Utility-based Optimal Service Selection for Business Processes in Service Oriented Architectures

Vinod K. Dubey, Daniel A. Menascé

The Eight Intl. Conf. Web Services, IEEE Computer Society, Miami, FL, July 5-10, 2010

Presented by David González

Overview

- Objectives and Concluding Remarks
- QoS composition, cost and utility functions
- JOSeS vs HCB
- Experiment
- Results
- Discussion

Objectives and Concluding Remarks

- Address optimal service selection problem for business processes in SOA environments.
- Provided a optimal solution, Extended JOSeS, and a heuristic solution, HCB.
- The heuristic solution performed 99.5% close to the optimal solution using significantly less points from the solution space and computing resources.

Now let's see how to get there.

Optimization Problem

Maximize U(E[R(z)], A(z), X(z))

subject to

$$E[R(z)] \le R_{\max}$$
$$A_{\min} \le A(z) \le 1$$
$$X(z) \ge X_{\min}$$
$$C(z) \le C_{\max}$$
$$z \in \mathcal{Z}$$

Assumptions and BPEL

- Availability and Throughput are deterministic.
- End-to-end execution time and cost are nondeterministic.

A Heuristic Approach to Optimal Service Selection in Service Oriented Architectures

Figure 1: An example of a BPEL business process on the left, the corresponding BPTree on the right, and an execution graph on the middle.

Computing Availability and Throughput

q_i is the probability that activity a_i is invoked [10].

Algorithm 1 Availability Computation of a BPEL process

- 1: **function** A(node i)
- 2: if label(i) = leaf node then
- 3: return A_i ;
- 4: else
- 5: **if** label(i) = sequence **then**
- 6: **return** $\prod_{k \in \text{children}(i)} A(k);$
- 7: else if label(i) = switch then
- 8: **return** $\sum_{k \in \text{children(i)}} q_k \times A(k);$
- 9: else if label(i) = flow then
- 10: **return** $\prod_{k \in \text{children}(i)} A(k);$
- 11: **end if**
- 12: end if

Algorithm 2 Throughput Computation of a BPEL process

- 1: function X(node i)
- 2: if label(i) = leaf node then
- 3: return X_i ;

4: else

- 5: **if** label(i) = sequence then
- 6: **return** $\min_{k \in \text{children(i)}} X(k);$
- 7: else if label(i) = switch then
- 8: **return** $\sum_{k \in \text{children(i)}} q_k \times X(k);$
- 9: else if label(i) = flow then
- 10: **return** $\min_{k \in \text{children}(i)} X(k);$
- 11: end if
- 12: end if

Computing end-to-end execution time

$$E[\max_{i=1}^{n} R_i] = \int_0^\infty x \left[\prod_{i=1}^{n} P_i(x)\right] \sum_{i=1}^{n} \frac{p_i(x)}{P_i(x)} dx \qquad ($$

The expected value of a maximum of a set of independent random variables[10]

Utility functions

$$U_i(v(z)) = K_i \frac{e^{\alpha_i(\beta_i - v(z))}}{1 + e^{\alpha_i(\beta_i - v(z))}}$$
(2)

$$U_g(z) = \left(\prod_{i=1}^{3} (U_i(z))^{w_i}\right)^{\frac{1}{\sum_{j=w_j}^{3} w_j}}$$
(

(3)

JOSeS vs HCB

- Jensen-based Optimal Service Selection (JOSeS). This algorithm does not require one to generate the entire solution space Z, but only a subset of the solution space where each point represents a feasible solution.
- Hill-Climbing Based (HCB), which defines a neighborhood of the point currently being visited and move to the best point in the neighborhood. The process continues until a near-optimum solution is found given a stopping criterion

Optimal Solution: JOSeS

Algorithm 3 AdvanceList Function

1: function AdvanceList (k) returns (s)

- 2: $s \leftarrow \text{next}$ (k);
- 3: if s =NULL then
- 4: **if** k > 1 **then**
- 5: reset (k); $k \leftarrow k 1$; $z \leftarrow z \diamond$;
- 6: AdvanceList (k);
- 7: **else**
- 8: return s
- 9: **end if**
- 10: **else**
- 11: **return** s;
- 12: end if
- 13: end function

Algorithm 4 JOSeS Algorithm to Compute the Optimal Service Selection Optimizing the Global Utility

- 1: **function** OptimalSolution() returns (z)
- 2: reset (1); $k \leftarrow 1$; /* initialize activity pointers */
- 3: $s \leftarrow \text{AdvanceList}$ (k); $z \leftarrow s$; /* initialize solution */
- 4: $z_{\text{opt}} \leftarrow$ any allocation in \mathcal{Z} ;
- 5: while $s \neq$ NULL do
- 6: if k < N then
- 7: **if** $(\mathcal{L}(E[R(z)]) \leq R_{\max}) \wedge (A(z) \geq A_{\min}) \wedge (X(z) \geq X_{\min}) \wedge (C(z) \leq C_{\max})$ **then** 8: $k \leftarrow k+1$
 - $k \leftarrow k+1$ else
- 10: $z \leftarrow z \diamond /*$ remove last SP in z */
- 11: end if
- 12: **else**

9:

16:

17:

- 13: **if** $(E[R(z)] \le R_{\max}) \land (A(z) \ge A_{\min}) \land (X(z) \ge X_{\min}) \land (C(z) \le C_{\max})$ **then**
- 14: **if** $U(z) > U(z_{opt})$ **then** 15: $z_{opt} \leftarrow z$
 - $z_{\text{opt}} \leftarrow z$ end if
 - end if
- 18: $z \leftarrow z \diamond /*$ remove last SP in z */
- 19: **end if**
- 20: $s \leftarrow \text{AdvanceList}$ (k); $z \leftarrow z || s$
- 21: end while
- 22: return z_{opt}
- 23: end function

Heuristic Solution: HCB(1)

Alg	orithm 6 Identify Neighbors
1:	function neighbors (z_0) returns (\mathcal{Z})
2:	$\mathcal{Z} \leftarrow \emptyset$; /* Intialize with empty neighborhood */
3:	$\mathcal{N} \leftarrow \emptyset$; /* All neighbors */
4:	for all activity $i = 1,, N$ do
5:	for all $q_i \in \{R_i, A_i, X_i\}$ do
6:	if $q_i = R_i$ then
7:	/* s = best improvement in response time */
8:	$s = arg \ max_{k=1}^{ S_i } \{1 - \frac{q_{i,k}}{q_{i,curr}}\};$
9:	else
10:	/* s = best improvement in availability and
	throughput */
11:	$s = arg max_{k-1}^{ S_i } \{ \frac{q_{i,k}}{a} - 1 \};$
12:	end if $h = 1 \cdot q_{i,curr}$
13:	$z = replace (z_0, i, s);$ /* Replace current SP of a_i
	in z_0 by $s^*/$

```
if z \notin \mathcal{N} then
5: \mathcal{N} \leftarrow \mathcal{N} \bigcup z;
             if ((C(z) \leq C_{\max})) and (A(z) \geq A_{\min}) and
             (\mathcal{L}(E[R(z)]) \leq R_{\max}) \text{ and } (X(z) \geq X_{\min})))
             then
                if (E[R(z)] \leq R_{\max}) then
                \mathcal{Z} \leftarrow \mathcal{Z} \bigcup z;
                 end if
             end if
         end if
      end for
Be end for
4: return \mathcal{Z};
end function
```

Heuristic Solution: HCB(2)

Algorithm 5 HCB Heuristic Algorithm

- 1: **function** HeuristicSolution () returns (z)
- 2: $nrestarts \leftarrow 0$;
- 3: while (nrestarts < maxrestarts) do
- 4: $z_0 \leftarrow \text{randomStart()}; /* \text{ random start }*/$
- 5: $nrestarts \leftarrow nrestarts + 1$; $searching \leftarrow TRUE$;
- 6: while (searching) do
- 7: $\mathcal{Z} \leftarrow \text{neighbors } (z_0); /* \text{ get feasible neighbors } */$
- 8: $z_{opt} \leftarrow arg \max_{z_i \in \mathcal{Z}} \{U(z_i)\}; /* \text{ Identify neighbor with highest utility }*/$
- 9: **if** $(U(z_{opt}) > U(z_0))$ then

$$z_0 \leftarrow z_{opt}$$

11: **else**

10:

12:
$$searching \leftarrow FALSE; /* local optimum */$$

- 13: **end if**
- 14: end while

- 15: **if** (nrestarts = 1) **then**
 - $z_{gopt} \leftarrow z_{opt};$
- 17: else if $(U(z_{opt}) > U(z_{gopt}))$ then

$$18: \qquad z_{gopt} \leftarrow z_{opt};$$

19: **end if**

16:

- 20: end while
- 21: return z_{gopt} ;
- 22: end function

Experiment

- Aimed to evaluate the efficiency between the algorithms; solution space required and computation time by them; and compare them based on other parameters such complexity of the BPT and SPs per activity.
- 50 BPEL business processes were randomly generated, which contained 6 to 9 activities and had constructs such as sequence, flow, and switch-case. A total of 36000 runs were made.
- The calculations were made using a 95% confidence interval.

Results: Utilization ratio comparison

Figure 1. Average U_h/U_o (%) vs. nspa for four constraint strengths

Results: Number of points examined comparison

Figure 2. Average number of points examined N_h and N_o vs. nspa for four constraint strengths

Figure 5. Average number of points examined N_h and N_o vs. nspa for simple, medium, and complex business processes

Results: Computing time comparison

Figure 3. Average computation time T_h and T_o vs. nspa for four constraint strengths

Results: Analysis of the Nh visited points growth against SPs per activity

Figure 6. Average N_h vs. nspa

Discussion

- ► Has HCB solution runtime limitations?
- ► What is next step after HCB?

Thank you for your time!

