expert
))
o
=N EING N
=
Service Activity Schomas Architectural Pattern QoS Analytical
and Service Sequence
Models Models
Scenario Models
SASSY Self-Architecting and Rearchitecting
8
s
o b
1. N
= . ~
s :
[3
: :

& System Service
& o 2 Architecture Models |

w

§’§’
3%

Service
SASSY Monitoring |) SASSY Adaptation
Support \ Running Software System Support

o NQ\/ m%)
resh K Facilties
N 4 L

SOA Technology Stack

SSS: Service Seguence Scenario

Sub-graphs of SAS: A set of one or more service
types connected by links in an SAS

Domain Ontology

)
s"‘/ \\‘\
U 9]
\
[
\

[A
‘} \
/

[/ \\

A‘_/ J
Domain Expert

The purpose: specifying end-to-end goals E P
along the paths in the form of utility functions i o
Each SSS is associated fo one of the QoS M Sk T,
metrics s::‘v;‘:;‘?:g"sy;f‘::"g' Architectural Pattern | QoS Analytical
Models Models
» Two or more $SSs may have the same structure Seenerio Models
as long as they have different metrics e dadoc

associated with them
8
3
2l EvacPlen - /Samples/SASes/WOSP/ =l o >
T Name:[EvacPin 59 Aspect [Coordination | Base: [N/A Zoom [100%] 'E A E
= .
»uu g B ¢
& System Service
‘Road Map & / Architecture Models
@ Y —— Q:"@(‘Q : X
+ > uul h«l—b\-*->—>,;’:: @ v
Wealher Make Evac Plan ‘ i ”Gauge \ :
A) \ Service) : S\
_— Bsco ‘ Itonng . § N
ID Possible Threats - J Service /= '8 . 8 Senvice M8
ErecilionTie Eval Evac Plan D £ Q . :' 4
SASSY Monitoring ’ SASSY Adaptation
Support \ Running Software System Sinaodt
an’ ab
Adaptation
N 4
SOA Technology Stack

0 a<09

U TlllTy Function Unvaitabitisy (a) = { 0.5 0.9<a< 095

1 095 <a<1

®» Are used in economics and autonomic computing to assign a value to the
usefulness of a system based on its attributes.

» Ufility functions are established by the domain experts in consultation with
the stakeholders to express the quality of a given architecture

» Can be:

» Univariate: A function like the ones associated with each SSS

» Multivariate: A function of several QoS metrics like the global utility function for
the entire SAS

» The overall utility of a system is defined as a composition of the individual utilities
according to their relative importance.

Analytical Model

» Are used fo derive and express the end-
to-end QoS attributes, and hence the
utility of the system

» Example:

=» a= QRroad Map X Qweather X Jp Possible Threats X

CJI\/\oke—Evc1<:—PIor1 X C]Evcﬂ-quc-PIcm

»ec= mOX{eRood Map- eWeoTher' eID Possible Threo’rs}
+ eI\/\<:1I<e—Ev<:1c—PIor1 + eEv<:1I—Ev<:|c-PIc1n

—»uu @ map!|

'S

Road Map
<-I>—>3uu @ rorr—p

Weather

R

S T @ thl

Make Evac Plan

Eval Evac Plan

ID Possible Threats

[A
N P eﬁ /} ‘\“ \
\ \

Domain Ontology &L A

3 Domain Expert

) o

El ot
=N EING N

—y 7;_!
Service Activity Schomas Architectural Pattern QoS Analytical
and Service Sequence
Models Models
Scenario Models
SASSY Self-Architecting and Rearchitecting

8
s
o »
S 3
: :
: System Service |
ot Architecture Models |
&S . : A
0‘(" . ¢ .
Gauge » \
toring £ Whdeptaton
 Sorvics 3 38 " Senvice
SASSY Monitoring |) SASSY Adaptation
Support \ Running Software System Sinaodt

o NQ\/ m%)
resh K Facilties
N 4 L

SOA Technology Stack

Monitoring Support

» Probes the SOA implementation
» Generates triggers that cause self-
adaptation

» When service providers fail or are
unable to meet their QoS goals

Domaln On!ology

—t [[\

U \\
Domain Expert
H)
°

et N\ B NI

Service Activity Schomas Architectural Pattern QoS Analytical

and Service Sequence
Scenario Models Models

Models

SASSY Self-Architecting and Rearchitecting

Monitoring data

%Ef@\

: System Service .
Q‘o\o" Architecture Models |\ %
® 0(&]
o

wdepy

(o]
=
- &
©
“(‘:;““““”“
>

Monitoring \ B
SASSY Monltorlng ‘ SASSY Adaptation
Sinned Runmng Software System Sinaodt

\(Adaptaﬂon
Pnobe / Fﬂﬁes

SOA Technology Stack

Adaptation Support

» Uses the widely accepted 3-layer
architecture model of self-
management:

» Godl Management Layer:
Planning for change - often
human assisted

» Change Management Layer:
Execute the change in response
to changes in state (environment)
reported from lower layer or in
response to goal changes from

above

» Component Control Layer:
executing architecture, actually
implements the run-fime
adaptation

— /

Domaln On!ology |
3 Domain Expert
) o
El ot
e \ B#E NI
. '_.l
Service Activity Schomas Architectural Pattern QoS Analytical
and Service Sequence
Models Models
Scenario Models

SASSY Self-Architecting and Rearchitecting

SOA Technology Stack

2
S
®
L]
g
c 1]
fg \ -1
o >
£ :
€ :
5 :
: System Service
& o 2 Architecture Models \ %
Q_.Q Ky A - A
g : ;
3 : “\
Gauge 4 \
Senvice
itoring : 'Adaptation \
 Service '8 Service
SASSY Monltorlng SASSY Adaptation
Support Running Software System Support
Adaptation
Resoun:e
\ Pmbe Facmes

SSA: System Service Architecture

® | an accurate representation of the
running software system

®» Provides mapping between each
service instfance and the concrete
service provider

» |5 infended for use at run-time, unlike
traditional models used during design

» Base SSA is automatically generated:

®» Associates one component to each
service type

» Creates one component fo represent
the logic of a coordinator that
orchestrates communication between
service types

» SASSY automatically generates SSA’'s
behavioral models, executable logic of
service coordination in SOA, based on
the requirements specified by domain
expert in SAS

Domaln On!ology

/) [\
b §
/ }“-‘ \

t [[\
— £4°Y
/ U

DomL;ln E?pert
El
3 o
El ot
e S =g i
- . ,_.l
Service Activity Schemas Architectural Pattern QoS Analytical
and Service Sequence
Models Models
Scenario Models

SASSY Self-Architecting and Rearchitecting

pesauan(ay

SOA Technology Stack

g e _____¥
o >
£ :
€ :
5 :
: System Service
& o 2 Architecture Models \ %
Q_.Q Ky A - A
g : ;
3 : “\
Gauge 4 \
Senvice
itoring : Adaptation
 Service '8 Service
SASSY Monltorlng SASSY Adaptation
Support Runnmg Software System Support
\(Aaapmm
Resoun:e
\ Pmbe Facmes

SASSY Self-architecting & Re-

architecting Compone & 0

el I\
Domain Ontology \

» Automatically generates a near- g poni ot
opfimal SSA, and maintains that 2
optimality in the face of changes i O\ Bd NI,
. . s::;?::;‘::‘g;ﬁ::";‘ Architectural Pattern QoS Analytical
» Detected by the Monitoring Support— Scenario Models soiie Hode®
Self_hecling Ond Odgp-l-g-l-ion SASSY Self-Architecting and Rearchitecting

» Made by users in the SAS and SSS—
system evolution.

depy

®» Focuses on a set of SSS with greater %‘E‘f@@\

room for improving their confribution o A\ system Service

the overall ufility. 0
» CGenerates variafions to the system e g \

architecture by replacing each service - ?E
along an SSS with candidate [(s&s— 3 A © N
architectural pafterns that are S s Ruming Sovare Systom || SASSY Adepatn
functionally equivalent but improve m e
some aspect of QoS. S / (e

SOA Technology Stack

SASSY QoS Architectural Patterns

QoS Architectural Patterns

®» Cchoosing a pattern that promotes certain aspects of quality normally has a
negative effect on some other aspects of quality.

» The task of an architect is to make tradeoffs that reflect the priorities of
stakeholders.

» This task is especially complex for large systems

w» SASSY uses efficient and scalable search heuristics to identify the optimal
patterns, making it possible to perform self-architecting both at system
deployment and at run time for purposes of self-adaptation

QoS Architectural Patterns

SASSY uses a library of architectural patterns
to assist in the self-architecting process

Each pattern consists of 1 or more
components

Each component may be associated with 1
or more service type

Each service type is instantiated by 1 or
more service provider

Each pattern also includes 1 or more QoS
metrics and their corresponding QoS model

Each SSS has a single ufility function

That utility function is a function of a single
QoS metric

An analytic QoS is used to compute the
value of that QoS metric

Pattern SSS
.|Includes Has
L Includes !
Component ¢, Utility Function
. |Includes Uses
1.5 1y
Service Type QoS Metric
1.2 ImplementedBy " Fomputed
Service
Provider QoS Model

By

Basic Pattern

®» The simplest possible pattern in terms of structure.
®» |t consists of a single component ¢ and no connectors.
» |ts behavior corresponds to asynchronous message-passing

» The availability of the basic pattern reflects the probability that it is
available to receive the message

» |5 execution time reflects the time it takes to act on the message received

a = Ma,(va’c) = ’Ua,sc (A — Me(ve,c) - UB,C

Fault-Tolerant, First-to-Respond

» Consists of C components CI1,:--,C- and a
connector that receives requests and sends
them in parallel to all C components

®» [tis assumed that components fail independently
of one another Connector

» All components process the request and send
their replies to the connector, which replies to its
requester as soon as the first component replies

» Promotes availability

» Redundant wusage of resources negatively
impacts scalability

Q

. c
e = 3 Z_H[l — (& + (=1)Yva,cy)] x

a = Ma,(va,cla T ,’UG’CC) =1- H(l - va,Cj)
Jj=1

Fault-Tolerant, Two-Phase Commit

» Hqas the same structure

» Connector receives a request, sends it for
processing to all components, waits for all to
respond, and then sends a commit request to all of
Them Connector

» Promotes fault-tolerance when information has to
be maintained at more than one location

» |ncreased availability comes at the expense of
reduced execution time

C
a = MG(UG,CI y " 31}0’4:0(}‘) — H Ua':oj € = 2 X ma’x{veacl IR UE:OC}
=1

Load Balancing

» Has the same architectural stfructure as the two
previous ones but with different behavior.

®» Connector sends requests o one and only one
of the components at a fime. When it receives a
reply, the connector issues a reply.

®» Promotes scalability and availability

®» Execution fime is less pronounced: the expected
time is a weighted average of the response
times, in confrast fo a guaranteed fastest
available response time.

Connector

Parallel Invocation

A connector receives a request and breaks it
down info sub-requests that are sent in parallel to
all components. Connector merges all replies from
the components and replies to the original request.

The connector and all components have to be
available for the pattern to be available.

Connector

Promotes the reduction of execution fime given
that the overall work can be broken down in
smaller pieces to be executed in parallel.

Reduced availability.

Q4 = Vgq,connector

C

71=1

Ua':oj € = 2 X maX{’Ue,Ol g

? UB,OC }

Composition of QoS Architectural
Patterns

» A utility function, associated to a QoS metric, is assigned to each SSS. Then,
all these utility functions are combined into a global utility function

» The end-to-end QoS metric along an SSS depends on the values of that
meftric for each component or pattern in the SSS

» The end-to-end execution time is the sum of the executfion times of basic
components or composite components (i.e., patterns) along an SSS

» The end-to-end availability is the product of the availabilities of basic
components or composite components (i.e., patterns) along an SSS

Architectural Patterns - Example

Replacement of a
component with a fault
tolerant component

A=1-(1-al)(l —a2

i

Make Evac Plan

Base SSA

B

Road Map

Weather

o

ID Possible Threats Eval Evac Plan

Eval Evac Plan 1

Fault Tol Type 1

ID Possible Threats Eval Evac Plan 2

The Optimization Problem

Opftimization Problem

» Finding an architecture (A*) and a set of service provider allocation (Z*) that implement service
types in SAS in a way that optimizes the SAS utility function Ug

» (A% I*) = argmax(A, Z) U4(A, Z)

» There could be a modified cost-constrained case in which there is a cost associated with each service
provider for a certain QoS level

» |f
®» p:average humber of architectural patterns that can be used to replace any component

®» n:number of components in architecture

®» s average number of service providers that can be used to implement each component
» Then
» The number of different architectures is O(p")
» The number of possible service provider selections for an architecture is O(s")
» The size of the solution space for the optimization problem is O((s x n)")
» The problem is NP-hard

» SASSY uses a heuristic-based search technique

General Search Approach

function GeneralSearch ()
Avisited < Abase; /* initialization */
OptimalServiceProviderSelection (Ayisited);
Uy « Utility (Avisitea) /™ utility computation */
Searching « TRUE
while Searching do
Aopt — Avisited
N «— GenerateNeighborhood (Avyisited, k)
for all A; € N do
10: OptimalServiceProviderSelection (A;)
11: end for
12: A —argmaza,en {Utility(A;)}
13: if Utility (A) > U, then

14: Avisitea — A

15: OptimalServiceProviderSelection (Avisited);

16: Uy «— Utility (Avisitea) /* utility computation */
17: else

18: Searching <+ FALSE

19: end if

20: end while
21: end function

Step 1. Start with architecture A, . and corresponding
service selection Z, . of service providers for the service
types of Apgee-

Step 2. Identify the SSSs with the lowest contribution
towards overall utility. How many SSSs to consider is a
parameter of the heuristic.

Step 3. Find a neighborhood N of architectures de-
rived from A, by replacing QoS architectural patterns
iN Agase OY ofher candidate QoS architectural patterns
that improve the utility of the SSSs identified in Step 2.

Step 4. Perform a near-optimal service provider al-
location for each architecture in N. This is also an NP-
complete problem for which SASSY uses a heuristic
described

Step 5. Compute the global utility Ug for each
architecture in N and pick the architecture A, with the
largest utility in N

Step 6. If the utility of A, represents a“good enough”
improvement over the previous value of the global
utility, stop and return A,,;. Otherwise, make A, €qual
to Agpr and go fo step 2

Generate Neighborhood

» Unfiltered

1: function GenerateNeighborhood (Ayisited, k) - SRSeSplv?/iC’rzlf?Soﬁvg%hﬁggrg%?egéf’gme\’r/ﬁg

2: N« ¢; /* initialize with empty neighborhood */ improves the metric associated with

3: Sk« Set of SSSs with k lowest contribution to Uy the SSS

4: for all s € S; do _

5 m «— s.QoSmetric » |arge neighborhood

6: C « Set of components of s » |arge nheighborhoods imply larger

7: P« Set of patterns that improve m computational costs

8: for allceC do - Fi

9: for all p € P do ligiee

10: N «— N |JReplace(Ayisited, ¢, D) » Reduces the size of the neighborhood

11: end for by concenfrating on the SSSs that can

19:° end for provide better gains to the ufility
‘ function

13: end for

14: return N » The smaller the neighborhood, the

higher the likelihood that the search

15: end function will be trapped in a local optimum

Case Study Results

Case Study |

N\
G‘ etloc, k‘ & location ; (o estimate g = oo Estimat) ./ . ocEstimat num 5 0 =@
=) < I / " \ I

smokeDet _ reqgHelp
Building Locator Occupancy Awareness
Service Service Execution | Availability
Type Provider | Time (msec)
Building Locator BL1 50 98%
BL2 70 97%
BL3 60 99%
Occupancy Awareness 0OA1l 120 99%
0OA2 150 95%
OA3 100 98%
| No I Building Locator } a [£ H Occupancy Awareness | a] e ” agay } eggg ” Ua(SSS) | U.(SSS) |
1 BC (BL1) 0.980 | 50.000 || BC (OA1) 0.960 | 120.00 (| 0.9408 | 170.00 0.5 0.99331
2 BC (BL1) 0.980 | 50.000 || BC (OA2) 0.950 | 150.00 || 0.9310 | 200.00 0.5 0.00005
3 BC (BL1) 0.980 | 50.000 || FFT (OA1,0A2) 0.998 | 121.14 (| 0.9780 | 171.14 1.0 0.98821
4 BC (BL1) 0.980 | 50.000 || FFT (OA1, OA3) 0.999 | 100.38 (| 0.9792 | 150.38 1.0 1.00000
5 LB (BL1, BL2) 0.975 | 58.450 || BC (OA1) 0.960 | 120.00 (| 0.9360 | 178.45 0.5 0.68460
6 LB (BL1, BL2, BL3) | 0.980 | 58.767 || BC (OAl) 0.960 | 120.00 || 0.9408 | 178.77 0.5 0.64946
7 LB (BL1, BL2) 0.975 | 58.450 || FFT (OA1,0A2) 0.998 | 121.14 || 0.9731 | 179.59 1.0 0.55079
8 LB (BL1, BL2, BL3) | 0.980 | 58.767 | FFT (OA1l, OA3) 0.999 | 100.38 (| 0.9792 | 159.15 1.0 0.99997

Case Study |l

SPs and their

Characteristics Base SSA

SPi Capacity C; (in tps) | B; (in sec) | Availability (A4;) | Cost (in US$)

Road Map ACME 15.0 0.2 0.900 50

Road Map Pinnacle 12.5 3.0 0.990 100

Road Map ServiceTron 7.5 0.3 0.985 150 Road Map Make Evac Plan
Road Map Apex 17.5 1.0 0.975 250

Weather Acme 16.5 0.1 0.980 100

Weather Pinnacle 13.5 5.0 0.999 200

Weather ServiceTron 10.0 0.8 0.995 300

Weather Apex 18.0 0.6 0.990 250

ID Threat Intellifort 13.0 1.5 0.990 500

ID Threat InfoSafe 15.5 2.9 0.985 400 Weather

ID Threat CryptIT 17.0 1.8 0.995 550 Coordinator
Make Plan DataCrunch 15.0 48.5 0.940 1500

Make Plan OR Gurus 19.0 92.0 0.990 2000

Make Plan Master Plan 7.0 83.2 0.965 1600

Eval Plan DataCrunch 17.0 5.2 0.985 150

Eval Plan OR Gurus 14.5 9.8 0.995 200

Eval Plan Master Plan 7.5 3.9 0.990 250

ID Possible Threats Eval Evac Plan

Case Study Il — After near optimal self-
architecting

Variation of the global utility

Predicted Ug

0.7

04 |
03

0.2 |

0.1

05 ||

no fil_te R ID Possible Threatg

0

ID Possible Threatg .

ID Possible Threats

1 1 1 | 1 |
100 200 300 400 500 600 700 800
Number of Evaluated Architectures

Load Balancer

Optimal architecture

Case Study Il — affer a performance

degradation in an SP

Variation of the global ufility during OpTImCﬂ CII’ChITe.CTUI'e after
the search due to adaptation GdOpTOTIOﬂ

Road Map
Fault Tol Type 1

Road Map

0.7

ool [

0.5 H

0.4 n

Predicted U,

= ault Tol Type 1

0.3 h

0.2

0.1 1 | 1 1
0 100 200 300 400 500

Number of Evaluated Architectures
val Evac Plan

ID Possible Threats E

Conclusion

» SASSY's approach can be used for
» Self-adaptation
» Self-healing
» Self-optimization
»

Evolution: when requirements change, they need to be reflected at the SAS level.
From that point, SASSY regenerates a near optimal architecture that satisfies the
requirements of the evolved system

» A small change in the environment can lead to substantial changes in the
structure and features of near-optimal architectures

®» Aufonomic management can elevate the end user experience by reacting to
emergent problems on the scale of seconds, while human administrators would
need hours, possibly days, to devise and implement a new architecture that
would properly restore the application’s performance

