Utility-based Optimal
Service Selection for
Business Processes in
Service Oriented
Architectures

Vinod K. Dubey, Daniel A. Menascé

The Eight Intl. Conf. Web Services, IEEE Computer Society, Miami, FL,
July 5-10, 2010

Presented by David Gonzalez

Overview

Objectives and Concluding Remarks

QoS composition, cost and utility functions
JOSeS vs HCB

Experiment

Results

vV v v v VvV Vv

Discussion

Objectives and Concluding Remarks

» Address optimal service selection problem for business processes in SOA
environments.

» Provided a optimal solution, Extended JOSeS, and a heuristic solution, HCB.

» The heuristic solution performed 99.5% close to the optimal solution using
significantly less points from the solution space and computing resources.

» Now let’s see how to get there.

Optimization Problem

Maximize U(E[R(2)], A(2), X(2))
subject to
E[R(2)] < Runas
Amin < A(2) <1
X(2) 2 Xmin
C(2) < Crmax
z€2

Assumptions and BPEL

» Availability and Throughput are deterministic.

» End-to-end execution time and cost are nondeterministic.

A Heuristic Approach to Optimal Service
Service Oriented Architectures

<sequence>
<invoke al1>
<switch>
<case ql>

<flow>
<invoke a2>
<sequence>
<invoke a3>
<invoke a4>

</sequence>
</flow>
<case q2=(1-ql1)>
<invoke a5> flow
</switch> -
<invoke a6>
</sequence>

Figure 1: An example of a BPEL business process
on the left, the corresponding BPTree on the right,
and an execution graph on the middle.

Computing Availability and Throughput

giis the probability
that activity aiis invoked [10].

Algorithm 1 Availability Computation of a BPEL process Algorithm 2 Throughput Computation of a BPEL process
1: function A(node 1) 1: function X (node 7)
2. if label(i) = 1eaf node then 2: if label(i) = 1eaf node then
3: return A;; 33 return X;;
4: else 4: else

5. if label(i) = sequence then s: if label(i) = sequence then

6 return [, ccpiarenc) A(F): 6 return Minge pidren(i) X (F):

7. else if label(i) = switch then 7. else if label(i) = switch then

8 return), - pidren(i) T X< A(k): 8 return. 3, iaren) @ X X (F):
9: else if label(i) = £1ow then 9: else if label(i) = £1ow then

10: return [] kechildren(i) A(k); 10: return Mingechildren(i) A (k);
11: end if 11: end if
12: end if 12: end if

Computing end-to-end execution time

E[I?%fcR@] — /OOO:I; HP@,(CC) Z %L((Z))dx ()

The expected value of a maximum of a set of
independent random variables[10]

Utility functions

ei(Bi—v(z))
1 + e@i(Bi—v(z))

1

3 S
Ug(2) = (H(Ui(z))wi) 2 (3)

i=1

JOSeS vs HCB

» Jensen-based Optimal Service Selection (JOSeS). This algorithm does not
require one to generate the entire solution space Z, but only a subset of the
solution space where each point represents a feasible solution.

» Hill-Climbing Based (HCB), which defines a neighborhood of the point
currently being visited and move to the best point in the neighborhood. The
process continues until a near-optimum solution is found given a stopping
criterion

Algorithm 4 JOSeS Algorithm to Compute the Optimal
Service Selection Optimizing the Global Utility

I: function OptimalSolution () returns (2)
Opt'i mal SOlut'ion : JOSeS 2: reset (1); k<« 1;/* initialize activity pointers */
3: § «— AdvanceList (k) ; z < s:; /* initialize solu-
tion */
4: 2opt +— any allocation in Z;
5: while s £ NULL do
6: if £ < N then

Algorithm 3 AdvanceList Function 2. if (C(E[R()]) < Ruma) A (A(z) > Amin) A
I: function AdvanceList (k) returns (g) (kaz) iXﬂlm) A (C(z) < Cmax) then
8: r— K+
2: s« next (k) ; o else
3: if s = NULL then 10: 2 «— zo /* remove last SP in z */
4. if k£ > 1 then H: end if
_ 12: else
5 reset (k); k—k—1; 2« z0 3 i (B[R(2)] < Runax) A (A(2) > Amin) A (X (2) >
6: Advanceliist (k): Xomin) N (C(2) < Cnax) then
_ 14: if U(z) > U(zopt) then
7. else s Zopt —
8: return s 16: end if
0- end if 17: end if
el 18: z «— 2o /* remove last SP in z */
10: else 19: end if
11: return s; 20 §+ AdvanceList (k); 2+ z||s
17: end if 21: end while

22: return 2gpt

13: end function 23: end function

Heuristic Solution: HCB(1)

Algorithm 6 Identify Neighbors

I: function neighbors (z)) returns (2) 14: if = ¢ N then
2: Z < (); /* Intialize with empty neighborhood */ 15 N — Nz
3: N — 0; /* All neighbors */ 16: if (C(z) < Cpax) and (A(2) > Apin) and
4: for all activity i = 1, ..., N do (L(E[R(2)]) < Rmax) and (X (z) > Xumin)))
5. forall g; € {R;, A;, X;} do then
6: if ¢; = R; then 17: if (E|R(2)] € Rnax) then
7: /* s = best improvement in response time */ 18- Z— ZJz
s = arg mazp {1 — =} 19: end if
- else | | o 20: end if
10: /¥ s = besi improvement in availability and 21- end if
throughput */ 1Sil ¢ aix 22: end for
11: s = arg max,_} m —1}; >3 end for
12: end if
13: z = replace (29,1, s); /* Replace current SP of a; 24: return Z;

in 2o by s */ 25: end function

Heuristic Solution: HCB(2)

Algorithm 5 HCB Heuristic Algorithm 152 if (nrestarts = 1) then
16: Zgopt ¥ Zopts

1: function HeuristicSolution () returns (2)

2. nrestarts «— O 17: else if (U(zopt) > U(2gope)) then
3: while (nrestarts < maxrestarts) do 18: “gopt * Zopt;
4: zg < randomStart(); /* random start */ 19: end 'f
5. nrestarts < nrestarts 4+ 1; searching <+ TRUE; 20: end while
6: while (searching) do 21: return “gopt:
7: Z «— neighbors (zp); /* get feasible neighbors */ 22: end function
8: Zopt < arg maz,,cz{U(z)}; /* Identify neigh-
bor with highest utility */
9: if (U(zopt) > U(z0)) then
10: Z0 < Zopts
11: else
12: searching «— FALSE; /* local optimum */
13: end if

14: end while

Experiment

» Aimed to evaluate the efficiency between the algorithms; solution space
required and computation time by them; and compare them based on other
parameters such complexity of the BPT and SPs per activity.

» 50 BPEL business processes were randomly generated, which contained 6 to 9
activities and had constructs such as sequence, flow, and switch-case. A total
of 36000 runs were made.

» The calculations were made using a 95% confidence interval.

Results: Utilization ratio comparison

100.00 100.00
99.95 -
99.90 -
< 99.90 |
E 99.80 - S 99.85 -
S 5
g k= 99.80 - I §
D 9970 - ®
-.% > 99751
= 9960 - 5 99.70 4
=
99.65 -
9950 -
99.60 . .
2 3 4 5
99.40 ' ' MNo. of SPs per activity
2 3 4 5 6 7
No. of SPs per activity —a— Simple —a— Medium —4— Complex
—+—CS=10% =—CS=20% -4 CS=30% =< CS=40%

Figure 4. Average Uy /U, (%) vs. nspa for simple, medium, and complex
business processes

Figure 1. Average Up /U, (%) vs. nspa for four constraint strengths

Results: Number of points examined
comparison

100,000,000
100,000,000
10,000,000
10,000,000 -
o i o
ﬁ 1,000,000 o 1,000,000 -
£ =
g 100,000 - g 100,000 -
E 10,000 + ‘E 10,000 -
3 =
- 1,000 ~ 4 1,000 -
g
; o
2 100 4 g 100 -
rd
10 10
1 T T T T T 1 T T T T T
2 3 = 5 6 T
2 3 4 5 6 7
No. of SPs per activity
No. of SPs per activity
—&—Nnh (Simple) —s=—Nh (Medium) —a—— Nh (Complex)
—+— Nh (CS=10%) —=— Nh (CS5=20%) —=+— Nh (CS=30%) —=— Nh (CS=40%) —o—No (Simple) —m— No (Medium) - - - No (Complex)
—0—No (CS=10%) - -# - No (CS=20%) —+— No (CS=30%) ——— No (CS=40%

Figure 2. Average number of points examined Np and N, vs. nspa for - Figure 5. Average number of points examined Np, and N, vs. nspa for
four constraint strengths simple, medium, and complex business processes

Results: Computing time comparison

10,000,000
1,000,000 -
w
£ 100,000 A
£
= 10,000 -
=
2
= 1,000 -
=
% ",1'
5 100 { 4
° p—— e
10 -
1 . T
2 3 4 5 6 7
No. of points per activity
—+—Th(CS=10%) —=—Th(CS=20%) —&— Th(CS=30%) —<— Th (CS=40%)
—O=—T0 (CS=10%) - -® - To (CS=20%) =——+—To (CS=30%) To (CS=40%)

Figure 3. Average computation time Tp and To vs. nspa for four
constraint strengths

Results: Analysis of the Nh visited points
growth against SPs per activity

Avg. number of points examined by

heuristc

20000

18000
16000
14000
12000 -
10000
8000 -
000
4000 -
2000

Nh = 39 * NSPA
R? = 0.99678

50

100 150 200 250 300 350 400
No. of SPs per activity

Figure 6. Average Np vs. nspa

Discussion

» Has HCB solution runtime limitations?

» What is next step after HCB?

Thank you for your time!

