
SASSY: Self-Architecting 

Software SYstems

 A Framework for Utility-Based Service Oriented Design in SASSY

By Daniel Menasce, John Ewing, Hassan Gomaa, Sam Malek and Joao Sousa

 QoS Architectural Patterns for Self-Architecting Software Systems

By Daniel Menasce, Joao Sousa, Sam Malek, Hassan Gomaa

Presented by: Kaveh Razavi

1



Motivation

 Let domain experts, as opposed to software engineers, express system

requirements in an easily understood high level visual language

 Allow for a uniform approach in SOA to

 Automated composition

 Adaptation

 Evolution of software systems

 In face of emergent runtime problems

 Automate the process of creating a new architecture

 Elevate reaction on the scale of seconds, as opposed to hours or days it takes

humans

2



Overview of SASSY
3



SOA Review

 SOA: A software architecture that consists of multiple distributed

autonomous services

 The same service type can be offered by different service providers (SPs)

 Services and their providers can be discovered at runtime

 New SPs may be brought into existence and existing SPs may fail or stop

operating at any time

 Different functionally equivalent SPs may exhibit different QoS levels at different

costs

4



SASSY

 A model-driven framework for run-time self-architecting and re-architecting
of distributed software systems

 Automatically generates a base architecture corresponding to the
requirements

 Generates an architecture derived from the base architecture that
optimizes a utility function for the entire system by:

 Optimal selection of service providers for service types (done before)

 Automatically generates a number of candidate architectural patterns to
replace each service (novel idea)

 Once the architecture is deployed, there may be a need to re-architect
due to changes in the environment (e.g., failures of service providers or
changes in their QoS characteristics)

5



 Run-time Models

 Service Activity Schemas (SASs)

with their corresponding Service

Sequence Scenarios (SSSs)

 System Service Architecture (SSA)

 QoS Architectural Patterns

 QoS Analytical Models

 SASSY Logic

 Monitoring Support

 Adaptation Support

 Self-Architecting and Re-

architecting

 External Component

 Running Software System

6 SASSY



 Describes the features and logic
of the application and

 Is written by domain experts in a
graphical notation similar to
Business Process Modeling
Notation (BPMN)

 Modeling constructs like activities,
service types and domain entities
are defined in a domain ontology

7 SAS: Service Activity Schema



 Sub-graphs of SAS: A set of one or more service
types connected by links in an SAS

 The purpose: specifying end-to-end goals
along the paths in the form of utility functions

 Each SSS is associated to one of the QoS
metrics

 Two or more SSSs may have the same structure
as long as they have different metrics
associated with them

8 SSS: Service Sequence Scenario



Utility Function

 Are used in economics and autonomic computing to assign a value to the

usefulness of a system based on its attributes.

 Utility functions are established by the domain experts in consultation with

the stakeholders to express the quality of a given architecture

 Can be:

 Univariate: A function like the ones associated with each SSS

 Multivariate: A function of several QoS metrics like the global utility function for

the entire SAS

 The overall utility of a system is defined as a composition of the individual utilities

according to their relative importance.

9



 Are used to derive and express the end-

to-end QoS attributes, and hence the

utility of the system

 Example:

 a = aRoad Map × aWeather × aID Possible Threats ×

aMake-Evac-Plan × aEval-Evac-Plan

 e = max{eRoad Map, eWeather, eID Possible Threats}

+ eMake-Evac-Plan + eEval-Evac-Plan

10 Analytical Model



Monitoring Support

 Probes the SOA implementation

 Generates triggers that cause self-

adaptation

 When service providers fail or are

unable to meet their QoS goals

11



Adaptation Support

 Uses the widely accepted 3-layer

architecture model of self-

management:

 Goal Management Layer:

Planning for change – often

human assisted

 Change Management Layer:

Execute the change in response

to changes in state (environment)

reported from lower layer or in

response to goal changes from

above

 Component Control Layer:

executing architecture, actually

implements the run-time

adaptation

12



SSA: System Service Architecture
 Is an accurate representation of the

running software system

 Provides mapping between each
service instance and the concrete
service provider

 Is intended for use at run-time, unlike
traditional models used during design

 Base SSA is automatically generated:

 Associates one component to each
service type

 Creates one component to represent
the logic of a coordinator that
orchestrates communication between
service types

 SASSY automatically generates SSA’s
behavioral models, executable logic of
service coordination in SOA, based on
the requirements specified by domain
expert in SAS

13



SASSY Self-architecting & Re-

architecting Component

 Automatically generates a near-
optimal SSA, and maintains that
optimality in the face of changes

 Detected by the Monitoring Support—
self-healing and adaptation

 Made by users in the SAS and SSS—
system evolution.

 Focuses on a set of SSS with greater
room for improving their contribution to
the overall utility.

 Generates variations to the system
architecture by replacing each service
along an SSS with candidate
architectural patterns that are
functionally equivalent but improve
some aspect of QoS.

14



SASSY QoS Architectural Patterns
15



QoS Architectural Patterns

 choosing a pattern that promotes certain aspects of quality normally has a

negative effect on some other aspects of quality.

 The task of an architect is to make tradeoffs that reflect the priorities of

stakeholders.

 This task is especially complex for large systems

 SASSY uses efficient and scalable search heuristics to identify the optimal

patterns, making it possible to perform self-architecting both at system

deployment and at run time for purposes of self-adaptation

16



 SASSY uses a library of architectural patterns
to assist in the self-architecting process

 Each pattern consists of 1 or more

components

 Each component may be associated with 1
or more service type

 Each service type is instantiated by 1 or
more service provider

 Each pattern also includes 1 or more QoS
metrics and their corresponding QoS model

 Each SSS has a single utility function

 That utility function is a function of a single
QoS metric

 An analytic QoS is used to compute the
value of that QoS metric

QoS Architectural Patterns17



Basic Pattern

 The simplest possible pattern in terms of structure.

 It consists of a single component c and no connectors.

 Its behavior corresponds to asynchronous message-passing

 The availability of the basic pattern reflects the probability that it is

available to receive the message

 Its execution time reflects the time it takes to act on the message received

18



Fault-Tolerant, First-to-Respond

 Consists of C components C1,···,CC and a

connector that receives requests and sends

them in parallel to all C components

 It is assumed that components fail independently

of one another

 All components process the request and send

their replies to the connector, which replies to its

requester as soon as the first component replies

 Promotes availability

 Redundant usage of resources negatively

impacts scalability

19

Connector

C1

C2

CC



Fault-Tolerant, Two-Phase Commit

 Has the same structure

 Connector receives a request, sends it for

processing to all components, waits for all to

respond, and then sends a commit request to all of

them

 Promotes fault-tolerance when information has to

be maintained at more than one location

 Increased availability comes at the expense of

reduced execution time

20

Connector

C1

C2

CC



Load Balancing

 Has the same architectural structure as the two

previous ones but with different behavior.

 Connector sends requests to one and only one

of the components at a time. When it receives a

reply, the connector issues a reply.

 Promotes scalability and availability

 Execution time is less pronounced: the expected

time is a weighted average of the response

times, in contrast to a guaranteed fastest

available response time.

21

Connector

C1

C2

CC



Parallel Invocation

 A connector receives a request and breaks it
down into sub-requests that are sent in parallel to
all components. Connector merges all replies from
the components and replies to the original request.

 The connector and all components have to be
available for the pattern to be available.

 Promotes the reduction of execution time given
that the overall work can be broken down in
smaller pieces to be executed in parallel.

 Reduced availability.

22

Connector

C1

C2

CC



Composition of QoS Architectural 

Patterns

 A utility function, associated to a QoS metric, is assigned to each SSS. Then,

all these utility functions are combined into a global utility function

 The end-to-end QoS metric along an SSS depends on the values of that

metric for each component or pattern in the SSS

 The end-to-end execution time is the sum of the execution times of basic

components or composite components (i.e., patterns) along an SSS

 The end-to-end availability is the product of the availabilities of basic

components or composite components (i.e., patterns) along an SSS

23



Base SSA

Replacement of a 

component with a fault 

tolerant component

A = 1 − (1 − a1)(1 − a2)

24 Architectural Patterns - Example



The Optimization Problem
25



Optimization Problem

 Finding an architecture (A*) and a set of service provider allocation (Z*) that implement service
types in SAS in a way that optimizes the SAS utility function Ug

 (A*, Z*) = argmax(A, Z) Ug(A, Z)

 There could be a modified cost-constrained case in which there is a cost associated with each service
provider for a certain QoS level

 If

 p: average number of architectural patterns that can be used to replace any component

 n: number of components in architecture

 s: average number of service providers that can be used to implement each component

 Then

 The number of different architectures is O(pn)

 The number of possible service provider selections for an architecture is O(sn)

 The size of the solution space for the optimization problem is O((s x n)n)

 The problem is NP-hard

 SASSY uses a heuristic-based search technique

26



 Step 1. Start with architecture Abase and corresponding
service selection Zbase of service providers for the service
types of Abase.

 Step 2. Identify the SSSs with the lowest contribution
towards overall utility. How many SSSs to consider is a
parameter of the heuristic.

 Step 3. Find a neighborhood N of architectures de-
rived from Abase by replacing QoS architectural patterns
in Abase by other candidate QoS architectural patterns
that improve the utility of the SSSs identified in Step 2.

 Step 4. Perform a near-optimal service provider al-
location for each architecture in N. This is also an NP-
complete problem for which SASSY uses a heuristic
described

 Step 5. Compute the global utility Ug for each
architecture in N and pick the architecture Aopt with the
largest utility in N

 Step 6. If the utility of Aopt represents a“good enough”
improvement over the previous value of the global
utility, stop and return Aopt. Otherwise, make Abase equal
to Aopt and go to step 2

General Search Approach27



 Unfiltered

 Replaces every component of every
SSS with an architectural pattern that
improves the metric associated with
the SSS

 Large neighborhood

 Large neighborhoods imply larger
computational costs

 Filtered

 Reduces the size of the neighborhood
by concentrating on the SSSs that can
provide better gains to the utility
function

 The smaller the neighborhood, the
higher the likelihood that the search
will be trapped in a local optimum

Generate Neighborhood28



Case Study Results
29



30 Case Study I



SPs and their 

Characteristics Base SSA

31 Case Study II



Variation of the global utility Optimal architecture

32 Case Study II – After near optimal self-

architecting



Variation of the global utility during 

the search due to adaptation

Optimal architecture after 

adaptation

33 Case Study II – after a performance 

degradation in an SP



Conclusion

 SASSY’s approach can be used for

 Self-adaptation

 Self-healing

 Self-optimization

 Evolution: when requirements change, they need to be reflected at the SAS level.
From that point, SASSY regenerates a near optimal architecture that satisfies the
requirements of the evolved system

 A small change in the environment can lead to substantial changes in the
structure and features of near-optimal architectures

 Autonomic management can elevate the end user experience by reacting to
emergent problems on the scale of seconds, while human administrators would
need hours, possibly days, to devise and implement a new architecture that
would properly restore the application’s performance

34


